JPS59145580A - Array of solid-state element - Google Patents

Array of solid-state element

Info

Publication number
JPS59145580A
JPS59145580A JP58020214A JP2021483A JPS59145580A JP S59145580 A JPS59145580 A JP S59145580A JP 58020214 A JP58020214 A JP 58020214A JP 2021483 A JP2021483 A JP 2021483A JP S59145580 A JPS59145580 A JP S59145580A
Authority
JP
Japan
Prior art keywords
solid
state
elements
sections
state element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58020214A
Other languages
Japanese (ja)
Inventor
Takeshi Mizutani
武 水谷
Koichi Kawada
耕一 河田
Ryuichi Toyoda
隆一 豊田
Akiyoshi Tanaka
田中 明美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58020214A priority Critical patent/JPS59145580A/en
Publication of JPS59145580A publication Critical patent/JPS59145580A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/1446Devices controlled by radiation in a repetitive configuration

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To ensure the dimensional accuracy of a function section even when a large number of solid-state element arrays are arranged by projecting sections by disposing and fixing a plurality of solid-state elements on a mounting substrate with predetermined dimensional accuracy while projecting the end sections of the solid-state elements at least one ends from the end surface of the mounting substrate. CONSTITUTION:A plurality of function sections 2 are formed rectilinearly on the surface of a solid-state element 1. Anode electrodes 6 are connected to the surface sections of the function sections 2, and a cathode electrode 3 is connected in common with all the function sections on the back side. A plurality of the solid-state elements 1 are fixed on a mounting substrate 4 so that all the function sections 2 are arranged rectilinearly. The solid-state elements are disposed at regular intervals (a) so that pitches among the function sections 2 are brought to regular intervals b1=b2. The solid-state elements 1 positioned at both ends are formed so that the end surfaces of the elements 1 are brought to the state in which the end surfaces are projected only by a distance (c) from the end surfaces of the mounting substrate 4, and an arbitrary long-sized solid-state element array is obtained by arbitrarily arranging and assembling a plurality of solid- state element arrays 7 as the reference.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、LEDなどの固体素子を多数イ晶配列してな
る長尺状の固体素子アレイに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an elongated solid-state element array made up of a large number of solid-state elements such as LEDs arranged in crystalline form.

従来例の構成と問題点 第1図は、従来の固体素子アレイの構成を示す図であっ
て、図に示すようVこ、固体素子1の形状は、長方形又
は正方形を呈してあり、複数個の機能部2は固体素子1
の表面部に直線的に配列されている。なお3は固体素子
1の裏面に形成された共通電極である。この様な固体素
子1の多数個は、機能部2がすべて同一直線上に並ぶよ
うに取伺基板4上に直線状に配列され固体素子アレイを
形成する。このとき、固体素子1間の間隔aは、機能部
2の間隔b1 が、固体素子1の機能部2の間隔b2に
一致するように所定の間隔をあけて固定されなげれはい
けない。この様に間隔aをあけることにより、隣接する
固体素子1裏面の共通電極3を接触させずに、配線の少
ないマトリックス駆動が可能となる。なお5は共通電極
3からのリ−1・線である。
Structure and Problems of Conventional Example FIG. 1 is a diagram showing the structure of a conventional solid-state element array. The functional part 2 is the solid state element 1
are arranged linearly on the surface. Note that 3 is a common electrode formed on the back surface of the solid-state element 1. A large number of such solid-state devices 1 are linearly arranged on the receiving substrate 4 so that the functional parts 2 are all lined up on the same straight line to form a solid-state device array. At this time, the interval a between the solid elements 1 must be fixed at a predetermined interval so that the interval b1 between the functional parts 2 matches the interval b2 between the functional parts 2 of the solid element 1. By providing the interval a in this manner, matrix driving with fewer wirings is possible without bringing the common electrodes 3 on the back surfaces of adjacent solid-state elements 1 into contact with each other. Note that 5 is a wire 1 from the common electrode 3.

