JPH0341932B2 - - Google Patents
Info
- Publication number
- JPH0341932B2 JPH0341932B2 JP56185860A JP18586081A JPH0341932B2 JP H0341932 B2 JPH0341932 B2 JP H0341932B2 JP 56185860 A JP56185860 A JP 56185860A JP 18586081 A JP18586081 A JP 18586081A JP H0341932 B2 JPH0341932 B2 JP H0341932B2
- Authority
- JP
- Japan
- Prior art keywords
- cathode
- impregnated
- outer ring
- emitter material
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims description 36
- 238000010438 heat treatment Methods 0.000 claims description 31
- 239000000758 substrate Substances 0.000 claims description 20
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 238000005470 impregnation Methods 0.000 description 21
- 238000000034 method Methods 0.000 description 11
- 239000011148 porous material Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 238000001994 activation Methods 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 239000010953 base metal Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010017740 Gas poisoning Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 229910000287 alkaline earth metal oxide Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000010406 cathode material Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/04—Manufacture of electrodes or electrode systems of thermionic cathodes
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
Description
【発明の詳細な説明】 本発明は含浸型陰極の製法に係わる。[Detailed description of the invention] The present invention relates to a method for manufacturing an impregnated cathode.
従来一般の陰極線管における陰極は、一般に、
(Ba、Sr、Ca)−Oの三元素酸化物が、Mg等の還
元剤を含んだ基体金属上に被着されたアルカリ土
類金属酸化物型陰極が用いられる。ところがこの
種の陰極は、陰極から大きな電子流をとり出した
場合、表面に露出して酸化物が管体内の残留ガス
イオンや、電極表面からスパツタされたイオン等
によつて表面が逆にスパツタされたり溶融した
り、飛散したりして損傷を受け短時間でエミツシ
ヨン能力が低下するしその寿命は比較的短い。 The cathode in conventional cathode ray tubes is generally
An alkaline earth metal oxide type cathode is used in which a ternary oxide of (Ba, Sr, Ca)-O is deposited on a base metal containing a reducing agent such as Mg. However, with this type of cathode, when a large current of electrons is taken out from the cathode, the oxide exposed on the surface becomes spattered by residual gas ions in the tube or ions spattered from the electrode surface. If it is damaged by being exposed to water, melting, or scattering, its emission capacity decreases in a short period of time, and its lifespan is relatively short.
これに比し、含浸型陰極は、熱電子放射源すな
わちエミツタ材としてのBaCO3、CaCO3、Al2O3
を予め水素雰囲気中で溶融し、BaO−CaO−
Al2O3の安定な化合物の形に変えた後、このエミ
ツタ材を基体金属としてのタングステンWの多孔
質焼結体中に溶融含浸させたものであるので、上
述したような、イオン衝撃や、ガス被毒にも強
く、Wとの還元反応で生成した自由Baが、電気
抵抗の小さなW焼結体中の細孔を陰極表面に向つ
て移動するので安定した電子流で、且つ高い電子
放射密度を得ることができる。 In comparison, the impregnated cathode uses BaCO 3 , CaCO 3 , Al 2 O 3 as the thermionic emission source or emitter material.
is melted in advance in a hydrogen atmosphere to form BaO−CaO−
After changing the form of Al 2 O 3 into a stable compound, this emitter material is melted and impregnated into a porous sintered body of tungsten W as the base metal, so it is not susceptible to ion bombardment or It is resistant to gas poisoning, and free Ba generated through the reduction reaction with W moves toward the cathode surface through the pores in the W sintered body, which has low electrical resistance, resulting in a stable electron flow and high electron flow. radial density can be obtained.
このような含浸型陰極を得る方法としては、例
えば第1図に示すように、例えばモリブデンMo
より成るボート1内に、含浸物としてのエミツタ
材2をのせたタングステンW多孔質焼結体より成
る陰極基体3を配し、このボート1を、高周波誘
導加熱手段、すなわち高周波コイル或いはヒータ
ー等の加熱手段5を具備する加熱炉4中に配置
し、エミツタ材2を溶融させ、基体3に含浸吸収
させる方法がある。この場合、量産性を考慮する
と基体3として、最終的に得る陰極の複数個分に
相当する大径のものを用いて、これに上述したエ
ミツタ材の含浸を行い、後に、この基体3を、所
望の形状の複数個の陰極に切り出す方法が採られ
る。ところがこの場合、この基体3を夫々所望の
形状の例えば円板状に切り出す作業は著しく面倒
であり、また、不良品の発生率を高める原因とな
る。 As a method for obtaining such an impregnated cathode, for example, as shown in FIG.
