JPH0341216B2 - - Google Patents

Info

Publication number
JPH0341216B2
JPH0341216B2 JP60204369A JP20436985A JPH0341216B2 JP H0341216 B2 JPH0341216 B2 JP H0341216B2 JP 60204369 A JP60204369 A JP 60204369A JP 20436985 A JP20436985 A JP 20436985A JP H0341216 B2 JPH0341216 B2 JP H0341216B2
Authority
JP
Japan
Prior art keywords
catalyst
sulfur
platinum group
washing
poisoned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60204369A
Other languages
Japanese (ja)
Other versions
JPS6265751A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60204369A priority Critical patent/JPS6265751A/en
Publication of JPS6265751A publication Critical patent/JPS6265751A/en
Publication of JPH0341216B2 publication Critical patent/JPH0341216B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、イオウ化合物により被毒した、炭化
水素中のイオウ化合物除去用白金族触媒、あるい
は単環芳香族炭化水素の部分水素化用白金族触媒
を再生方法に関する。 従来、白金族触媒の用途は多岐にわたるが、炭
化水素中のイオウ化合物除去用として用いられた
例は本発明者らの検討以外にない。その理由は白
金族触媒が一般に高価であり、単なるイオウ化合
物の除去の様な原料精製にかかわる操作において
使用するという技術思想はなかつたからである。
一方、単環芳香族炭化水素の部分水素化反応に白
金族触媒を用いることは知られているが、この触
媒が、イオウ化合物によつて活性だけでなく反応
の選択性が低下するということが本発明者らの検
討によつて初めて明らかとなつた。従つてこれら
2種類の用途における白金族触媒がイオウ化合物
によつて被毒された場合に、それらを安価に、か
つ簡便に再生することができれば、白金族触媒の
特性をいかんなく発揮して、優れた炭化水素中の
イオウ化合物除去用触媒として、さらには単環芳
香族炭化水素の部分水素化用触媒として有効に使
用できることになり、工業的価値は極めて大き
い。 〔従来の技術〕 一般的な白金族触媒のイオウによる被毒の状態
や、再生方法については、例えばAdvances in
Catalysis,31 p.135〜242などに詳述されてい
る。再生の一般的な方法としては、被毒した触媒
を水素もしくは、酸素を含有する気流中で数百度
の高温で処理する方法、あるいはこれらと水蒸気
を併用する方法などが挙げられる。 〔発明が解決しようとする課題〕 しかしこれらの方法においては、(1)数百度の高
温を必要とする。(2)処理時間を比較的長く必要と
する。(3)イオウを大幅に低減することが困難であ
る。など装置的にも、又、再生の実効面において
も充分とはいえず、又、高温処理による触媒金属
の半融現象(シンタリング)により、触媒金属の
形態が変化し、再生後の触媒の能力が少なからず
損なわれる危険性を合わせ持つている。 〔課題を解決するための手段〕 本発明者らは、かかる問題点を解決すべく、イ
オウによつて被毒した白金族触媒の再生方法を鋭
意検討し、本発明に到達したものである。 即ち、本発明は、イオウ化合物により被毒し
た、炭化水素中のイオウ化合物除去用、あるいは
単環芳香族炭化水素の部分水素化用白金族触媒
を、アルカリ金属の水酸化物、アルカリ土類金属
の水酸化物およびアンモニアの少なくとも1種を
含むPH10以上の水溶液を用いて洗浄して触媒中の
イオウ含有量を低減し、次に水洗、乾燥して残留
イオウ分を除去することを特徴とする触媒の再生
方法である。 この方法により、触媒中のイオウのほとんどを
除去することができ、しかもこの様な再生操作を
経た触媒は被毒以前とほぼ等しい活性もしくは選
択性を回復することが確認されたのである。 以下本発明の具体的な実施態様を説明する。 本発明における炭化水素中のイオウ化合物除去
用白金族触媒、あるいは単環芳香族炭化水素の部
分水素化用白金族触媒とは、白金族元素もしくは
白金族元素を適当な担体に担持したものである。
特に好適にはパラジウムもしくはルテニウムの粒
子もしくはこれらを担持したものをいう。 イオウによつて被毒した、かかる白金族触媒を
再生するにあたり、本発明では、アルカリ性水溶
液を用いて洗浄操作を行なう。アルカリ性水溶液
は常温でPHが7を超えるものであれば良く、好ま
しくはPH10以上が一般的に良い。各種金属水酸化
物、もしくは塩基性塩、アンモニア、アミン類な
どの水溶液を用いることができるが、操作性や価
格などを考慮すれば、アルカリもしくはアルカリ
土類金属水酸化物又はアンモニアの水溶液が好ま
しく用いられる。 アルカリ性水溶液のPHの上限は特に制限はな
く、又、高い方が一般的に洗浄の効果は大きい
が、洗浄しようとする触媒の特性、特に担体の種
類によつて適当に選択されるべきである。例えば
担体としてシリカやアルミナなどが用いられてい
る場合には、アルカリ性水溶液のPHが高すぎる
と、それら担体が溶解して、触媒自身の特性が損
われる危険性があるので注意を要する。 かかるアルカリ性水溶液による洗浄は、連続的
にもしくは回分的に行なわれ、使用される水溶液
の量は特に制限はないが、通常、触媒に対し10乃
至100重量倍用いられ、数分乃至数日間の洗浄時
間で行なわれる。又、洗浄時の温度は、前述と同
様に、担体の性質を考えて定めれば良く、通常は
常温乃至100℃で充分である。 この様にして、触媒中のイオウが低減され、更
には後述の乾燥操作によつてイオウが除去されや
すい状態にすることができる。 アルカリ性水溶液による洗浄後、水溶液溶質が
残存し、これが触媒特性上好ましくない場合は、
水洗によつてかかる溶質を除去しても何らさしつ
かえない。 本発明は、かかる洗浄操作の後に、乾燥操作を
行なうと、触媒中のイオウは更に除去され、より
効果的な再生方法となる。乾燥操作は、通常行な
われる真空乾燥もしくは適当なガスを用いた通気
乾燥で良く、乾燥温度は触媒の特性を損なわない
範囲で行なわれ、通常は常温乃至200℃で行なわ
れる。 〔発明の効果〕 本発明の方法により、イオウによつて被毒し
た、炭化水素中のイオウ化合物除去用白金族触
媒、あるいは単環芳香族炭化水素の部分水素化用
白金族触媒からイオウの大部分を除去することが
でき、被毒以前の触媒性能をほぼ回復することが
できる。 〔実施例〕 以下、実施例をもつて本発明を更に詳述する
が、本発明はこれら例によつて何ら限定されるも
のではない。 実施例 1 Pdl%をγ−Al203に担持した触媒(日本エンゲ
ルハルド社製)2.0gと、チオフエン及び二硫化
炭素各100ppmを含むベンゼン40mlを100mlのマイ
クロボンベに仕込み、150℃で2時間処理した。
冷却後、触媒をろ別、乾燥し、ケイ光X線によつ
て触媒中のイオウ含量を測定したところ、2120重
量ppmであり、ベンゼン中のイオウ除去率は87%
であつた(以上の操作を「操作−1」とする)。 得られたイオウ被毒触媒2.0gを2%のNaOH
水溶液100ml中で常温で24時間浸漬、洗浄し、純
水で洗浄したのち、80℃で24時間真空乾燥を行な
つたところ、触媒中のイオウ含量は750ppmまで
大幅に減少した。 この再生触媒を用いて、ベンゼン中のイオウ除
去率を指標として上記操作−1を行なつたとこ
ろ、除去率は82%であり、被毒前の触媒とほぼ同
等であつた。触媒の活性点がほぼ回復しているこ
とが判る。 比較例 1,2 操作−1によつて得られたイオウ被毒触媒を石
英管に詰め、水素を50N/Hrで流しながら300
℃及び500℃で処理し、触媒中のイオウ含量を経
時的に測定し、実施例1と同様の評価を行なつ
た。その結果を第1表に示す。
