JPH0424107B2 - - Google Patents

Info

Publication number
JPH0424107B2
JPH0424107B2 JP19514383A JP19514383A JPH0424107B2 JP H0424107 B2 JPH0424107 B2 JP H0424107B2 JP 19514383 A JP19514383 A JP 19514383A JP 19514383 A JP19514383 A JP 19514383A JP H0424107 B2 JPH0424107 B2 JP H0424107B2
Authority
JP
Japan
Prior art keywords
catalyst
oxalic acid
iron
catalysts
buffered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19514383A
Other languages
Japanese (ja)
Other versions
JPS5992027A (en
Inventor
Bii Makuitsukaa Gearii
Eru Kaataa Jeimuzu
Eru Myuureru Roorensu
Jei Jiimiaku Jon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Technology and Engineering Co
Original Assignee
Exxon Research and Engineering Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Research and Engineering Co filed Critical Exxon Research and Engineering Co
Publication of JPS5992027A publication Critical patent/JPS5992027A/en
Publication of JPH0424107B2 publication Critical patent/JPH0424107B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/20Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/90Regeneration or reactivation
    • B01J23/96Regeneration or reactivation of catalysts comprising metals, oxides or hydroxides of the noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/48Liquid treating or treating in liquid phase, e.g. dissolved or suspended
    • B01J38/60Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids
    • B01J38/62Liquid treating or treating in liquid phase, e.g. dissolved or suspended using acids organic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/656Manganese, technetium or rhenium
    • B01J23/6567Rhenium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 本発明は、ハイドロコンバージヨン(hydro−
conversion)触媒からの金属汚染物質の除去に関
する。特に、緩衝シユウ酸溶液で処理することに
より、担体を溶解することなく、耐火酸化物担体
上の触媒から金属汚染物質を選択的に除去するこ
とに関する。 石油供給源料の処理に用いられるハイドロコン
バージヨン触媒は、コークスの蓄積(build−up)
や原油中に典型的に見いだされる金属による汚染