A cathode substrate 3 made of a porous sintered body of tungsten W on which an emitter material 2 as an impregnated material is placed is arranged in a boat 1 made of There is a method in which the emitter material 2 is placed in a heating furnace 4 equipped with a heating means 5, the emitter material 2 is melted, and the base material 3 is impregnated and absorbed. In this case, in consideration of mass production, a large diameter substrate 3 corresponding to the number of cathodes to be finally obtained is used as the substrate 3, which is impregnated with the above-mentioned emitter material, and later this substrate 3 is A method is adopted in which a plurality of cathodes of a desired shape are cut out. However, in this case, the work of cutting each of the base bodies 3 into a desired shape, for example, a disk shape, is extremely troublesome, and also causes an increase in the incidence of defective products.
また、他の含浸方法としては、例えば、第2図
に示すように、同様に高周波コイル、或いはヒー
タ等より成る加熱手段5′を有する縦型の加熱炉
4′内に、エミツタ材2が収容され、このエミツ
タ材2中に、基体3を浸漬させた加熱容器1′を
配して、エミツタ材2を加熱溶融させて、これを
基体3に含浸させる方法も知られている。ところ
が、この場合基体3の表面に過剰のエミツタ材が
付着されるので、これを除去する面倒な作業を必
要とするという欠点が生じる。 In addition, as another impregnation method, for example, as shown in FIG. A method is also known in which a heating container 1' in which a base 3 is immersed is disposed in the emitter material 2, the emitter material 2 is heated and melted, and the base 3 is impregnated with the emitter material 2. However, in this case, an excessive amount of emitter material is deposited on the surface of the base body 3, resulting in the disadvantage that a troublesome work is required to remove it.
本発明は、上述した諸欠点を回避し、陰極基体
として、最終的に得る陰極個々の形状、大きさに
成型された基体を用い、これにエミツタ材を過不
足なく適量をもつて均一に含浸させることのでき
る含浸型陰極の製法を提供するものである。 The present invention avoids the above-mentioned drawbacks, and uses a substrate molded to the shape and size of each cathode to be finally obtained as a cathode substrate, and uniformly impregnates it with an appropriate amount of emitter material. The purpose of the present invention is to provide a method for manufacturing an impregnated cathode that can
以下本発明による含浸型陰極の製法を、これに
用いる装置と共に詳細に説明する。 The method for manufacturing an impregnated cathode according to the present invention will be described in detail below along with the equipment used therein.
本発明においては、例えば第3図に示すよう
に、高周波コイル10を具備する例えば石英容器
より成る縦型の加熱炉11を設ける。そしてこの
加熱炉11中に、耐熱性を有し且つ所要の電気伝
導度を有する例えばモリブデンMoより成る車輪
状の加熱担体12を配置する。 In the present invention, as shown in FIG. 3, for example, a vertical heating furnace 11 made of, for example, a quartz container and equipped with a high-frequency coil 10 is provided. In this heating furnace 11, a wheel-shaped heating carrier 12 made of, for example, molybdenum Mo and having heat resistance and a required electrical conductivity is placed.
この加熱担体12は、第4図及び第5図に示す
ように、円形リング状の外輪部13と、この外輪
部13の中心軸上に配される中心部14と、これ
ら外輪部13と中心部14とを機械的に連結す
る、いわゆる車輪の“や”に相当して中心部14
から外輪部13に亘つて放射状に設けられた複数
の輻部15とが、全体として一体に設けられて成
る。そして、この加熱担体12の外輪部13の上
面には、その円周方向に所要の間隔を保持して複
数の凹部16が配列して設けられる。これら各凹
部16には、第6図に示すように、最終的に得る
個々の陰極に対応する陰極基体3が、これの上に
圧縮エミツタ酸化物2が載せられて収容配置され
る。各凹部16は、これに収容される基体3の外
形状に対応した円形状の例えば円形をなし、その
内径Dと深さdとは、基体3の直径Doと、基体
3及び圧縮エミツタ材2の厚さの和に応じて選ば
れる。この場合凹部16内において、基体3があ
まり自由に移動することによつてエミツタ材2
が、基体3より脱落することがないように、その
内径Dは基体3の径Doの2倍以下の1.1Do〜
1.3Doに選定される。例えば、基体3は、その外
径Doが1.5mmに、厚さtpが0.5〜0.9mmに選ばれると
き、凹部16の内径Dは1.7mm、深さdも1.7mmに
選び得る。 As shown in FIGS. 4 and 5, this heating carrier 12 includes a circular ring-shaped outer ring portion 13, a center portion 14 disposed on the central axis of this outer ring portion 13, and a center portion between these outer ring portions 13 and The center portion 14 corresponds to the so-called “ya” of the wheel, mechanically connecting the portion 14 with the center portion 14.