[Industrial Application Field] The present invention relates to a method for regenerating a platinum group catalyst for removing sulfur compounds from hydrocarbons, or a platinum group catalyst for partial hydrogenation of monocyclic aromatic hydrocarbons, which has been poisoned by sulfur compounds. Conventionally, platinum group catalysts have been used for a wide variety of purposes, but there is no example other than the study conducted by the present inventors in which they have been used for removing sulfur compounds from hydrocarbons. The reason for this is that platinum group catalysts are generally expensive, and there has been no technical idea to use them in operations related to raw material purification, such as the mere removal of sulfur compounds.
On the other hand, it is known that platinum group catalysts are used for partial hydrogenation reactions of monocyclic aromatic hydrocarbons, but it is known that sulfur compounds reduce the activity and selectivity of this catalyst. This was first discovered through studies by the present inventors. Therefore, if the platinum group catalysts used in these two types of applications are poisoned by sulfur compounds, if they can be regenerated inexpensively and easily, the characteristics of the platinum group catalysts can be fully exhibited. It can be effectively used as an excellent catalyst for removing sulfur compounds from hydrocarbons, and furthermore as a catalyst for partial hydrogenation of monocyclic aromatic hydrocarbons, and has extremely high industrial value. [Prior Art] The state of poisoning of common platinum group catalysts by sulfur and the regeneration method can be found in, for example, Advances in
Catalysis, 31 p.135-242, etc. Common methods for regeneration include a method in which a poisoned catalyst is treated in an air stream containing hydrogen or oxygen at a high temperature of several hundred degrees, or a method in which these are combined with steam. [Problems to be Solved by the Invention] However, these methods require (1) high temperatures of several hundred degrees; (2) Requires relatively long processing time. (3) It is difficult to significantly reduce sulfur. This is not sufficient both in terms of equipment and in terms of the effectiveness of regeneration.Also, due to the sintering phenomenon of the catalyst metal due to high-temperature treatment, the shape of the catalyst metal changes, resulting in the regeneration of the catalyst. There is also the risk that their abilities will be impaired. [Means for Solving the Problems] In order to solve these problems, the present inventors have intensively studied methods for regenerating platinum group catalysts poisoned by sulfur, and have arrived at the present invention. That is, the present invention provides a platinum group catalyst for removing sulfur compounds from hydrocarbons poisoned by sulfur compounds or for partial hydrogenation of monocyclic aromatic hydrocarbons, using alkali metal hydroxides, alkaline earth metal hydroxides, etc. The sulfur content in the catalyst is reduced by washing with an aqueous solution of pH 10 or higher containing at least one of hydroxide and ammonia, and then the residual sulfur content is removed by washing with water and drying. This is a catalyst regeneration method. It has been confirmed that most of the sulfur in the catalyst can be removed by this method, and that the catalyst that has undergone such a regeneration operation recovers almost the same activity or selectivity as before poisoning. Specific embodiments of the present invention will be described below. In the present invention, the platinum group catalyst for removing sulfur compounds from hydrocarbons or the platinum group catalyst for partial hydrogenation of monocyclic aromatic hydrocarbons is a platinum group element or a platinum group element supported on a suitable carrier. .