などの因子のために失活する。ハイドロコンバー
ジヨン触媒の再生工程で酸を使用することは公知
である。米国特許第2380731号は、使用済み触媒
を有機酸および希鉱酸と接触させることによる、
接触分解用触媒からの鉄および他の金属の除去に
関するものである。シユウ酸水溶液が好ましい。
米国特許第3020239号は、グリコール酸水溶液を
用いる、モリブデン含有触媒からのパナジウムの
除去を記載している。グリコール酸に似た他のヒ
ドロキシ酸および化合物は、モリブデンを同時に
除去してしまうので不満足である。担体物質から
のアルミニウムの浸出を避けるために濃度調節が
好ましい。米国特許第3791989号は、触媒を、コ
ークス付着物の燃焼除去の前にシユウ酸水溶液と
接触させることによる、族または族金属含有
ハイドロプロセシング(hydroprocessing)触媒
からのパナジウムの除去を記載している。実施例
1に於て、汚染触媒粒子を濃シユウ酸溶液と煮沸
して、ニツケルまたはモリブデンよりも優先的に
バナジウムを除去している。英国特許第1245358
号には逆の順序が記載されており、それによる
と、失活した担体担持族または族触媒を、最
初にコークス燃焼除去工程にかけた後、0.5M〜
飽和の濃度を有するシユウ酸水溶液で洗浄する。
シユウ酸との接触時間を限定するならば、触媒金
属は除去されない。 米国特許第4089806号および第4122000号では、
耐火担体上のB族および(または)族金属含
有水素化脱硫触媒をシユウ酸と硝酸および(また
は)硝酸塩との組み合わせを用いて再生する。実
質的な量のパナジウムを除去するのに十分な苛酷
な環境下でシユウ酸のみを使用すると、アルミナ
担体の溶解が起こると記載されている。さらに、
米国特許第3536637号によれば、鉄で汚染された
イオン交換樹脂は、該汚染樹脂をシユウ酸と接触
させることによつて再生される。 アルミナのような無機酸化物担体上に担持され
たハイドロコンバージヨン触媒からのある種の金
属汚染物質の除去にはシユウ酸が有用であること
は知られているが、シユウ酸には、触媒金属およ
び担体物質をも溶解または除去するという欠点が
ある。 本発明者らは、シユウ酸水溶液を緩衝すると、
シユウ酸の金属汚染物質除去能力に悪影響を与え
ずに上記の諸欠点を克服できることを発見した。
従つて、耐火無機酸化物上に担持されたB族ま
たはB族または族からの少なくとも1種の金
属を含むハイドロコンバージヨン触媒から金属汚
染物質を除去するための本発明の方法は、汚染触
媒を緩衝シユウ酸水溶液と接触させることからな
る。本発明のもう1つの実施態様に於ては、アル
ミナまたはシリカまたはシリカーアルミナまたは
ゼオライトまたはクレーの少なくとも1種を含む
接触分解用触媒から、汚染された該接触分解用触
媒を緩衝シユウ酸水溶液と接触させることからな
る方法によつて、汚染金属を除去する。 緩衝を用いる本発明の方法は、ハイドロコンバ
ージヨン触媒中に典型的に用いられる金属酸化物
担体を溶解することなく、シユウ酸を種々の濃度
で使用することを可能にする。しかも、高い抽出
温度でさえも、担体から触媒活性金属を除去する
ことなく、シユウ酸溶液と汚染触媒とを長時間接
触させることができる。シユウ酸を緩衝すること
は、触媒を溶解せずに接触分解用触媒を再生する
ためにシユウ酸を使用することをも可能にする。 問題のハイドロコンバージヨン触媒は、活性触
媒成分または担体物質のいずれかが鉱酸および
(または)有機酸に侵されやすい触媒である。通
常の商業的使用中に、これらの触媒は、金属汚染
物質およびコークス生成によつて汚染されて来
て、失活するようになる。金属汚染物質を除去す
るため、失活触媒の酸再生が用いられる。しか
し、担体または触媒が酸に侵されやすいならば、
担体の損失が活性触媒成分の損失を招くので実質
的な問題が生じる。かかる損失はしばしば受容で
きないか、あるいは実質的な量の金属汚染物質を
除去することができない程度に酸と汚染触媒との
接触時間が制限される。 特に問題のハイドロコンバージヨン触媒には、
接触分解用触媒、リフオーミング触媒、レシドコ
ンバージヨン(resid conversion)触媒が含まれ
る。接触分解用触媒は、アルミナ、シリカ、シリ
カ−アルミナ、ゼオライト、クレーのような酸性
金属酸化物、特に、酸処理クレー、シリカ−ジル