A plurality of ribs 15 are provided radially from the outer ring portion 13 to the outer ring portion 13, and are integrally provided as a whole. A plurality of recesses 16 are arranged on the upper surface of the outer ring portion 13 of the heating carrier 12 at required intervals in the circumferential direction. In each of these recesses 16, as shown in FIG. 6, a cathode substrate 3 corresponding to each cathode to be finally obtained is accommodated and a compressed emitter oxide 2 is placed thereon. Each recess 16 has a circular shape, for example, a circle, corresponding to the outer shape of the base 3 accommodated therein, and its inner diameter D and depth d are the diameter Do of the base 3, and the base 3 and compressed emitter material 2. selected according to the sum of the thicknesses. In this case, if the base body 3 moves too freely within the recess 16, the emitter material 2
However, in order to prevent it from falling off from the base body 3, its inner diameter D is 1.1Do ~ 2 times the diameter Do of the base body 3 or less.
1. Selected as 3Do. For example, when the outer diameter Do of the base body 3 is selected to be 1.5 mm and the thickness t p is selected to be 0.5 to 0.9 mm, the inner diameter D of the recess 16 may be selected to be 1.7 mm, and the depth d may also be selected to be 1.7 mm.
加熱担体12の支持は、例えば第5図に示すよ
うに、良熱伝導性を有する例えば銅Cuより成る
第1の支持パイプ17の上端に、同様に熱遮断性
を有するセラミツク、例えばアルミナAl2O3より
成る第2の支持パイプ18が嵌挿支持された支持
体19を設け、パイプ18上に担体12をその中
心部14が当接するように載せこの状態で、中心
部14に穿設された中心孔20とパイプ18の中
心孔とに差し渡つて、頭部21aを有するピン2
1を中心部14上より挿入することによつて行い
得る。 For example, as shown in FIG. 5, the heating carrier 12 is supported by a first support pipe 17 made of, for example, copper Cu, which has good thermal conductivity, and a ceramic material, such as alumina Al 2 , which also has thermal insulation properties, at the upper end of the first support pipe 17. A support 19 is provided in which a second support pipe 18 made of O. A pin 2 having a head 21a extends between the center hole 20 of the pipe 18 and the center hole of the pipe 18.
1 from above the central portion 14.
そして、ここに加熱担体12は、後述するよう
に高周波誘導電流によつてその加熱がなされる
が、この場合これが、適度に加熱され、且つ急冷
されるように各部の寸法が選定される。すなわち
外輪部13の幅W1は各部における熱が均一化さ
れるためにある程度大なる幅を必要とするがパワ
ーの問題を考慮して、基体3の径Doの2倍以上
の3倍前後、例えば4〜5mmに選定し得る。ま
た、輻部15の幅W2は、外輪部13の各部の均
熱化の上からW2<W1とするが、機械的強度の上
から1mm以上、例えば1〜2mmとする。また外輪
部13の厚さtは、均熱と、熱効率と、強度とを
考慮して基体3の厚さtpの1.5〜2倍の例えば2mm
に選定する。 Here, the heating carrier 12 is heated by a high-frequency induced current as described later, but in this case, the dimensions of each part are selected so that it is appropriately heated and rapidly cooled. In other words, the width W 1 of the outer ring portion 13 needs to be large to some extent in order to equalize the heat in each part, but in consideration of power issues, the width W 1 of the outer ring portion 13 should be approximately 3 times or more than 2 times the diameter Do of the base body 3. For example, it can be selected to be 4 to 5 mm. Further, the width W 2 of the radial portion 15 is set to satisfy W 2 <W 1 from the viewpoint of equalizing the temperature of each part of the outer ring portion 13, but from the viewpoint of mechanical strength, the width W 2 is set to 1 mm or more, for example, 1 to 2 mm. Further, the thickness t of the outer ring portion 13 is 1.5 to 2 times the thickness t p of the base body 3, for example, 2 mm, taking into consideration heat uniformity, thermal efficiency, and strength.
be selected.
