JPH0341990B2 - - Google Patents

Info

Publication number
JPH0341990B2
JPH0341990B2 JP836782A JP836782A JPH0341990B2 JP H0341990 B2 JPH0341990 B2 JP H0341990B2 JP 836782 A JP836782 A JP 836782A JP 836782 A JP836782 A JP 836782A JP H0341990 B2 JPH0341990 B2 JP H0341990B2
Authority
JP
Japan
Prior art keywords
solid
state
functional parts
jig
functional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP836782A
Other languages
Japanese (ja)
Other versions
JPS58125879A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP57008367A priority Critical patent/JPS58125879A/en
Publication of JPS58125879A publication Critical patent/JPS58125879A/en
Publication of JPH0341990B2 publication Critical patent/JPH0341990B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Description

【発明の詳細な説明】 本発明は固体素子アレイの製造方法に関するも
のであり、固体素子の機能部を、固体素子間にお
いても直線性よく高精度のピツチで配列させるこ
とができるようにすることを目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a solid-state element array, and it is an object of the present invention to enable functional parts of solid-state elements to be arranged at a highly accurate pitch with good linearity even between the solid-state elements. With the goal.

第1図A,Bは、従来の固体発光素子及び固体
発光素子アレイの構成を示す図であつて、第1図
Aに示すように、従来の固体発光素子1の形状
は、長方形又は正方形を呈しており、複数個の機
能部2は素子1の中心線3上に配列されている。
なお、5は素子1の裏面に形成された共通電極で
ある。このような固体発光素子1の多数個は、第
1図Bに示すように、機能部2がすべて同一直線
上に並ぶように、取付基板4上に直線状に配列さ
れ、固体発光素子アレイを形成する。このとき、
固体発光素子1間の間隔aは、機能部2の間隔b1
が、固体発光素子1上の機能部2の間隔b2に一致
するように、所定の間隔をあけて、固定されなけ
ればいけない。このように、間隔aをあけること
により、素子1裏面の共通電極5を接触させず
に、配線の少ないマトリツクス駆動が可能とな
る。なお、6は共通電極からのリード線である。
ところが、従来では、固体素子間の機能部の直線
性及び、固体素子間の機能部の間隔を正確に合わ
せるために治具を使用しようとしても、間隔aが
数10μmと小さいために機能部間に一定間隔を確
保するための境を有した治具の加工が困難であ
り、治具の使用は事実上不可能であつた。そのた
め、目分量で行なうか、又は顕微鏡により、1素
子ずつ位置合わせを行なう必要があり、正確性と
量産性に欠けるものであつた。
FIGS. 1A and 1B are diagrams showing the configurations of conventional solid-state light emitting devices and solid-state light emitting device arrays. As shown in FIG. 1A, the shape of the conventional solid-state light emitting device 1 is rectangular or square. The plurality of functional parts 2 are arranged on the center line 3 of the element 1.
Note that 5 is a common electrode formed on the back surface of the element 1. As shown in FIG. 1B, a large number of such solid-state light-emitting devices 1 are arranged linearly on a mounting board 4 so that all the functional parts 2 are lined up on the same straight line, thereby forming a solid-state light-emitting device array. Form. At this time,
The distance a between the solid-state light emitting elements 1 is the distance b 1 between the functional parts 2
must be fixed at a predetermined interval so as to correspond to the interval b2 of the functional parts 2 on the solid-state light emitting device 1. In this manner, by providing the interval a, matrix driving with fewer wirings is possible without contacting the common electrode 5 on the back surface of the element 1. Note that 6 is a lead wire from the common electrode.
However, in the past, even when attempting to use a jig to accurately adjust the linearity of the functional parts between solid-state elements and the spacing between the functional parts between solid-state elements, the spacing a was as small as several tens of micrometers, making it difficult to maintain the linearity between the functional parts. It is difficult to process a jig with boundaries to ensure a constant interval between the two, and the use of a jig is virtually impossible. Therefore, it is necessary to align each element one by one either by eye or by using a microscope, which lacks accuracy and mass productivity.

本発明は、以上のような従来の欠点を解決する
ためになされたもので、簡単に隣接する素子間の
寸法精度及び、直線性を確保すると共に、機能部
からの取出し線の短絡を防止しながら多数個の固
体素子を容易に固定できるなどの量産性の向上を
目的としたものである。
The present invention was made in order to solve the above-mentioned conventional drawbacks, and it easily ensures dimensional accuracy and linearity between adjacent elements, and prevents short circuits of lead wires from functional parts. However, the purpose is to improve mass productivity by making it possible to easily fix a large number of solid-state devices.