コニア、シリカ−マグネシア、アルミナ−ボリ
ア、シリカ−チタニアである。担体としての上記
接触分解用触媒と水素添加−脱水素金属(例えば
Co、Ni、W、V、Mo、Pt、Pdあるいはこれら
の組み合わせ)との組み合わせは水素添加分解用
触媒となる。一般に、上記のような酸性担体上に
担持されたB金属またはB金属または族金
属あるいはこれらの混合物の組み合わせは、レシ
ドコンバージヨン(resid conversion)、リフオ
ーミングのような種々の接触ハイドロコンバージ
ヨン(catalytic hydroconversion)に用いられ
る。族とは、コンデンズド・ケミカル・デイクシ
ヨナリー(Condensed Chemical Dictionary)
第9版の第662頁にある周期表中で定義されてい
る。好ましい触媒物質は、単独または組み合わせ
たCoまたはMoまたReまたは白金族金属のため
の担体としてアルミナまたはシリカ−アルミナま
たはゼオライトである。 金属汚染物質は、供給原料あるいは反応塔およ
び移送ラインの、製造中に用いられた金属成分か
ら生じ得る。シユウ酸で除去できる金属汚染物質
の例は、鉄、パナジウム、ニツケル、ナトリウ
ム、マグネシウム、クロム、銅、ストロンチウ
ム、リチウム、鉛などである。かかる金属は、触
媒毒作用または閉塞またはその両方によつて触媒
失活に導く可能性があるので一般に望ましくな
い。 前述したように、金属汚染物質を除去するため
のシユウ酸抽出は、酸に侵されやすい担体または
活性触媒金属またはその両方の酸侵食をもたらす
可能性もある。さらに、シユウ酸処理の中には、
高温および(あるいは)高濃度の酸が所要であ
り、かくして上記問題を一層悪化するものもあ
る。本発明者らは、シユウ酸を緩衝することによ
り、シユウ酸の金属汚染物質の抽出能力に悪影響
を与えることなくこれらの問題を解決できること
を発見した。 本発明の緩衝剤は、シユウ酸水溶液を、2〜
10、好ましくは4.5〜8.5のPH範囲内で緩衝するこ
とができる緩衝剤である。好ましい緩衝剤は、触
媒毒作用を生じるのに十分な量のA族カチオン
またはA族カチオンを含まない緩衝剤である。 好ましい緩衝剤の例は酢酸アンモニウムであ
る。 ハイドロコンバージヨン触媒からの金属汚染物
質除去のためのもう1つの緩衝剤の郡には、水/
非水溶媒系中での有用な緩衝剤が含まれる。例え
ば、90%MeOH/10%H2O溶液中では、0.01モル
シユウ酸、0.01モルシユウ酸アンモニウムがPHを
4.23に緩衝する。60%MeOH/40%H2O溶液中
で、この同じ緩衝剤は2.58のPHを与える〔“バツ
フアズ・フオー・PH・アンド・メタル・イオン・
コントロール(Buffers for PH and Metallon
Control)”D.D.ペリンおよびB.デンプシー(D.
D.Perrin and B.Dempsey)、ジヨン・ウイリ
ー・アンド・サンズ(John Wiley and Sons)、
ニユーヨーク、1974、P84−88参照〕。水/非水
系は、アルミナの溶解が水系に比べて非常に抑制
されるので、ハイドロコンバージヨン触媒からの
金属汚染物質除去に有用である。 ある場合には、緩衝剤は低濃度のA族成分を
含むことができる。この場合には、かかる緩衝剤
系は、ハイドロコンバージヨン触媒からの金属汚
染物質の除去に有用であり得る。 緩衝剤の所要量は、用いられるシユウ酸の濃度
に依存する。シユウ酸濃度は0.0001M〜5.0Mの
範囲であることができ、0.01〜2.0Mの濃度範囲
が好ましい。緩衝剤の所要濃度は、シユウ酸のPH
を所望の範囲内に保つために十分な量である。シ
ユウ酸の濃度が増加すると、緩衝能力によるが、
一般に、より多量の与えられた緩衝剤が所要とな
る。 温度範囲は、約0℃〜約100℃であり、好まし
くは20〜75℃である。これより高い温度は、金属
汚染物質除去に関して特に利益が無く、担体およ
び(あるいは)触媒金属の過度の酸侵食を起こす
可能性がある。 通常のシユウ酸と異なり、緩衝シユウ酸は、担
体物質を溶解することなく、長期間、失活触媒と
接触させることができる。触媒と緩衝シユウ酸溶
液との接触方法は臨界的ではない。失活触媒を緩
衝シユウ酸溶液中に浸漬することができる。次
に、所定時間間隔で、触媒または緩衝シユウ酸溶
液の試料を取り出して、金属汚染の程度を検査す