ところが従来では、所定の長さの固体素子アレイを作成
する時に(d、所定の長さの取付基板4に、直接必要数
の固体素子1を配列固定していた。従って、非常に長い
寸法で、上記説明した精度を確保し、全ての機能部が正
常に動作した状態で組立を行うVこは、治工具も長大化
し、又正確性と量産性に欠けるものであった。丑た固体
素子の特性のバラツキにより、一部の素子を修理交換す
る場合にも全てを取り換えねばならず取扱いも困難であ
った。
However, in the past, when creating a solid-state element array of a predetermined length (d), the required number of solid-state elements 1 was directly arrayed and fixed on a mounting board 4 of a predetermined length. However, in order to ensure the accuracy described above and to assemble with all functional parts operating normally, the jigs and tools were long, and accuracy and mass production were lacking. Due to variations in characteristics, even if some of the elements were to be repaired or replaced, all of them had to be replaced, making handling difficult.

発明の目的 本発明は、以上のような従来の欠点を解決するためにな
されたもので、任意の長さの固体素子アレイを、隣接す
る素子間の寸法精度及び直線性を確保しながら簡単に作
成することのできる固体素子アレイを提供することを目
的とするものである。
Purpose of the Invention The present invention has been made to solve the above-mentioned conventional drawbacks, and it is possible to easily form a solid-state element array of any length while ensuring dimensional accuracy and linearity between adjacent elements. The objective is to provide a solid-state device array that can be fabricated.

発明の構成 この目的を達成するために本発明では、複数個の固体素
子を、所定の寸法精度で取代基板上に配列固定するとと
もに、少なくとも一端の固体素子の端部を取付基板の端
部より突出させるものであり、この突出部によって、固
体素子アレイか多数個配置されても機能部の寸法精度を
確保するものである。
Structure of the Invention In order to achieve this object, in the present invention, a plurality of solid elements are arranged and fixed on a machining board with predetermined dimensional accuracy, and at least one end of the solid element is placed closer to the end of the mounting board. This protrusion ensures the dimensional accuracy of the functional section even if a large number of solid state element arrays are arranged.

実施例の説明 以下に本発明の一実施例を図面を用いて説明する。Description of examples An embodiment of the present invention will be described below with reference to the drawings.

なお固体素子としては、発光素子(LELI’)を例と
して説明する。第2図は本発明の固体素子アレイの一実
施例を示す斜視図である。固体素子1の表面には複数個
の機能部2が直線状に形成されている。機能部2の表面
側にはアノード電極6かそれぞれ接続されており、裏面
側にはカソード電極3かすべての機能部に共通に接続さ
れている。
Note that a light emitting element (LELI') will be described as an example of the solid-state element. FIG. 2 is a perspective view showing an embodiment of the solid state device array of the present invention. A plurality of functional parts 2 are formed in a linear shape on the surface of the solid-state element 1. Anode electrodes 6 are respectively connected to the front side of the functional section 2, and cathode electrodes 3 are connected to all the functional sections in common to the back side.

複数個の固体素子1はすべての機能部2が直線状になる
ように取付基板4上に固定されている。
A plurality of solid-state elements 1 are fixed on a mounting substrate 4 so that all functional parts 2 are linear.

機能部2間のピッチは等間隔b1−b2になる様所定の
間隔aをあけている。両端に位置する同体素子1の端部
は、数例基板4の端部より寸法Cたけ突出した状態に形
成されており、この基準となる固体素子アレイ7を任意
に複数個配列組立てすることにより、任意の長尺状の固
体素子アレイか得られる。
The pitch between the functional parts 2 is a predetermined interval a such that the pitch is equal between b1 and b2. The ends of the solid-state elements 1 located at both ends are formed to protrude by a dimension C from the ends of the substrate 4 in some cases, and by arbitrarily arranging and assembling a plurality of solid-state element arrays 7 that serve as a reference, , an arbitrary elongated solid-state device array can be obtained.

第3図は本発明の固体素子アレイを用いた長尺状の固体
素子アレイの一実施例を示す斜視図である。第2図で示
した基準となる固体素子アレイ7の多数個が各機能部2
が直線上になるように組立基板8上に、ネジ9又は接着
剤等により固定されている。壕だ各固体発光素子10間
隔は、直線上に並んだそれぞれの機能部20間隔がbに
一致する・ようV?−r’A定の間隔aをあけている。
FIG. 3 is a perspective view showing an embodiment of a long solid-state device array using the solid-state device array of the present invention. A large number of reference solid-state element arrays 7 shown in FIG.
It is fixed on the assembly board 8 with screws 9, adhesive, etc. so that it is on a straight line. The distance between the solid-state light emitting elements 10 is such that the distance between the functional parts 20 arranged in a straight line corresponds to b.V? -r'A A fixed interval a is left.