本発明においては、例えばこのような装置によ
つて基体3中にエミツタ材2を含浸させるもので
あり、この場合、前述したように、加熱担体12
の外輪部13の凹部16内に、プレスされたエミ
ツタ材2を載置した基体3を収容し、高周波コイ
ル10に、例えば400〜500kHzの高周波電流を通
ずる。このようにすると、加熱担体12の主とし
てリング状の外輪部21に誘導電流が生じ、これ
が発熱する。この熱によつて基体3及びエミツタ
材2が加熱され、これがその融点例えば1550℃以
上に加熱されて溶融すると、これが多孔質基体3
中に毛細管現象によつて含浸吸収される。この含
浸作業は、炉11中を真空排気して行う。この場
合の真空度は、10-5Torr〜10-6Torrとして加熱
中に酸化が生じないようにする。またこの加熱
は、1600〜1900℃、望ましくは1800〜1850℃で30
秒間行い、その後は、コイル10への通電を断
つ。この時担体12、したがつて基体3は急冷さ
れ、エミツタ材が過不足なく含浸された含浸型陰
極が得られることになる。 In the present invention, the emitter material 2 is impregnated into the substrate 3 using, for example, such a device, and in this case, as described above, the heating carrier 12 is impregnated with the emitter material 2.
The base 3 on which the pressed emitter material 2 is placed is housed in the recess 16 of the outer ring 13, and a high frequency current of, for example, 400 to 500 kHz is passed through the high frequency coil 10. In this way, an induced current is generated mainly in the ring-shaped outer ring portion 21 of the heating carrier 12, which generates heat. The base 3 and the emitter material 2 are heated by this heat, and when this is heated to its melting point, for example, 1550°C or higher and melted, the porous base 3
It is impregnated and absorbed by capillary action. This impregnation work is performed by evacuating the inside of the furnace 11. The degree of vacuum in this case is set to 10 -5 Torr to 10 -6 Torr to prevent oxidation from occurring during heating. This heating is also carried out at 1600-1900℃, preferably 1800-1850℃ for 30 minutes.
This is done for a few seconds, and then the power to the coil 10 is cut off. At this time, the carrier 12, and therefore the base 3, are rapidly cooled, and an impregnated cathode impregnated with just enough emitter material is obtained.
このようにして得られた複数個の含浸型陰極
は、全陰極に関して均一の特性を有し、且つ各基
体3に関してその厚さ方向に関するエミツタ材の
含浸濃度が均一に行われる。これは加熱担体12
の、特に基体3が配置される部分が閉じた形状、
すなわちリング状をなす外輪部13であること、
そしてこの閉じた形状の外輪部13の全域に亘つ
て共通に流れる誘導電流によつて、その加熱がな
されるので、前述したようにその輻部15を含め
た寸法、形状等を適当に選定することによつて各
部一様の温度で、しかも所要の温度に加熱でき、
その後は急冷できることによつて均一の濃度をも
つてその含浸を行うことができるものと思われ
る。 The plurality of impregnated cathodes thus obtained have uniform characteristics for all the cathodes, and the impregnation concentration of the emitter material in the thickness direction of each substrate 3 is uniform. This is the heating carrier 12
In particular, the part where the base body 3 is arranged has a closed shape,
That is, the outer ring portion 13 is ring-shaped;
Since heating is performed by the induced current that commonly flows throughout the entire area of the closed outer ring portion 13, the dimensions, shape, etc. including the radius portion 15 should be appropriately selected as described above. In particular, each part can be heated to the required temperature, with a uniform temperature.
It is believed that the impregnation can be carried out at a uniform concentration by being rapidly cooled thereafter.
尚、基体3へのエミツタ材2の含浸のための温
度プログラミングは、第7図に示すようにエミツ
タ材2の溶融温度以上の高温の含浸温度TSに所
要の時間a1〜a2(以下これをキープ時間という)
に保持して後、急冷する態様をとる。第8図は、
含浸条件、すなわち含浸温度TS、及びキープ時
間と、含浸態様との関係を示すもので、第8図中
各線22及び23を含みこれらに挾まれる領域B
において適正の含浸がなされ、第8図において直
線23より下方の領域Aでは、エミツタ材2の残
留が生じ、直線22より上方の領域Cでは、エミ
ツタ材2の蒸発が大となることを確かめた。第9
図は、本発明装置によつて含浸処理を行つた場合
のX線マイクロアナライザーによつて、多孔質タ
ングステン基体3中におけるBaの分布を測定し
た結果を示し、横軸に、タングステン基体のエミ
ツタ材が載置される側の面(表面)から、これと
は反対側の裏面迄の厚さ方向の距離をとつたもの
である。同図中、各線24,25及び26は夫々
第8図に示した各領域A,B及びCの条件でその
含浸を行つた場合を示している。曲線25から明
らかなように、含浸条件を第8図の領域Bの適正
領域に選ぶときは、高く且つ平坦なBa濃度分布
が得られる。 The temperature programming for impregnating the base material 3 with the emitter material 2 is based on the time a 1 to a 2 (hereinafter referred to as This is called keep time)
After holding it at a temperature, it is rapidly cooled. Figure 8 shows
This shows the relationship between the impregnation conditions, that is, the impregnation temperature T S and the holding time, and the impregnation mode, and includes the lines 22 and 23 in FIG. 8, and the area B between these lines.