る。別法では、例えば向流抽出器中で緩衝シユウ
酸を再循環させて、連続抽出することができる。 ハイドロコンバージヨン触媒からの金属汚染物
質除去のための好ましい実施態様には、アルミナ
またはシリカ−アルミナのような酸性担体上に担
持された、典型的に、単独であるいはもう1つの
金属(好ましくはReまたは貴金属)と組み合わ
せてPtを含むホーミング用触媒の再生に関する。
リホーミング用触媒は、Fe、Pb、Cu、Ca、Na
などの金属で徐々に汚染されるようになるが、
Feが特に厄介である。 0.5Mシユウ酸を、汚染された、γ−Al2O3担持
PtまたはPt/lrまたはPt/Re触媒とスラリー化
し、加熱するとき、所望なFe汚染物質と共に、
かなりの量の担体および貴金属が除去される。こ
れに反して、同一触媒系の酢酸アンモニウム緩衝
シユウ酸抽出では、Feが選択的に除去され、γ
−アルミナ担体に対する化学的侵食ではなく機械
的損失に帰せられる極めて少量の触媒損失しか生
じない。緩衝シユウ酸溶液を用いるFe除去では、
20〜75℃の低温が好ましい。 抽出後、Pt/Re触媒を、O2の存在下に於て、
500℃で4時間、焼成した。再生触媒のH2および
Coの化学吸着値は、新鮮な触媒の化学吸着値は
ほとんど同じであり、緩衝シユウ酸溶液処理によ
る毒作用または表面変性は全く示されなかつた。 Fe抽出Pt/lr触媒を、0.35重量%のFeを含む未
抽出触媒および新鮮なPt/lr触媒に対して、ナフ
サリホーミング活性について比較した。400時間
後、抽出触媒は新鮮な触媒に比べてリホーミング
活性が25%低下したに過ぎなかつたが、これに比
べて、緩衝シユウ酸の酸溶液で抽出しなかつた触
媒のリホーミング活性の低下は70%であつた。 以下、実施例によつて本発明の方法をさらに説
明する。 触 媒 触媒は、BET表面積150〜190m2/gのr−
Al2O3担体上に担持させた。 Pt/Re/Al2O3・この白金−レニウム二金属触
媒は、市販試料で、初期組成は0.3%Pt、0.3%
Re、0.9%Clであつた(特に断らない限り、%は
すべて重量%である)。 Pt/lr/Al2O3・この白金−イリジウム二金属
触媒は市販試料であつた。新鮮な触媒は0.3%Pt、
0.3%lr、0.7%Clを含む。多くの使用済みPt/
lr/Al2O3試料も製油所から得られた。 Pt/Al2O3・この一金属白金触媒は市販試料で
あり、組成は0.3%Pt、0.7%Clであつた。 鉄汚染(doped)触媒・新鮮なPt/Re/Al2O3
およびPt/lr/Al2O3触媒に、標準化硝酸鉄水溶
液を用い、初期湿潤法(incipient wetness
procedure)により、既知量のFeを添加し、120
℃で16時間、空気下で乾燥した後、この含浸物
を、20%O2/He下(500c.c./分)、270℃で4時
間焼成して、硝酸塩を確実に分解した。 以下の実施例中、実施例5、6、7が本発明の
実施例である。 実施例 1 本実施例は、貴金属二金属触媒の化学吸着に及
ぼすFeの有害作用を示す参考例である。シンフ
エルトおよびイエーツ(Sinfelt and yates)がJ.
Catal、8、82(1967)中に記載した通常のガラス
真空装置を用いて、水素および一酸化炭素化学吸
着研究を行つた。 水素および一酸化炭素の吸着値は、還元、排気
した試料について、25±2℃で測定した。典型的
には、各吸着点で30分間放置した。圧力0に於け
る水素吸着値が金属の飽和カバレツジ
(saturation coverage)に相当すると仮定して、
H/M比を計算した。圧力0に於ける水素吸着値
は、ベンソン(Benson)およびバウダート
(Bondart)およびウイルソン(Wilson)および
ホール(Hall)〔J.Cata.,,704(1965)および
17,190(1970)〕が記載しているように、等温線
の高圧直線部分の外挿によつて求めた。CO/M
比は、還元、排気試料について一酸化炭素吸着値
を測定し、この値がAl2O3担体に弱く結合しかつ
金属表面に強く結合した一酸化炭素の合計を示す
と仮定した計算した。次に、試料を、室温で10分
間、排気し(10-5Torr)、第2の一酸化炭素等温
線を測定した。第2の等温線は、担体に弱く吸着
した一酸化炭素のみを測定するので、2つの等温