従って、あらかじめ特性測定を完了した基準となる固体
素子アレイ7を必要数組立ることにより、任意の長さの
長尺状固体素子アレイが効率的に作成する事ができる。
Therefore, by assembling the necessary number of standard solid-state device arrays 7 whose characteristics have been measured in advance, a long solid-state device array of any length can be efficiently produced.

すなわち、両端に位置する固体素子1の端部を取付基板
4の端面より突出させることにより、基準トなる固体素
子アレイ7の多数個を組立基板8」二に固定する際に、
取付基板4の端面Vこ影響されることなく、端面に少々
、の凹凸あるいは傾斜があったとしても、固体素子1の
端部同志の実質的な寸法のみで、機能部2間のピッチを
精度良く確保することができる。固体素子1上の機能部
2のピンチな数百μmの単位であるため、取付基板4の
端面の平滑度、あるいは取付基板4と固体素子1の接着
部の端面からみた段差等が、固体素子アレイ7を並べて
固定させる際に、固体素子アレイ7間の機能部2のピッ
チに影響を与えるものであるが1、本実施例によれはこ
れらを何ら問題にせず、効率の良い固体素子アレイの配
置が行なえる。
That is, by making the end portions of the solid-state devices 1 located at both ends protrude from the end surface of the mounting substrate 4, when fixing a large number of solid-state device arrays 7, which serve as references, to the assembly substrate 8'',
Even if the end face is slightly uneven or sloped, the pitch between the functional parts 2 can be accurately adjusted based only on the actual dimensions of the ends of the solid-state element 1 without being affected by the end face V of the mounting board 4. It can be well secured. Since the functional part 2 on the solid-state element 1 is measured in units of several hundred μm, the smoothness of the end face of the mounting board 4 or the level difference seen from the end face of the bonded part between the mounting board 4 and the solid-state element 1, etc. When the arrays 7 are lined up and fixed, the pitch of the functional parts 2 between the solid-state element arrays 7 is affected1, but in this embodiment, these do not pose any problems and an efficient solid-state element array can be realized. Can be placed.

実際には、基準となる固体素子アレイγの長さを8素子
、32Mとすれば、84判256 mnbの長尺状の固
体素子アレイは、基準となる固体素子アレイ7を8ユニ
ット組立れは良い0 さらに本実施例によれば、基準となる固体素子アレイを
作るたけで良いので、全てを組立てるための長大化した
治工具を用いる必要もなく、量産性に豊んでおり、また
固体素子に特性の・・ラツキがあったとしても、それに
対応する固体素子アレイγを取り換えるたけで良く、取
り扱いも容易である。
In reality, if the length of the standard solid-state array γ is 8 elements and 32M, a long solid-state array of 256 mnb in 84 size can be assembled by assembling 8 units of the standard solid-state array 7. Good 0 Furthermore, according to this embodiment, since it is only necessary to make a solid-state element array as a reference, there is no need to use large jigs and tools for assembling everything, and it is easy to mass-produce. Even if there are irregularities in the characteristics, it is sufficient to simply replace the corresponding solid-state element array γ, and handling is easy.

