JPH0341778A - Insulator junction structure - Google Patents

Insulator junction structure

Info

Publication number
JPH0341778A
JPH0341778A JP17762989A JP17762989A JPH0341778A JP H0341778 A JPH0341778 A JP H0341778A JP 17762989 A JP17762989 A JP 17762989A JP 17762989 A JP17762989 A JP 17762989A JP H0341778 A JPH0341778 A JP H0341778A
Authority
JP
Japan
Prior art keywords
thin film
insulator
bonding
silicon
junction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17762989A
Other languages
Japanese (ja)
Inventor
Masaki Tanabe
田辺 聖樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP17762989A priority Critical patent/JPH0341778A/en
Publication of JPH0341778A publication Critical patent/JPH0341778A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the title insulator junction structure not inseparable irrespective of the composition of insulator even when heated in vacuum by a method wherein a silicon thin film and a glass thin film are respectively formed on the junction surface of the first and second insulators and then both thin films are mutually static-junctioned. CONSTITUTION:A silicon thin film 12 is formed on the surface of a crystal base 11 corresponding to the first insulator. The silicon film 12 is deposited in thickness of 1000-2000Angstrom by RF sputtering process in argon gas atmosphere. Besides, a glass thin film is formed on the junction surface of a crystal diaphragm 13 corresponding to the second insulator. The glass thin film 21 is deposited in thickness of 1000-2000Angstrom also by RF sputtering process in oxygen mixed argon gas atmosphere. The base 11 and the diaphragm 13 so far prepared are arranged in the form bringing the silicon thin film 12 and the glass thin film 21 into contact with each other to be heated at 420 deg.C as the junction temperature. When the junction temperature reaches 420 deg.C, the silicon thin film 12 and the glass thin film 21 are impressed with a voltage of 1kV for starting the junction to be completed within almost one hour.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は例えば表面弾性波圧力センサのダイヤフラム
部分とその台座部分(共に水晶より成る)との気密封止
接合に適用される絶縁物と絶縁物との接合構造に関する
Detailed Description of the Invention "Industrial Application Field" This invention relates to an insulator and an insulator applied to, for example, hermetically sealing a joint between a diaphragm part of a surface acoustic wave pressure sensor and its pedestal part (both made of crystal). Concerning bonding structures with objects.

「従来の技術」 従来の技術として既に提案されている技術を説明する。"Conventional technology" A technique that has already been proposed as a conventional technique will be explained.

表面弾性波圧力センサのダイヤフラム部分とベース部分
とを接合させるために、第3図に示すように第1絶縁物
に相当する水晶の台座(ベースとも言う)11上にシリ
コン薄膜12が蒸着される。
In order to join the diaphragm portion and the base portion of the surface acoustic wave pressure sensor, a silicon thin film 12 is deposited on a crystal pedestal (also referred to as base) 11 corresponding to the first insulator, as shown in FIG. .

この蒸着は斜め蒸着とされ、ベース11の周面にもシリ
コン薄膜12が形成される。シリコン薄膜12の厚さは
1000〜2000Å程度とされる。そのシリコン薄膜
12上に第2絶縁物に相当する水晶のダイヤフラム13
が配される。ベース11及びダイヤフラム13の各接合
全面の平面度はλ/2、表゛j粗さは50入RA程度の
平滑面に仕上げである。
This vapor deposition is oblique vapor deposition, and the silicon thin film 12 is also formed on the peripheral surface of the base 11. The thickness of the silicon thin film 12 is approximately 1000 to 2000 Å. A crystal diaphragm 13 corresponding to a second insulator is placed on the silicon thin film 12.
will be arranged. The flatness of the entire joint surface of the base 11 and the diaphragm 13 is λ/2, and the surface roughness is finished to be a smooth surface of about 50 RA.