線の差は金属成分と強く結合した一酸化炭素の量
を与える。100Torrに於ける強く結合した一酸化
炭素の量を、金属の飽和カバレツジ(saturation
coverage)として選んだ。 新鮮なPt/ReおよびPt/lr触媒ならびに鉄を
含浸させたPt/ReおよびPt/lr触媒の水素化学
吸着性を第1表に示す。 【表】 第1表中の最後の欄は、鉄汚染触媒の水素吸着
値を、新鮮なPt/ReおよひPt/lr触媒の吸着値
に関して規格化したものである。鉄濃度の増加に
つれて、両二金属触媒の水素化学吸着能が系統的
に減少することがわかつた。鉄濃度0.36%で、両
二金属触媒の水素吸着値は、新鮮な触媒の吸着値
より40〜50%低くなる。 0.1〜0.8%のFeを含む触媒のFe/貴金属モル比
は0.5〜4の範囲である。かくして、0.2%の鉄濃
度は、Pt/ReおよびPt/lrリホーミング用触媒
中に存在するすべての貴金属成分と相互作用する
のに十分高い濃度となる。低い鉄濃度で生じる
H/M値の顕著な減少は、鉄がかなりの分率の貴
金属を合金化するか、あるいは物理的に接着する
という事実を示唆している。化学吸着能の低下
は、必然的にリホーミング活性を低下する可能性
がある。接触リホーミングに於ては、H−Hおよ
びC−H結合活性化過程が非常に重要だからであ
る。 実施例 2 本実施例は、二金属触媒のリホーミング活性に
及ぼす鉄の影響を示す参考例である。ワンパス方
式で操作される、25c.c.のステンレス鋼製固定床等
温水素添加処理装置中で、ナフサリホーミング反
応を行つた。 リホーミング実験は、487〜489℃で、14.06
Kg/cm2ゲージ圧(200psig)の全圧下で行つた。
重量時空速度は2.1WHWであり、水素は、
6000SCFH2/BBLの速度で供給した。市販のナ
フサ供給原料を用い、チオフエンの添加によつ
て、硫黄濃度を0.5ppmに調節した。500℃で水素
還元を行つた後、希H2S/H2混合物を用いて、
触媒を硫化した。リホーメート(Reformate)の
リサーチ法オクタン価(RON)の分析を行つた。
オクタン価は、相対的触媒活性(RCA)を定義
するために用いられた。 新鮮なPt/ReおよびPt/lr触媒ならびに鉄汚
染Pt/ReおよびPt/lr触媒のナフサリホーミン
グ活性を第2表中に比較して示す。 【表】 相対的触媒活性は、明らかに、0.36%の鉄が両
方の二金属触媒に顕著な有害作用を有することを
示している。すべての触媒に、同様なコークス生
成が見られた。鉄含有触媒が示した55〜65%低い
活性は、貴金属が鉄との相互作用によつて失活す
ることを示している。これらの触媒では、Fe/
貴金属モル比が2付近であるので、Pt、lr、Re
のすべてを変性するのに有効な十分な鉄が存在す
ることになる。低下したリホーミング活性は、鉄
汚染触媒で見られる低下した水素化学吸着能と一
致している。 実施例 3 本実施例はγ−Al2O3の、水中、シユウ酸溶液
中、酢酸アンモニウム緩衝シユウ酸溶液中の溶解
度を示す比較例であり、これらの溶解度を第3表
に比較して示す。 【表】 H2O中で30分間還流後、γ−Al2O3スラリーの
PHは、約5.0の自己緩衝レベルに達する。 Al2O3−H2Oスラリーの酸性は、当業界で公知
である。シユウ酸中のAl2O3のスラリーは、100
℃に於て約2のPHを示す。かくして、Al2O3−シ
ユウ酸スラリーの酸性度は、Al2O3−H2Oスラリ
ーの酸性度より約3桁大きい。Al2O3−酢酸アン
モニウム緩衝シユウ酸スラリーは、シユウ酸スラ
リーとは対照的に、約4.4倍の比較的一定なPH値
を保つことがわかつた。かくして、緩衝スラリー
のPHは、Al2O3の水性スラリーのPHに似た値であ
る。PHの値は、スラリーから未変化で回収できる
Al2O3の量に反映される。H2Oおよび緩衝シユウ
酸スラリーからは、本質的に完全なAl2O3の回収
が得られた。しかし、シユウ酸スラリーは、相当
な量のAl2O3を容易に溶解する。30分間還流後、
出発量のほぼ半分のAl2O3が可溶性アルミニウム
種に変化した。 実施例 4 本実施例は、貴金属触媒からの鉄の非選択的抽
出を示す比較例である。Pt触媒、Pt/lr触媒、
Pt/Re触媒からの鉄の抽出のためにシユウ酸溶
液を用いる代表的な研究の結果を第4表に示す。 【表】 0.5Mシユウ酸溶液により、50℃で60分後、約