It was confirmed that proper impregnation was carried out in the area, and in the area A below the straight line 23 in FIG. . 9th
The figure shows the results of measuring the distribution of Ba in the porous tungsten substrate 3 using an X-ray microanalyzer when the impregnation treatment was performed using the apparatus of the present invention. The distance in the thickness direction from the surface on which the material is placed (front surface) to the back surface on the opposite side. In the figure, lines 24, 25, and 26 indicate the case where impregnation was performed under the conditions of each area A, B, and C shown in FIG. 8, respectively. As is clear from the curve 25, when the impregnation conditions are selected to be in the appropriate region B of FIG. 8, a high and flat Ba concentration distribution can be obtained.
尚、第10図は多孔質タングステン基体3に対
するエミツタ材の実用上望ましい含浸量を、含水
率に対応して示したもので、この実用上望ましい
範囲は、各線27及び28上を含め、これら間に
相当することが確められた。 Incidentally, FIG. 10 shows the practically desirable amount of impregnation of the emitter material into the porous tungsten base 3 in correspondence with the water content. It was confirmed that it corresponds to
尚同図中曲線29は、最も適正な状態を得る場
合の含浸量−含水率の関係を示し、曲線30は比
較的良好な状態を得る場合の含浸量−空孔率の関
係を示す。すなわち、エミツタ材の含浸量は、こ
れが基体3の空孔を埋込むほど多量であること
も、また余り少量であることも良好なエミツタ特
性を得る上で望ましくない。 In the figure, a curve 29 shows the relationship between the amount of impregnation and the water content when the most appropriate condition is obtained, and a curve 30 shows the relationship between the amount of impregnation and the porosity when a relatively good condition is obtained. That is, in order to obtain good emitter characteristics, it is undesirable that the amount of emitter material impregnated is so large that it fills the pores of the base 3, or that it is too small.
上述した本発明製法により製造したカソードを
陰極線管に組み込み活性化させるためのベーキン
グないしはエージング時間は従来のものに比べ大
幅に短縮化できた。これは次のような現象による
ものと思われる。すなわち、本発明製法において
は、エミツタ材の基体3への炉中における含浸作
業は、炉中を真空排気しつつ行うものであるので
真空排気に伴つて、エミツタ材料中の蒸発し易い
物質、例えばBaは、これが排除され易く、これ
がため、実際に含浸されるもののうち蒸発し易い
ものの割合がエミツシヨン特性を低下させない程
度に少くなるからと思われる。因みに、従来方法
においてその含浸作業を真空中で行つたとして
も、従来方法による場合、過剰のエミツタ物質が
存在していることによつてこのような蒸発し易い
物質の排除の効果は生じてこない。また、上述の
本発明方法による陰極は、そのカソード物質、す
なわちエミツタ材料が多孔質基体3に、必要且つ
十分な量だけ均一に含浸され、基体3の熱電子放
出側の表面から裏面側にかけて実質的に貫通する
孔が残存する程度の空孔ができているので、実質
的表面積が大となりエミツシヨン効率の向上とな
る。またこの実質的な貫通空孔の存在により、蒸
発し易い物質の含浸量が小とされていることと相
俟つて、ベーキングないしエージングの時間と、
手間の省略をはかることができる。すなわち、従
来方法による場合、含浸後に基体表面に残つた過
剰のエミツタ物質を研磨して削り去るものである
が、この場合、その手間もさることながらこの場
合、W多孔質基体の表面の孔がその研磨によつて
つぶされて閉塞ないしは小孔となり、蒸発し易い
物質の蒸発を阻害するために、その活性化処理時
間、すなわちエージングは、1日〜1週間にも及
ぶ大幅な長時間を要していた。ところが、上述の
本発明方法によれば、この処理時間は2時間程度
で、そのエミツシヨン特性は、これの最高値の80
〜90%のものとすることができた。また、このよ
うにして得た陰極は従来の長時間活性条件と比較
して何らの遜色もなかつた。 The baking or aging time for incorporating and activating the cathode manufactured by the method of the present invention described above into a cathode ray tube can be significantly shortened compared to the conventional method. This seems to be due to the following phenomenon. That is, in the manufacturing method of the present invention, since the work of impregnating the emitter material into the base 3 in the furnace is carried out while the furnace is evacuated, substances that easily evaporate in the emitter material, such as This is thought to be because Ba is easily eliminated, and as a result, the proportion of what is actually impregnated that is easily evaporated is reduced to the extent that it does not deteriorate the emission characteristics. Incidentally, even if the impregnation work is performed in a vacuum in the conventional method, the effect of eliminating such easily evaporated substances does not occur due to the presence of excess emitter