このように組み上げたベース11及びダイヤフラム13
を、第4図に示すようにステンレスの陽極14の凹部内
に嵌め込み、その上にステンレスの陰極15を配し、陽
極14及び陰極15でベース11及びダイヤフラム13
を挟み、全体をホントプレートによって500°C程度
にまで昇温後、直流電源16により陽極14及び陰極1
5間に1KV程度の電圧を印加する。この時、ベース1
1の周面のシリコン薄膜12が陰極14と接して、シリ
コン薄膜12に電圧が印加される。
Base 11 and diaphragm 13 assembled in this way
is fitted into the recess of the stainless steel anode 14 as shown in FIG.
After heating the entire body to about 500°C using a real plate, the anode 14 and cathode 1 are heated by the DC power supply 16.
A voltage of about 1 KV is applied between the two. At this time, base 1
The silicon thin film 12 on the circumferential surface of the silicon thin film 12 is in contact with the cathode 14, and a voltage is applied to the silicon thin film 12.

この電圧印加によりダイヤフラム13中の不純物イオン
が移動し、空間電荷層が形成され、これによりダイヤフ
ラム13とシリコン薄膜12との間に静電気的な応力が
発生して物理的な接合が行われ、次にダイヤフラム13
とシリコン薄膜12の界面に反応層が形成されて静電接
合が完了する。
This voltage application causes impurity ions in the diaphragm 13 to move, forming a space charge layer, which generates electrostatic stress between the diaphragm 13 and the silicon thin film 12, resulting in physical bonding. diaphragm 13
A reaction layer is formed at the interface between the silicon thin film 12 and the electrostatic bonding is completed.

「発明が解決しようとする課題J 従来の接合構造では第2絶縁物のm威によっては接合強
度が充分に得られない欠点があった。例えば、第2絶縁
物に水晶を用いた場合では、接合完了後通常の大気圧の
下では何ら問題が生じないが、10−”Torrの真空
中で60°C以上に加熱すると、接合界面が剥離してし
まうことが分った。これは、水晶自体が不純物を@量に
しか含んでいない為、静電接合に関与するナトリウムな
どの可動イオンの働きが充分に得られず、強固な静電接
合が達成されない為と考えられる。試料の約7割が、真
空中での加熱により剥離する事を確認している。
``Problem to be Solved by the Invention J'' Conventional bonding structures have the disadvantage that sufficient bonding strength cannot be obtained depending on the strength of the second insulator.For example, when crystal is used as the second insulator, It has been found that, although no problem occurs under normal atmospheric pressure after completion of bonding, the bonded interface peels when heated to 60° C. or higher in a vacuum of 10-” Torr. This is thought to be because the crystal itself contains only a small amount of impurities, so the action of mobile ions such as sodium involved in electrostatic bonding cannot be sufficiently obtained, and strong electrostatic bonding cannot be achieved. It has been confirmed that approximately 70% of the samples peel off when heated in vacuum.

この発明の目的は、絶縁物と絶縁物との接合において、
MA!&物の組成に依らず、また真空中で加熱されても
接合界面が剥離する恐れのない絶縁物接合構造を提供す
ることにある。
The purpose of this invention is to
MA! An object of the present invention is to provide an insulator bonding structure that does not depend on the composition of the material and does not have the risk of peeling at the bonding interface even when heated in vacuum.

「課題を解決するための手段」 第1絶縁物と第2絶縁物とを接合させて成る絶縁物接合
構造において、この発明によれば、それらの第1.第2
絶縁物の接合面にシリコン薄膜及びガラス薄膜がそれぞ
れ形成され、それらのシリコン薄膜とガラス薄膜とが互
に静電接合される。
"Means for Solving the Problems" According to the present invention, in an insulator bonded structure formed by bonding a first insulator and a second insulator, the first insulator and the second insulator are bonded together. Second
A silicon thin film and a glass thin film are respectively formed on the bonding surface of the insulator, and the silicon thin film and the glass thin film are electrostatically bonded to each other.

「実施例J この発明を表面弾性波圧カセンザのダイアフラム及びベ
ース間の接合に適用した例を、その接合方法と共に説明
する。
Embodiment J An example in which the present invention is applied to bonding between a diaphragm and a base of a surface acoustic wave pressure sensor will be described together with a method of bonding.