10%のAl2O3担体が溶解される。100℃で抽出を
行うと、60分で30〜40%のAl2O3担体が溶解す
る。これらの相当量の担体の損失はあまりにも高
すぎるので、シユウ酸を金属汚染物質の抽出剤と
して本気で考えることはできない。高温(100℃)
で行つた抽出中、かなりの比率の貴金属成分が鉄
と共に抽出される。Reの損失は特に顕著であり、
抽出温度の低下またはシユウ酸溶液の濃度の減少
によつて抑制することができない。 実施例 5 本実施例は、実施例4とは対照的に、緩衝シユ
ウ酸を用いる貴金属触媒からの鉄の選択的抽出を
与える本発明を示す。Pt触媒、Pt/lr触媒、Pt/
Re触媒からの鉄の抽出のための酢酸アンモニウ
ム緩衝シユウ酸溶液を用いる研究の結果を第5表
に示す。緩衝シユウ酸溶液で抽出する前に、鉄汚
染触媒を、典型的には、H2下で還元した。 【表】 【表】 シユウ酸スラリーに比べて、緩衝シユウ酸溶液
はAl2O3担体を溶解しない。2〜4%の見かけの
触媒損失は、Al2O3の緩衝溶液中への溶解よりは
むしろ主としてスラリーの過時に於ける機械的
損失によるものである。鉄は選択的に抽出される
が、貴金属の明らかな除去は、100℃の抽出温度
でさえも起こらない。抽出データは、さらに、鉄
の除去が低い処理温度で有利であることを示して
いる。この挙動は、シユウ酸鉄錯体が低温の方が
安定であるという事実と符合している。 2%鉄汚染Pt/lr触媒の場合には、抽出効率に
及ぼす触媒粒度の影響を示してある。触媒粒度が
小さい程、より多くの表面が抽出媒質に暴露され
ると期待される。かくして、与えられた抽出条件
下では、鉄および他の抽出可能な汚染物質の除去
は、粒度が小さくなる程有利であるべきである。
粉末状触媒からより多量の鉄が除去されたことは
このことと符合している。 第5表に示した抽出データは、粗雑なスラリー
実験から得たものであり、最適化されたものでは
ない。しかし、触媒を新鮮な抽出媒質へ再循環さ
せることにより、あるいは触媒が連続的に緩衝シ
ユウ酸溶液と接触するように抽出方法を工夫する
ことによつて、特別な触媒上に存在する本質的に
全部の鉄を除去できると考えることは合理的であ
る。緩衝シユウ酸溶液は、多種の炭化水素転化触
媒(hydrocarbon conversion catalyet)から
の、鉄、およびNa、V、Ni、Cuなどのような他
の抽出可能な金属の除去にも使用することができ
る。シユウ酸は、金属汚染物質除去のために好ま
しいが、シユウ酸は、本発明の方法における他の
有機酸に取つて替わることも可能である。 実施例 6 鉄が貴金属触媒の毒として作用し得ることは公
知である。本実施例は、Pt/Re触媒の化学吸着
挙動に及ぼす鉄除去の、本発明の有利な作用を示
す。結果は、第6表に示してある。新鮮な触媒の
化学吸着性に近い、触媒の増加された化学吸着性
が観察された。 【表】
ウム緩衝シユウ酸溶液で抽したもの
【表】 新鮮なPt/Re触媒に0.37%の鉄を添加すると、
H2およびCo吸着値は約50%減少した。この鉄汚
染触媒を、酢酸アンモニウム緩衝シユウ酸溶液
で、50℃に於て抽出すると、鉄濃度は0.37%から
0.08%に減少した。この抽出触媒を、500℃に於
て、20%O2/He下で4時間焼成して、触媒表面
から抽出剤の最後の痕跡を確実に除去した。抽
出、焼成工程後、化学吸着値は、新鮮な触媒が示
す吸着値に近い値に増加した。鉄除去によつて
Pt/Re触媒の化学吸着値が回復することは、緩
衝シユウ酸抽出剤が金属表面を毒することもなく
また変性することもないということを示してい
る。 再分散Pt/lr触媒は、新鮮な触媒が示す値より
も低い水素および一酸化炭素の吸着値を示した。
再分散触媒のX線回折測定は、Pt回折図もlr回折
図も示さず、かくして触媒はよく分散していると
考えることは合理的である。従つて、再分散触媒
上の0.35%の鉄の存在は、異常に低い水素および
一酸化炭素吸着値の原因であり得る。酢酸アンモ
ニウム緩衝シユウ酸溶液によつて触媒から鉄を抽
出することにより、鉄濃度は、0.35%から0.1%
に低下した。標準抽出操作後、触媒を、270℃に
於て、2%O2/He下で4時間焼成した。鉄抽出
しかつ焼成したpt/lr触媒は、再分散触媒が示し
た値よりも幾分低い水素および一酸化炭素吸着値
を示した。鉄抽出触媒は、270℃の焼成工程のみ