この目的を達成するために、本発明では、固体
素子の機能部を中心線からずらして形成し、連通
部を介して等ピツチで繰り返えされる千鳥状の挿
入孔を有する独自の治具を用いることにより、各
固体素子の機能部が直線状、且つ、等間隔に配置
される固体素子アレイの製造方法を可能としたも
のである。
To achieve this objective, the present invention uses a unique jig in which the functional part of the solid-state element is formed offset from the center line, and has staggered insertion holes that are repeated at equal pitches through the communication part. By using this method, it is possible to manufacture a solid-state device array in which the functional parts of each solid-state device are arranged linearly and at regular intervals.

以下に本発明の一実施例を図面を用いて説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

なお固体素子としては、発光素子(LED)を
例として説明する。第2図は本発明の固体素子の
一実施例を示す斜視図である。素子基板10上に
は、複数個の機能部11が、素子基板10の中心
線12からずれた位置に直線状に形成されてい
る。機能部11の表面側には、アノード電極13
がそれぞれ接続されており、機能部11の裏面側
には、カソード電極14がすべての機能部に共通
に接続されている。機能部11の間隔bは等間隔
に配置されている。
Note that a light emitting device (LED) will be described as an example of the solid state device. FIG. 2 is a perspective view showing an embodiment of the solid-state device of the present invention. On the element substrate 10, a plurality of functional parts 11 are formed in a straight line at positions offset from the center line 12 of the element substrate 10. An anode electrode 13 is provided on the surface side of the functional section 11.
are connected to each other, and on the back side of the functional section 11, a cathode electrode 14 is commonly connected to all the functional sections. The intervals b of the functional parts 11 are arranged at equal intervals.

第3図は、本発明の製造方法により製造される
固体素子アレイの一実施例を示す斜視図である。
第2図で示した固体発光素子10の多数個が各機
能部11が直線状になるように、取付基板16上
に、カソード電極14が電極17に接触するよう
に、千鳥状配置されている。また、各固体発光素
子10の間隔は、直線上にならんだそれぞれの機
能部11の間隔がbに一致するように所定の間隔
aをあけている。
FIG. 3 is a perspective view showing one embodiment of a solid-state device array manufactured by the manufacturing method of the present invention.
A large number of solid-state light emitting devices 10 shown in FIG. 2 are arranged in a staggered manner on a mounting board 16 so that each functional part 11 is linear and the cathode electrode 14 is in contact with the electrode 17. . Further, the intervals between the solid-state light emitting elements 10 are set at a predetermined interval a such that the interval between the respective functional parts 11 arranged on a straight line corresponds to the interval b.

第4図は、本発明を実施する際に用いられる治
具を示す斜視図である。治具18は、ステンレス
等の金属もしくは光感光ガラス等の薄板のエツチ
ング等により、アレイの必要とする精度に加工さ
れ、素子の挿入位置を規制するための挿入孔19
を有する。各挿入口19の端面20は、素子を挿
入した際に当接せしめて、各素子間の間隔を所定
の大きさaに設定するためのものであり、隣接す
る挿入孔19の端面20の間隔は所定の大きさd
を有している。
FIG. 4 is a perspective view showing a jig used in carrying out the present invention. The jig 18 is machined to the precision required for the array by etching a metal such as stainless steel or a thin plate such as photosensitive glass, and has an insertion hole 19 for regulating the insertion position of the element.
has. The end surfaces 20 of each insertion hole 19 are used to abut the elements when inserted and set the distance between each element to a predetermined size a, and the distance between the end surfaces 20 of adjacent insertion holes 19 is is the predetermined size d
have.

端面20と垂直方向をなす面の連通部間の距離
は、固体素子の素子基板の端面と機能部との位置
関係に応じ正確に定められている。また、20で
示す一つおきの端面間の距離は、『機能部間のピ
ツチ×1つの固体素子上の機能部の個数』に設定
されていなければならない。
The distance between the communicating parts on the plane perpendicular to the end face 20 is accurately determined according to the positional relationship between the end face of the element substrate of the solid-state element and the functional part. Further, the distance between every other end face indicated by 20 must be set to "pitch between functional parts x number of functional parts on one solid-state element".