substances. . In addition, in the cathode according to the method of the present invention described above, the porous substrate 3 is uniformly impregnated with the cathode material, that is, the emitter material in a necessary and sufficient amount, so that the porous substrate 3 is substantially impregnated from the surface on the thermionic emission side to the back surface of the substrate 3. Since the pores are formed to the extent that pores that pass through the pores remain, the substantial surface area becomes large and the emission efficiency is improved. In addition, due to the existence of these substantial through-holes, the amount of impregnated substances that are easily evaporated is small, and the baking or aging time is reduced.
It is possible to save time and effort. That is, in the case of the conventional method, the excess emitter material remaining on the surface of the substrate after impregnation is polished away, but in this case, in addition to the effort involved, in this case, the pores on the surface of the W porous substrate are removed. In order to prevent the evaporation of substances that are easily evaporated by being crushed by polishing and becoming blocked or small holes, the activation processing time, that is, aging, requires a significantly long time, ranging from 1 day to 1 week. Was. However, according to the above-mentioned method of the present invention, the processing time is about 2 hours, and the emission characteristic is 80%, which is the highest value.
~90% could be achieved. Moreover, the cathode obtained in this manner was in no way inferior to that obtained under conventional long-term activation conditions.
また陰極中に蒸発し易い物質が多く残存する場
合活性化処理によつて蒸発したこの物質が、陰極
線管において、この陰極と対向して配置される例
えば第1グリツド電極に付着し、この第1グリツ
ド電極のビーム透過孔の寸法に狂いを生じさせた
り、陰極−グリツド間の短絡やさらに、この付着
物質からのいわゆるストレージエミツシヨンの発
生などの不都合を招来する。ところが本発明によ
れば上述したように蒸発し易い物質の含浸量を少
量とすることができるので、このような不都合を
回避できる。 Furthermore, if a large amount of easily evaporated material remains in the cathode, this material evaporated during the activation process will adhere to, for example, the first grid electrode placed opposite the cathode in the cathode ray tube. This leads to problems such as deviation in the dimensions of the beam transmission hole in the grid electrode, short circuit between the cathode and the grid, and the occurrence of so-called storage emissions from this deposited material. However, according to the present invention, as described above, the amount of impregnated substances that easily evaporate can be reduced to a small amount, so such inconveniences can be avoided.
尚、上述した装置において、更にその含浸処理
を安定に行うために、例えば第11図及び第12
図に示すように、加熱担体12における凹部16
のみが設けられていない車輪状の蓋体12′を設
け、これを加熱担体12上に凹部16を閉塞する
ように載せることもできる。この蓋体12′の各
部の加熱担体12の各部に対応する部分には同一
符号にダツシユ記号“′”を符して重複説明を省
略する。そして、この場合特に蓋体12′はその
輻部15′が、丁度加熱担体12の輻部15間の
中央に位置するように、図示の例では加熱担体1
2に対し45゜回転させて配置する。このようにす
るときは、加熱担体12の特に外輪部13の加熱
がその全周に亘つて、より均一化され、凹部16
が閉塞されたことと相俟つて、より安定、均一な
含浸処理を行うことができる。 In addition, in the above-mentioned apparatus, in order to perform the impregnation treatment more stably, for example, FIGS.
As shown in the figure, a recess 16 in the heating carrier 12
It is also possible to provide a wheel-shaped lid 12' without a chisel and place it on the heating carrier 12 so as to close the recess 16. Portions of each portion of the lid 12' corresponding to each portion of the heating carrier 12 are marked with the same reference numerals and a dash symbol "'", and redundant explanation will be omitted. In this case, in particular, the lid 12' is arranged so that its radial part 15' is located exactly in the center between the radial parts 15 of the heating carrier 12.