にかけたので、低い化学吸着値は、金属表面に付
着している残留量の吸着剤による可能性がある。
この抽出触媒が示す低い化学吸着値は、次に記載
するように、この触媒のリホーミング活性に悪影
響を与えなかつた。この発見は、残留抽出剤が、
高いリホーミング温度に於て触媒から除去され得
ることを示唆している。 実施例 7 本実施例では、再分散Pt/lr触媒(0.35%Fe含
有)のナフサリホーミング活性を、新鮮なPt/lr
触媒およびFeを本発明にしたがつて抽出した触
媒と比較する。結果は、第7表に示してある。リ
ホーミング反応条件は、実施例2記載の通りであ
る。 【表】 400時間の供給後、再分散触媒は、新鮮な触媒
のリホーミング活性の僅か30%のリホーミング活
性しか示さなかつた。再分散触媒が示したリホー
ミング活性低下は、鉄汚染が失活の1重要因子で
あることを示唆している。鉄抽出後、抽出触媒
の、400時間供給後のリホーミング活性は、新鮮
なPt/lr触媒の活性の約80%である。かくして、
再分散試料からの鉄の除去は、顕著にずつと活性
な触媒を与えることになる。 Pt/Re触媒のリホーミング活性に及ぼす0.37
%のFeの有害作用は、第8表に示してある。 【表】 鉄汚染触媒の、350時間供給後のリホーミング
活性は、新鮮な活性の僅か50%である。同じ鉄汚
染触媒は、新鮮な触媒よりも50%低い水素および
一酸化炭素吸着値を示した(第6表参照)。かく
して、鉄で汚染されたPt/Re触媒では、触媒活
性と化学吸着測定との間にすぐれた一致が存在す
る。この鉄汚染Pt/Re触媒から80%の鉄を抽出
すると、新鮮な触媒が示す値に近い水素および一
酸化炭素吸着値ならびにリホーミング活性を示す
触媒が得られる。化学吸着値と接触リホーミング
活性との間のこの一致は、鉄が金属成分と相互作
用することによつて二金属触媒を毒することを示
している。鉄によつて不活性化される貴金属の比
率は、鉄濃度の増加と共に増加する。 実施例 8 本実施例は、鉱酸が、触媒からの鉄の除去に関
して、シユウ酸と等価でないことを示す比較例で
ある。Al2O3担体上に0.28%Pt、0.27%lr、2.0%
Feを含む触媒を、塩酸および酢酸アンモニウム
で緩衝された塩酸で処理し、第9表に示す結果を
得た。 【表】 燥した。
これらの結果は、緩衝塩酸が、鉄をほとんど除
去せずに大きな担体損失をもたらすことを示して
いる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydro-conversion
conversion) relating to the removal of metal contaminants from the catalyst. In particular, it relates to the selective removal of metal contaminants from a catalyst on a refractory oxide support without dissolving the support by treatment with a buffered oxalic acid solution. Hydroconversion catalysts used in the treatment of petroleum feedstocks are
deactivation due to factors such as contamination with metals typically found in oil and crude oil. The use of acids in the regeneration process of hydroconversion catalysts is known. U.S. Pat. No. 2,380,731 discloses that by contacting a spent catalyst with an organic acid and a dilute mineral acid,
Removal of iron and other metals from catalytic cracking catalysts. An aqueous oxalic acid solution is preferred.