このような治具18を用いて、第3図に示す固
体素子アレイを得るには、まず第3図に示す、カ
ソードのリード電極17が所定間隔に表面に形成
された取付基板16を用意する。その後、第4図
に示す治具18を、挿入孔19がリード電極17
に対応するように、取付基板16上に設置する。
その後、第2図に示す固体素子10のカソード電
極14表面に導電性接着剤を付着し、取付基板1
6上の治具18の挿入孔19内に、この固体素子
10を端面20に当接せしめて挿入固着する。こ
の時、当接する端面20は、各挿入孔19におい
て、同じ側にある端面とする。その後、取付基居
板16及び固体素子10を加熱することにより、
両者の固着を完了する。
In order to obtain the solid-state element array shown in FIG. 3 using such a jig 18, first prepare the mounting substrate 16 shown in FIG. 3, on which cathode lead electrodes 17 are formed at predetermined intervals. . After that, insert the jig 18 shown in FIG.
It is installed on the mounting board 16 so as to correspond to the above.
Thereafter, a conductive adhesive is applied to the surface of the cathode electrode 14 of the solid-state element 10 shown in FIG.
The solid element 10 is inserted and fixed into the insertion hole 19 of the jig 18 on the jig 6 by bringing it into contact with the end surface 20. At this time, the end surfaces 20 that come into contact are the end surfaces on the same side of each insertion hole 19 . After that, by heating the mounting base plate 16 and the solid-state element 10,
Complete fixation of both.

治具18の挿入孔19の端面20の間隔dは、
固体素子10の間隔aに一致させると、挿入孔1
9に固体素子10を挿入するのが困難になるた
め、d<aと設定するのが良い。例えば、機能部
11の間隔bを125μmとする場合、端面20の
間隔dは30μmに設定できる。
The distance d between the end faces 20 of the insertion holes 19 of the jig 18 is
When matching the spacing a of the solid-state elements 10, the insertion hole 1
Since it becomes difficult to insert the solid state element 10 into the solid state element 9, it is preferable to set d<a. For example, when the interval b between the functional parts 11 is set to 125 μm, the interval d between the end faces 20 can be set to 30 μm.

一般に、固体素子の大きさや、各固体素子上の
機能部の位置は再現性良く得ることができる。し
たがつて、上記のような治具を用いて、各固体素
子を千鳥状に配列することにより、各固体素子間
における機能部の直線性を確保し、高精度にピツ
チを得ることができる。
Generally, the size of a solid-state element and the position of a functional part on each solid-state element can be obtained with good reproducibility. Therefore, by arranging the solid-state elements in a staggered manner using the jig as described above, it is possible to ensure the linearity of the functional parts between the solid-state elements and to obtain pitch with high precision.

以上説明したように、本発明は、素子の機能部
を固体素子の中心線よりずらせた位置に形成し、
このような固体素子を千鳥状に配列して固体素子
アレイを構成することにより、各素子間の機能部
を直線状に配列するのが容易に行なえ、また各素
子間の機能部の間隔を素子内の機能部の間隔に一
致させることが高精度にかつ容易に行なえると共
に、機能部からの取出し線が短絡することなく行
なえる等の量産性の向上を図ることができる。
As explained above, the present invention forms the functional part of the element at a position offset from the center line of the solid-state element,
By arranging such solid-state elements in a staggered manner to form a solid-state element array, it is easy to arrange the functional parts between each element in a straight line, and the spacing between the functional parts between each element can be adjusted according to the element. It is possible to easily and accurately match the spacing between the functional parts within the structure, and it is also possible to improve mass productivity by making it possible to do this without short-circuiting the lead-out lines from the functional parts.

【図面の簡単な説明】[Brief explanation of drawings]

第1図A,Bは従来の発光素子及び発光素子ア
レイをそれぞれ示す斜視図、第2図、および第3
図は本発明の固体素子及び固体素子アレイの一実
施例をそれぞれ示す斜視図、第4図は固体素子ア
レイ作成の為の治具の斜視図である。 1,10……固体素子、11……機能部、13
……アノード電極、14……カソード電極、16
……取付基板、17……リード電極、18……治
具、19……挿入孔。
FIGS. 1A and 1B are perspective views showing a conventional light emitting device and a conventional light emitting device array, FIGS.
The figures are perspective views showing an embodiment of the solid-state device and solid-state device array of the present invention, respectively, and FIG. 4 is a perspective view of a jig for producing the solid-state device array. 1, 10...Solid element, 11...Functional part, 13
... Anode electrode, 14 ... Cathode electrode, 16
... Mounting board, 17 ... Lead electrode, 18 ... Jig, 19 ... Insertion hole.