Particularly preferred are palladium or ruthenium particles or particles supporting them. In order to regenerate such a platinum group catalyst that has been poisoned by sulfur, the present invention performs a cleaning operation using an alkaline aqueous solution. The alkaline aqueous solution may have a pH of over 7 at room temperature, preferably a pH of 10 or higher. Aqueous solutions of various metal hydroxides, basic salts, ammonia, amines, etc. can be used, but in consideration of operability and cost, aqueous solutions of alkali or alkaline earth metal hydroxides or ammonia are preferable. used. The upper limit of the pH of the alkaline aqueous solution is not particularly limited, and the higher the pH, the greater the cleaning effect in general, but it should be selected appropriately depending on the characteristics of the catalyst to be cleaned, especially the type of carrier. . For example, when silica or alumina is used as a carrier, care must be taken because if the pH of the alkaline aqueous solution is too high, there is a risk that the carrier will dissolve and the properties of the catalyst itself will be impaired. Such washing with an alkaline aqueous solution is carried out continuously or batchwise, and the amount of aqueous solution used is not particularly limited, but it is usually used 10 to 100 times the weight of the catalyst, and the washing is carried out for several minutes to several days. done in time. Further, the temperature during washing may be determined in consideration of the properties of the carrier, as described above, and normally room temperature to 100°C is sufficient. In this way, the sulfur in the catalyst can be reduced, and furthermore, the catalyst can be brought into a state where the sulfur can be easily removed by the drying operation described below. If an aqueous solute remains after washing with an alkaline aqueous solution and this is unfavorable in terms of catalyst properties,
There is no harm in removing such solutes by washing with water. In the present invention, when a drying operation is performed after such a washing operation, sulfur in the catalyst is further removed, resulting in a more effective regeneration method. The drying operation may be carried out by the usual vacuum drying or through-air drying using a suitable gas, and the drying temperature is carried out within a range that does not impair the properties of the catalyst, and is usually carried out at room temperature to 200°C. [Effects of the Invention] By the method of the present invention, a large amount of sulfur can be removed from a platinum group catalyst for removing sulfur compounds from hydrocarbons, or a platinum group catalyst for partial hydrogenation of monocyclic aromatic hydrocarbons, which is poisoned by sulfur. It is possible to remove a portion of the catalyst, and the catalyst performance before poisoning can be almost restored. [Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these Examples in any way. Example 1 2.0 g of a catalyst with Pdl% supported on γ-Al 2 0 3 (manufactured by Nippon Engelhard Co., Ltd.) and 40 ml of benzene containing 100 ppm each of thiophene and carbon disulfide were charged into a 100 ml micro cylinder, and heated at 150°C for 2.0 g. Time processed.
After cooling, the catalyst was filtered and dried, and the sulfur content in the catalyst was measured using fluorescent X-rays. It was 2120 ppm by weight, and the sulfur removal rate in benzene was 87%.
(The above operation is referred to as "operation-1"). 2.0g of the obtained sulfur-poisoned catalyst was mixed with 2% NaOH.
When the catalyst was immersed and washed in 100 ml of an aqueous solution at room temperature for 24 hours, washed with pure water, and then vacuum dried at 80°C for 24 hours, the sulfur content in the catalyst was significantly reduced to 750 ppm. When the above operation-1 was carried out using this regenerated catalyst and using the sulfur removal rate in benzene as an index, the removal rate was 82%, which was almost the same as the catalyst before poisoning. It can be seen that the active sites of the catalyst have almost recovered. Comparative Examples 1 and 2 The sulfur-poisoned catalyst obtained in Operation-1 was packed in a quartz tube and heated for 300 min while flowing hydrogen at 50 N/Hr.
The catalyst was treated at 500°C and the sulfur content in the catalyst was measured over time, and the same evaluation as in Example 1 was performed. The results are shown in Table 1.