第1図に第3図と対応する部分に同し符号を付して示す
如く、第1絶縁物に相当する水晶のヘース11の表面に
シリコン薄l模12が形成される。
As shown in FIG. 1 with the same reference numerals attached to parts corresponding to those in FIG. 3, a thin silicon pattern 12 is formed on the surface of a crystal hese 11 corresponding to the first insulator.

シリコン薄膜の堆積は、アルゴンガス中のRFスパッタ
リングによりなされ、その膜厚は1000〜2000人
とされる。また、第2絶縁物に相当する水晶のダイアフ
ラム13の接合面にはガラス薄膜21が形成される。ガ
ラス薄膜の堆積は、酸素混合アルゴンガス中のRFスパ
ッタリングによりなされ、その膜厚は1000〜200
0Åとされる。尚、ガラス材料としてCGW ”774
0が用いられる。例えば厚さ0.15mmのダイアフラ
ム13の片面にガラス薄膜21をスパッタする。水晶の
接合面は50人RA程度の表面粗さに研磨され、これに
1膜を堆積しても、接合の障害とならない表面粗さを維
持できる。また、スパッタ残留応力によりダイヤフラム
13に反りを生ずるごとがあるが、はんのわずかなもの
であり、これも接合の障害となることはない 二のように*iされたベース11及びダイアフラム13
は、第2図に第4図と対応する部分に同し符号を付して
示す如く、シリコン薄膜12とガラス薄膜21が接する
形に配置され、接合温度である420°Cまで加熱され
る。420”Cに達すると、シリコン薄膜12及びガラ
ス薄膜21間に1KVの電圧が印加され、接合が開始さ
れる。接合の進行は、透明なダイアフラム13及びガラ
ス薄膜21を通して界面の干渉縞の移動により確認され
る。この状態での接合の進行は、シリコン及びガラスが
共にバルクの状態でなされる接合の進行と比較して極め
て緩慢としているが、おおむね1時間以内に接合が完了
する。
The silicon thin film is deposited by RF sputtering in argon gas and has a thickness of 1,000 to 2,000 layers. Further, a glass thin film 21 is formed on the joint surface of the crystal diaphragm 13 corresponding to the second insulator. The glass thin film is deposited by RF sputtering in an oxygen-mixed argon gas, and the film thickness is between 1000 and 200 mm.
It is assumed to be 0 Å. In addition, CGW "774" is used as a glass material.
0 is used. For example, a glass thin film 21 is sputtered on one side of a diaphragm 13 having a thickness of 0.15 mm. The bonding surface of the crystal is polished to a surface roughness of about 50 RA, and even if one film is deposited on it, the surface roughness can be maintained so that it does not interfere with bonding. Also, the diaphragm 13 may warp due to sputtering residual stress, but this is only a slight amount of warping of the solder, and this does not pose an obstacle to bonding.
As shown in FIG. 2 with the same reference numerals attached to parts corresponding to those in FIG. 4, the silicon thin film 12 and the glass thin film 21 are arranged in contact with each other and heated to a bonding temperature of 420°C. When the temperature reaches 420"C, a voltage of 1KV is applied between the silicon thin film 12 and the glass thin film 21 to start bonding. The progress of bonding is caused by the movement of interference fringes at the interface through the transparent diaphragm 13 and the glass thin film 21. Although the progress of bonding in this state is extremely slow compared to the progress of bonding when both silicon and glass are in the bulk state, bonding is completed within approximately one hour.

このように本発明を適用した水晶の接合構造においては
、前述の10−”Torrの真空中で60°C以上の加
熱を行っても剥離するものは皆無であり、接合強度の向
上が達成される。
In this way, in the crystal bonding structure to which the present invention is applied, there is no peeling even when heated above 60°C in a vacuum of 10-'' Torr, and an improvement in bonding strength is achieved. Ru.