Claims (1)

【特許請求の範囲】[Claims] 1 素子基板の裏面に共通電極を備え、表面に複
数の機能部を有し、前記複数の機能部が、前記素
子基板の中心線から離間した位置に、等ピツチで
前記素子基板の第1の端面と平行に直線状に配置
され、且つ、前記第1の端面と直行する第2の端
面から最も近い機能部との距離が、各機能部間の
距離の半分以下に設定された固体素子複数個と、
リード電極が所定間隔に表面に形成された取り付
け基板とを準備し、連通部を介して等ピツチで繰
り返えされる千鳥状の挿入孔を有する治具を用い
て前記固体素子の各共通電極が前記リード電極に
接触し、各固体素子の機能部が直線状、且つ、等
間隔になるように前記固体素子を前記治具の挿入
孔に挿入し固着する固体素子アレイの製造方法。
1. A common electrode is provided on the back surface of the element substrate, and a plurality of functional parts are provided on the front surface, and the plurality of functional parts are arranged on the first surface of the element substrate at equal pitches at positions spaced apart from the center line of the element substrate. A plurality of solid elements arranged in a straight line parallel to the end face, and the distance between the functional part closest to the second end face perpendicular to the first end face is set to be less than half the distance between each functional part. individual and
A mounting board on which lead electrodes are formed at predetermined intervals is prepared, and each common electrode of the solid-state element is inserted through a communication portion using a jig having staggered insertion holes that are repeated at equal pitches. A method of manufacturing a solid-state element array, comprising inserting and fixing the solid-state elements into the insertion holes of the jig so that the solid-state elements are in contact with the lead electrodes and the functional parts of each solid-state element are linear and equally spaced.
JP57008367A 1982-01-21 1982-01-21 Solid element and solid element array Granted JPS58125879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57008367A JPS58125879A (en) 1982-01-21 1982-01-21 Solid element and solid element array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57008367A JPS58125879A (en) 1982-01-21 1982-01-21 Solid element and solid element array

Publications (2)

Publication Number Publication Date
JPS58125879A JPS58125879A (en) 1983-07-27
JPH0341990B2 true JPH0341990B2 (en) 1991-06-25

Family

ID=11691263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57008367A Granted JPS58125879A (en) 1982-01-21 1982-01-21 Solid element and solid element array

Country Status (1)

Country Link
JP (1) JPS58125879A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176338A1 (en) * 2012-05-23 2013-11-28 전북대학교산학협력단 Winter-sports simulator using vibration

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620369B2 (en) * 1984-06-19 1994-03-23 ヤンマー農機株式会社 Rice planting equipment for rice transplanters
US4605944A (en) * 1984-09-11 1986-08-12 Sanyo Electric Co., Ltd. LED array device for printer
JPH09283808A (en) * 1996-04-19 1997-10-31 Oki Electric Ind Co Ltd Light detecting and radiating element module and chip
JPH111027A (en) * 1997-04-14 1999-01-06 Oki Electric Ind Co Ltd Led array, print head, and electrophotographic printer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178386A (en) * 1981-04-27 1982-11-02 Stanley Electric Co Ltd Light emitting diode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57178386A (en) * 1981-04-27 1982-11-02 Stanley Electric Co Ltd Light emitting diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013176338A1 (en) * 2012-05-23 2013-11-28 전북대학교산학협력단 Winter-sports simulator using vibration

Also Published As

Publication number Publication date
JPS58125879A (en) 1983-07-27

Similar Documents

Publication Publication Date Title
US6160412A (en) Impedance-matched interconnection device for connecting a vertical-pin integrated circuit probing device to integrated circuit test equipment
US4241277A (en) LED Display panel having bus conductors on flexible support
US4506215A (en) Modular test probe
US4757256A (en) High density probe card
US8456184B2 (en) Probe card for a semiconductor wafer
US3611128A (en) Probe header for testing integrated circuits
US4554506A (en) Modular test probe
TW201947230A (en) Probe, inspection jig, inspection device, and method of manufacturing probe
JPH0341990B2 (en)
JPH01287484A (en) Probe head and its manufacture and semiconductor lsi inspecting device using same
JPH09178774A (en) Contact probe arrangement
US5870128A (en) Light-emitting device assembly having in-line light-emitting device arrays and manufacturing method therefor
KR20050019870A (en) Fiducial alignment marks on microelectronic spring contacts
CA1089919A (en) Electrographic recording head
JPH0251882A (en) Connection socket and contact pin used therefor and manufacture thereof
CN114469116B (en) Integrated push-type electrode
JPS59145580A (en) Array of solid-state element
JP2003312048A (en) Printer head and its manufacturing method
JPS59184681A (en) Optical printing head
DE4342844C1 (en) Electro-optical module
KR100303536B1 (en) Highly integrated micro-connector and manufacturing method thereof
JPH0782142B2 (en) Assembly method of LED eraser
JPS63137487A (en) Led array chip
JPH01118783A (en) Probe card
JPS623682A (en) Positioning device for electrode plate array in ion chamber type x-ray detector