Place it rotated 45 degrees from 2. When doing this, the heating of the heating carrier 12, especially the outer ring portion 13, is made more uniform over its entire circumference, and the recessed portion 16
Coupled with the fact that the pores are occluded, more stable and uniform impregnation treatment can be performed.
尚、上述した例においては、加熱担体12が全
体として一体に構成された場合であるが、そのエ
ミツタ材の含浸が行われる外輪部13において、
輻部15を通ずる放熱効果によつて輻部15が存
在する部分と、これより離れた部分とで温度に差
が生じて、得られた陰極の特性が不均一となつた
り、また、この担体12の繰返し使用によつてそ
の温度の不均一さに基く変形の発生などが生じる
おそれがある場合は、外輪部13と放射状の輻部
15とを別体に構成し、この別体に構成された放
射状輻部15の外端上に外輪部13を載置係合さ
せるようになし得る。このようにするときは、外
輪部13と輻部15との熱的結合が粗となり、こ
の輻部15を通じて放散する熱を小とすることが
できるので、外輪部13の加熱効率を高め得ると
共に、これの熱分布の不均一性を改善でき、これ
に伴う外輪部13の変形を効果的に回避できる。
また、この場合、この外輪部13と輻部15との
機械的係合に遊びを設けることによつて、外輪部
13に輻部15の係合部において、その加熱、冷
却に伴う熱応力が発生するようなことも回避で
き、これによる変形の発生も効果的に回避でき
る。 In the above-mentioned example, the heating carrier 12 is constructed as a whole, but in the outer ring portion 13 where the emitter material is impregnated,
Due to the heat dissipation effect through the radial portion 15, a difference in temperature occurs between the portion where the radial portion 15 is present and the portion further away from the radial portion 15, resulting in non-uniform characteristics of the obtained cathode, and If there is a risk that deformation may occur due to non-uniformity of temperature due to repeated use of the ring 12, the outer ring portion 13 and the radial radius portion 15 may be constructed separately. The outer ring portion 13 may be placed on and engaged with the outer end of the radial radial portion 15. In this case, the thermal coupling between the outer ring part 13 and the radial part 15 becomes loose, and the heat dissipated through the radial part 15 can be reduced, so that the heating efficiency of the outer ring part 13 can be increased and , the non-uniformity of the heat distribution can be improved, and the resulting deformation of the outer ring portion 13 can be effectively avoided.
In addition, in this case, by providing play in the mechanical engagement between the outer ring portion 13 and the flange portion 15, thermal stress due to heating and cooling is reduced at the engagement portion of the radial portion 15 on the outer ring portion 13. It is also possible to avoid such occurrences, and the occurrence of deformation due to this can also be effectively avoided.
第1図及び第2図は夫々従来の含浸型陰極の製
造装置の略線的断面図、第3図は本発明製法を実
施する装置の一例の略線的断面図、第4図はその
加熱担体の一例の平面図、第5図はそのA−A線
上の断面図、第6図は第4図のB−B線上の要部
の断面図、第7図は加熱プログラミング図、第8
図は含浸条件の説明図、第9図は濃度分布図、第
10図は空孔率と含浸率の関係を示す図、第11
図は本発明を実施する装置の一例の蓋体を載せた
状態の平面図、第12図はその断面図である。
2はエミツタ材、3は陰極基板、12は加熱担
体、13はその外輪部、14は中心部、15は輻
部である。
1 and 2 are schematic cross-sectional views of a conventional impregnated cathode manufacturing apparatus, FIG. 3 is a schematic cross-sectional view of an example of an apparatus for carrying out the manufacturing method of the present invention, and FIG. A plan view of an example of the carrier, FIG. 5 is a cross-sectional view taken along the line A-A, FIG. 6 is a cross-sectional view of the main part taken along the line B-B in FIG. 4, FIG.
The figure is an explanatory diagram of impregnation conditions, Figure 9 is a concentration distribution diagram, Figure 10 is a diagram showing the relationship between porosity and impregnation rate, and Figure 11 is a diagram showing the relationship between porosity and impregnation rate.
The figure is a plan view of an example of an apparatus for carrying out the present invention with a lid placed thereon, and FIG. 12 is a sectional view thereof. 2 is an emitter material, 3 is a cathode substrate, 12 is a heating carrier, 13 is an outer ring portion thereof, 14 is a center portion, and 15 is a radial portion.