「発明の効果」 この発明によれば、第2絶縁物が例えば水晶で構成され
、静電接合に関与するナトリウムなどの可動イオンの働
きが充分でな(ても、第2絶縁物の接合面に形成される
ガラス薄膜中にナトリウムイオンが充分存在する為、強
固な接合が可能となる。このようにこの発明によれば第
2絶縁物の組成に依らず強固な接合がなされるので、第
1.第2絶縁物の熱膨張係数さえ一致させておけば、真
空中での加熱に対して接合面が剥離されることはない。
"Effects of the Invention" According to the present invention, the second insulator is made of, for example, crystal, and the action of mobile ions such as sodium involved in electrostatic bonding is insufficient (even if the joint surface of the second insulator is Strong bonding is possible because there are sufficient sodium ions in the glass thin film formed in the second insulator.In this way, according to the present invention, strong bonding is achieved regardless of the composition of the second insulator. 1. As long as the coefficient of thermal expansion of the second insulator is matched, the bonded surface will not peel off when heated in vacuum.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の実施例を示す断面図、第2図は第1
図の絶縁物接合構造を得るための電圧印加状態を示す断
面図、第3図は従来の絶縁物接合構造の一例を示す断面
図、第4図は第3図の絶縁物接合構造を得るための電圧
印加状態を示す断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of the invention, and FIG.
3 is a sectional view showing an example of a conventional insulator bonding structure, and FIG. 4 is a sectional view showing the state of voltage application to obtain the insulator bonding structure shown in FIG. 3. FIG. 3 is a cross-sectional view showing a voltage application state.

Claims (1)

【特許請求の範囲】[Claims] (1)第1絶縁物と第2絶縁物とを接合させて成る絶縁
物接合構造において、 それらの第1、第2絶縁物の接合面にシリコン薄膜及び
ガラス薄膜がそれぞれ形成され、 それらのシリコン薄膜とガラス薄膜とは互に静電接合さ
れることを特徴とする、 絶縁物接合構造。
(1) In an insulator bonding structure formed by bonding a first insulator and a second insulator, a silicon thin film and a glass thin film are respectively formed on the bonding surfaces of the first and second insulators, and the silicon An insulator bonding structure characterized by electrostatically bonding a thin film and a glass thin film to each other.
JP17762989A 1989-07-10 1989-07-10 Insulator junction structure Pending JPH0341778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17762989A JPH0341778A (en) 1989-07-10 1989-07-10 Insulator junction structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17762989A JPH0341778A (en) 1989-07-10 1989-07-10 Insulator junction structure

Publications (1)

Publication Number Publication Date
JPH0341778A true JPH0341778A (en) 1991-02-22

Family

ID=16034346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17762989A Pending JPH0341778A (en) 1989-07-10 1989-07-10 Insulator junction structure

Country Status (1)

Country Link
JP (1) JPH0341778A (en)

Similar Documents

Publication Publication Date Title
US4179324A (en) Process for fabricating thin film and glass sheet laminate
JPH05180719A (en) Capacitance type pressure sensor
JPH0322390A (en) Manufacture of thin film el panel
EP1008567A1 (en) Method of bonding glass members
CN113193109A (en) Preparation method of composite film and composite film
JPH0341778A (en) Insulator junction structure
JPH08138845A (en) Quartz glass heater and its manufacture
US4309460A (en) Process for producing gold films
JPH09246127A (en) Anode junction
JP2000268737A (en) Plasma display pannel
JP4682415B2 (en) Anodic bonding method
JP2938308B2 (en) Liquid crystal display device
JPH07118075A (en) Method for joining insulating material to metallic substrate
JPS5854676A (en) Semiconductor pressure converter
JPH03219506A (en) Accumulation method for thin film
KR19980040868A (en) Seal Forming Method of Flat Panel Display Using Electrostatic Bonding
JPH05346575A (en) Production of liquid crystal display element
JP3173905B2 (en) Semiconductor pressure sensor
KR100212732B1 (en) Attaching method of functional film of flat panel device
JPH06196377A (en) Bonding method for semiconductor substrates
JPS6131471B2 (en)
KR20230128098A (en) Composite wafer and its manufacturing method
JP3518083B2 (en) Substrate manufacturing method
JPS6138929A (en) Liquid crystal display body
JPH02126686A (en) Amorphous semiconductor solar cell