【表】 実施例 2 Rul%を水酸化ランタンに担持した単環芳香族
炭化水素の部分水素化用触媒を用いて、流通反応
装置により、ベンゼンの部分水素化反応を行なつ
た。このとき、原料ベンゼン中にチオフエンを混
入せしめ、イオウ含量420重量ppmのイオウ被毒
触媒を得た。この触媒はシクロヘキサン選択率が
被毒前の約6割に低下していた。 このイオウ被毒触媒を10gを2.5%のNaOH水
溶液100ml中に浸漬し、常温で1時間撹拌、洗浄
した。このとき、洗液中のイオウ濃度を測定した
ところ、18ppmであり、触媒中のイオウの約43%
が除去されたことが判つた。 この洗浄操作の後、触媒をろ別、水洗し、80℃
で乾燥操作を行ない、触媒中のイオウ含量を経時
的に測定したところ、1時間後で240重量ppm、
4時間後で125重量ppm、10時間後では10重量
ppm以下となり、触媒中のイオウはほんど完全に
除去された。 この再生触媒のベンゼンの部分水素化反応にお
けるシクロヘキセン選択率は被毒前と全く同じで
あつた。 実施例 3 アルカリ性水溶液として1.7%のアンモニア水
を用いる以外は、実施例2と同様の操作を行なつ
た。乾燥20時間後のイオウ含量はやはり10重量
ppm以下となり、シクロヘキセン選択率は被毒前
と全く同じであつた。
[Table] Example 2 A partial hydrogenation reaction of benzene was carried out in a flow reactor using a catalyst for partial hydrogenation of monocyclic aromatic hydrocarbons in which Rul% was supported on lanthanum hydroxide. At this time, thiophene was mixed into the raw material benzene to obtain a sulfur-poisoned catalyst with a sulfur content of 420 ppm by weight. The cyclohexane selectivity of this catalyst had decreased to about 60% of that before poisoning. 10 g of this sulfur-poisoned catalyst was immersed in 100 ml of a 2.5% NaOH aqueous solution, stirred at room temperature for 1 hour, and washed. At this time, the sulfur concentration in the washing liquid was measured and found to be 18 ppm, which is approximately 43% of the sulfur in the catalyst.
was found to have been removed. After this washing operation, the catalyst was filtered and washed at 80°C.
When the sulfur content in the catalyst was measured over time, it was found to be 240 ppm by weight after 1 hour.
125 wt ppm after 4 hours, 10 wt after 10 hours
ppm or less, and the sulfur in the catalyst was almost completely removed. The cyclohexene selectivity of this regenerated catalyst in the partial hydrogenation reaction of benzene was exactly the same as before poisoning. Example 3 The same operation as in Example 2 was performed except that 1.7% ammonia water was used as the alkaline aqueous solution. After 20 hours of drying, the sulfur content is still 10% by weight.
ppm or less, and the cyclohexene selectivity was exactly the same as before poisoning.