Claims (1)
耐熱性と所要の電気伝導度を有する車輪状の加熱
担体を配置し、 この加熱担体の外縁部上面の円周方向に等間隔
で配置した複数凹部に、最終的に得る個々の陰極
に対応する陰極基体を載置し、 上記陰極基体上には、該基体に含浸すべきエミ
ツタ材の含浸量に対応する量の圧縮エミツタ酸化
物を載置し、 上記高周波コイルで上記車輪状の加熱担体を
10-5Torr以下の真空中において加熱することに
よつて、上記圧縮エミツタ酸化物を加熱溶融させ
てこれを上記陰極基体に含浸させることを特徴と
する含浸型陰極の製法。[Claims] 1. In a vertical heating furnace equipped with a high frequency coil,
A wheel-shaped heating carrier having heat resistance and required electrical conductivity is arranged, and multiple recesses arranged at equal intervals in the circumferential direction on the upper surface of the outer edge of this heating carrier correspond to the individual cathodes to be finally obtained. A cathode substrate is placed, a compressed emitter oxide is placed on the cathode substrate in an amount corresponding to the amount of emitter material to be impregnated into the substrate, and the wheel-shaped heating carrier is heated with the high frequency coil.
A method for producing an impregnated cathode, which comprises heating in a vacuum of 10 -5 Torr or less to heat and melt the compressed emitter oxide and impregnate the cathode substrate with the compressed emitter oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18586081A JPS5887735A (en) | 1981-11-19 | 1981-11-19 | Manufacture of impregnated cathode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18586081A JPS5887735A (en) | 1981-11-19 | 1981-11-19 | Manufacture of impregnated cathode |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5887735A JPS5887735A (en) | 1983-05-25 |
JPH0341932B2 true JPH0341932B2 (en) | 1991-06-25 |
Family
ID=16178140
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18586081A Granted JPS5887735A (en) | 1981-11-19 | 1981-11-19 | Manufacture of impregnated cathode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5887735A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3696720B2 (en) | 1997-07-09 | 2005-09-21 | 松下電器産業株式会社 | Impregnated cathode and manufacturing method thereof |
JPH11102636A (en) | 1997-09-26 | 1999-04-13 | Matsushita Electron Corp | Cathode, manufacture of cathode and image receiving tube |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6445697A (en) * | 1988-07-27 | 1989-02-20 | Graphtec Kk | Pen exchanger for recorder |
-
1981
- 1981-11-19 JP JP18586081A patent/JPS5887735A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5887735A (en) | 1983-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3967150A (en) | Grid controlled electron source and method of making same | |
US3558966A (en) | Directly heated dispenser cathode | |
US4302702A (en) | Thermionic cathode having an embedded grid, process for its fabrication, and high frequency electron tubes using such a cathode | |
JPH0341932B2 (en) | ||
US4530669A (en) | Method of making a borided dispenser cathode | |
US1922162A (en) | Evacuation of electronic devices | |
US3212169A (en) | Grid electrode structure and manufacturing method therefor | |
JPH0145697B2 (en) | ||
US2874077A (en) | Thermionic cathodes | |
JP2004003032A (en) | Method and device for sputtering superconducting thin film of niobium on quarter-wave resonant cavity made of copper for heavy ion acceleration | |
JP2002334649A (en) | Cathode structure, manufacturing method of the same, and color picture tube | |
KR100382060B1 (en) | Cathode using cermet pellet and method for manufacturing the same | |
US1921065A (en) | Electron emitter and process of making same | |
US2533387A (en) | Method and apparatus for making dynodes | |
JPS6016057B2 (en) | Hot cathode and its manufacturing method | |
JPS58198819A (en) | Cathode ray tube manufacturing method | |
JP3353014B2 (en) | Cathode assembly | |
JPS6364236A (en) | Manufacure of impregnated cathode | |
JPS6017831A (en) | Impregnated cathode | |
JP3715790B2 (en) | Method for producing impregnated cathode for discharge tube | |
JP3204809B2 (en) | Method for producing impregnated cathode assembly | |
JPH103846A (en) | Manufacture of impregnated negative electrode for cathode-ray tube | |
JP2000215785A (en) | Impregnated type cathode substrate, its manufacture and cathode body structure | |
JPS5834540A (en) | Impregnation-type cathode | |
JPS5918539A (en) | Impregnated cathode |