なお、上記実施例では両端に位置する固体素子1を取付
基板4よりも突出させたか、これに限ることなく、少な
くとも一端に位置する固体素子1を突出させるだけでも
同様の効果は得られる0発明の詳細 な説明したように本発明によれば、複数個の固体素子を
所定の寸法精度で取付基板に配列固定するとともに、少
なくとも一端の固体素子の端部を取付基板の端面より突
出させるものであるため多数個の固体素子間の機能部を
直線精度、間隔精度良く長尺状固体素子アレイが得られ
る。さらに、1個の固体素子アレイは長尺状でないため
、製造の際に長大化した治工具を必要とせず量産性に豊
み、固体素子の特性のバラツキがあっても容易に修理が
可能である。
In addition, in the above embodiment, the solid elements 1 located at both ends are made to protrude beyond the mounting substrate 4, but the present invention is not limited to this, and the same effect can be obtained by simply making the solid elements 1 located at at least one end protrude. As described in detail, according to the present invention, a plurality of solid elements are arranged and fixed on a mounting board with predetermined dimensional accuracy, and at least one end of the solid element is made to protrude from the end surface of the mounting board. Therefore, it is possible to obtain a long solid-state element array with high linear accuracy and spacing accuracy between the functional parts between a large number of solid-state elements. Furthermore, since a single solid-state element array is not long, it does not require large jigs and tools during manufacturing, making it highly suitable for mass production, and it is easy to repair even if the characteristics of the solid-state elements vary. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の固体素子アレイを示す斜視図、第2図一
本発明の固体素子アレイの一実施例を示す剥視図、第3
図は同実施例を用いた長尺状固体素子アレイを示す斜視
図である。 1・ ・固体素子、2−・ 機能部、3・  カンード
電極、4・・ 数例基板、5  リート電極、6・アノ
ード電極、7  固体素子アレイ、8 ・組立基板、9
  組立ネジ。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図
FIG. 1 is a perspective view showing a conventional solid-state device array, FIG. 2 is a perspective view showing an embodiment of the solid-state device array of the present invention, and FIG.
The figure is a perspective view showing a long solid-state device array using the same embodiment. 1. Solid-state device, 2-. Functional part, 3. Cando electrode, 4. Some examples of substrate, 5. Reed electrode, 6. Anode electrode, 7. Solid-state device array, 8. Assembly board, 9.
assembly screws. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 figure

Claims (1)

【特許請求の範囲】[Claims] 表面に複数個の機能部が直線状に形成された多数個の固
体素子を、前記機能部が直線状になるように取付基板上
に設置するとともに、少なくともi’1fiiの前記固
体素子の端部を、前記取付基板端面より突出せしめたこ
とを特徴とする固体素子アレイ0
A large number of solid-state elements each having a plurality of functional parts linearly formed on the surface thereof are installed on a mounting board so that the functional parts are linear, and at least an end of the solid-state element of i'1fii is installed. The solid-state element array 0 is characterized in that it projects from the end surface of the mounting substrate.
JP58020214A 1983-02-08 1983-02-08 Array of solid-state element Pending JPS59145580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58020214A JPS59145580A (en) 1983-02-08 1983-02-08 Array of solid-state element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58020214A JPS59145580A (en) 1983-02-08 1983-02-08 Array of solid-state element

Publications (1)

Publication Number Publication Date
JPS59145580A true JPS59145580A (en) 1984-08-21

Family

ID=12020907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58020214A Pending JPS59145580A (en) 1983-02-08 1983-02-08 Array of solid-state element

Country Status (1)

Country Link
JP (1) JPS59145580A (en)

Similar Documents

Publication Publication Date Title
DE2731717C3 (en) Flat optical display field
US7465931B2 (en) Radiation detector module
JPS59145580A (en) Array of solid-state element
JPS62248271A (en) Led array light source
JPS58125879A (en) Solid element and solid element array
EP0751568A2 (en) Light-emitting device assembly and method of fabricating same
US4737625A (en) Arrangement structure of plural rows of overlapping optical elements
US6011639A (en) One piece deformable mirror actuator assembly
KR20220126729A (en) Lens array, LED lighting unit, exposure apparatus, and exposure method
JPH02212167A (en) Led printing head
US4300146A (en) Electrostatic write head
JPH0782142B2 (en) Assembly method of LED eraser
JPH05308477A (en) Line type light source device employing light emitting semiconductor chip
JPH0244714B2 (en)
JP2003312048A (en) Printer head and its manufacturing method
JP3500061B2 (en) LED print head
JPS5990975A (en) Assembly of light-emitting diode
JP3609822B6 (en) LED print head
JP3609822B2 (en) LED print head
JPS6226875A (en) Light-emitting diode unit
JP2528020Y2 (en) Semiconductor laser device
JPS64783A (en) Piezoelectric actuator
JPS60166166U (en) Light emitting element array head
JPH0241664Y2 (en)
US4372045A (en) Method of manufacturing electrostatic write head