Claims (1)

【特許請求の範囲】[Claims] 1 イオウ化合物により被毒した、炭化水素中の
イオウ化合物除去用、あるいは単環芳香族炭化水
素の部分水素化用白金族触媒を、アルカリ金属の
水酸化物、アルカリ土類金属の水酸化物およびア
ンモニアの少なくとも1種を含む、PH10以上の水
溶液を用いて洗浄して触媒中のイオウ含有量を低
減し、次に水洗、乾燥して残留イオウ分を除去す
ることを特徴とする触媒の再生方法。
1. A platinum group catalyst for removing sulfur compounds in hydrocarbons poisoned by sulfur compounds or for partial hydrogenation of monocyclic aromatic hydrocarbons is mixed with alkali metal hydroxides, alkaline earth metal hydroxides and A method for regenerating a catalyst, which comprises washing the catalyst with an aqueous solution containing at least one type of ammonia and having a pH of 10 or above to reduce the sulfur content in the catalyst, and then washing with water and drying to remove the residual sulfur content. .
JP60204369A 1985-09-18 1985-09-18 Regenerating method for catalyst Granted JPS6265751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60204369A JPS6265751A (en) 1985-09-18 1985-09-18 Regenerating method for catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60204369A JPS6265751A (en) 1985-09-18 1985-09-18 Regenerating method for catalyst

Publications (2)

Publication Number Publication Date
JPS6265751A JPS6265751A (en) 1987-03-25
JPH0341216B2 true JPH0341216B2 (en) 1991-06-21

Family

ID=16489371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60204369A Granted JPS6265751A (en) 1985-09-18 1985-09-18 Regenerating method for catalyst

Country Status (1)

Country Link
JP (1) JPS6265751A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2780652B2 (en) * 1993-12-22 1998-07-30 三菱化学株式会社 Ruthenium-based regenerated catalyst
JP3841226B2 (en) * 1995-11-01 2006-11-01 旭化成ケミカルズ株式会社 Method for recovering ruthenium catalyst activity
CN1330419C (en) * 2005-05-19 2007-08-08 湖北省化学研究院 Method for regenerating urea dehydrogenation noble metal catalyst
JP5368883B2 (en) * 2009-05-29 2013-12-18 住友化学株式会社 Method for activating catalyst for chlorine production and method for producing chlorine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899099A (en) * 1972-03-30 1973-12-15
JPS5120794A (en) * 1974-08-14 1976-02-19 Toyota Motor Co Ltd
JPS5378990A (en) * 1976-12-22 1978-07-12 Osaka Gas Co Ltd Catalyst regenerating method
JPS551871A (en) * 1978-06-21 1980-01-09 Osaka Gas Co Ltd Catalyst regeneration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4899099A (en) * 1972-03-30 1973-12-15
JPS5120794A (en) * 1974-08-14 1976-02-19 Toyota Motor Co Ltd
JPS5378990A (en) * 1976-12-22 1978-07-12 Osaka Gas Co Ltd Catalyst regenerating method
JPS551871A (en) * 1978-06-21 1980-01-09 Osaka Gas Co Ltd Catalyst regeneration

Also Published As

Publication number Publication date
JPS6265751A (en) 1987-03-25

Similar Documents

Publication Publication Date Title
SU888803A3 (en) Method of regenerating molybdenum-containing catalyst
US4164481A (en) Process of regenerating a noble metal catalyst used in the reduction of organic nitro compounds
US20100222210A1 (en) Catalysts and processes for selective hydrogenation of acetylene and dienes in light olefin feedstreams
US20020025907A1 (en) Catalyst for selective hydrogenation, process for preparation of the same, its use in selective hydrogenation and method of regeneration thereof
CA2508612A1 (en) Regeneration of spent supported metal catalysts
US5695634A (en) Process for catalytic treatment of waste water as well as a process for regenerating a catalyst
JP3766100B2 (en) H {circle around (2)} SO and SO {circle around 2} methods of catalytic desulfurization of gases containing compounds, and catalysts for carrying out the method
FR2650759A1 (en) NICKEL CAPTURING MASS FOR THE REMOVAL OF ARSENIC AND PHOSPHORUS FROM LIQUID HYDROCARBON CUTTING, ITS PREPARATION AND USE
US3720755A (en) Process for preparing a solution containing hydroxyl ammonium phosphate
JPH0341216B2 (en)
JP2634828B2 (en) Partial nuclear hydrogenation of aromatic compounds
JP2911961B2 (en) High concentration alcohol purification method and adsorbent for purification
JPH09173872A (en) Treatment of catalyst
NO173782B (en) PROCEDURE FOR AA REMOVING CARBONYL SULPHIDE FROM LIQUID HYDROCARBONES
TWI454306B (en) Method for revitalizing emission gas purification catalyst
JPH0617160A (en) Method for recovering rhenium from used catalyst
JP2886563B2 (en) Method for recovering activity of ruthenium catalyst
EP1345693B1 (en) Regeneration method of heterogeneous catalysts and adsorbents
KR100196105B1 (en) Process for regenerating inactive and poisioned platinum catalyst
JPS58114732A (en) Regenerating method of catalyst
JP2577978B2 (en) Reactivation method of platinum group metal supported catalyst
JPS61212524A (en) Hydrolysis for removing cos from liquid propylene
JP3791556B2 (en) Catalyst regeneration method
JPH0424107B2 (en)
JP3492396B2 (en) Olefin purification method