US Pat. No. 3,020,239 describes the removal of panadium from molybdenum-containing catalysts using an aqueous glycolic acid solution. Other hydroxy acids and compounds similar to glycolic acid are unsatisfactory because they simultaneously remove molybdenum. Concentration adjustment is preferred to avoid leaching of aluminum from the carrier material. US Pat. No. 3,791,989 describes the removal of panadium from group or group metal-containing hydroprocessing catalysts by contacting the catalyst with an aqueous oxalic acid solution prior to combustion removal of coke deposits. In Example 1, contaminated catalyst particles are boiled with a concentrated oxalic acid solution to remove vanadium preferentially over nickel or molybdenum. British Patent No. 1245358
The reverse order is described in the issue, in which the deactivated carrier-supported group or group catalyst is first subjected to a coke burn-off step, and then 0.5 M~
Wash with an aqueous oxalic acid solution having a saturated concentration.
If the contact time with oxalic acid is limited, the catalytic metal will not be removed. In U.S. Patent Nos. 4,089,806 and 4,122,000,
A group B and/or group metal-containing hydrodesulfurization catalyst on a refractory support is regenerated using a combination of oxalic acid and nitric acid and/or nitrate. Dissolution of the alumina support is stated to occur when oxalic acid alone is used in environments harsh enough to remove substantial amounts of panadium. moreover,
According to US Pat. No. 3,536,637, ion exchange resin contaminated with iron is regenerated by contacting the contaminated resin with oxalic acid. Oxalic acid is known to be useful for removing certain metal contaminants from hydroconversion catalysts supported on inorganic oxide supports such as alumina; and also have the disadvantage of dissolving or removing the carrier material. The present inventors found that when buffering an oxalic acid aqueous solution,
It has been discovered that the above drawbacks can be overcome without adversely affecting the ability of oxalic acid to remove metal contaminants.
The method of the present invention for removing metal contaminants from a hydroconversion catalyst comprising Group B or at least one metal from Group B or Groups supported on a refractory inorganic oxide therefore provides It consists of contacting with a buffered aqueous oxalic acid solution. In another embodiment of the invention, a contaminated catalytic cracking catalyst comprising at least one of alumina or silica or silica-alumina or zeolite or clay is treated with a buffered aqueous oxalic acid solution. Contaminant metals are removed by a method comprising contacting. The method of the present invention using buffering allows oxalic acid to be used at various concentrations without dissolving the metal oxide supports typically used in hydroconversion catalysts. Moreover, even at high extraction temperatures, the oxalic acid solution can be kept in contact with the contaminated catalyst for a long time without removing the catalytically active metal from the support. Buffering oxalic acid also allows it to be used to regenerate catalytic cracking catalysts without dissolving the catalyst. The hydroconversion catalysts in question are those in which either the active catalyst component or the support material is susceptible to attack by mineral acids and/or organic acids. During normal commercial use, these catalysts become contaminated by metal contaminants and coke formation and become deactivated. Acid regeneration of the deactivated catalyst is used to remove metal contaminants. However, if the support or catalyst is susceptible to acid attack,
Substantial problems arise because loss of support leads to loss of active catalyst components. Such losses are often unacceptable or the contact time of the acid with the contaminated catalyst is limited to such an extent that substantial amounts of metal contaminants cannot be removed. Particularly concerning hydroconversion catalysts,
Includes catalytic cracking catalysts, reforming catalysts, and resid conversion catalysts. Catalysts for catalytic cracking are acidic metal oxides such as alumina, silica, silica-alumina, zeolites, clays, especially acid-treated clays, silica-zirconia, silica-magnesia, alumina-boria, silica-titania. The above catalyst for catalytic cracking as a carrier and hydrogenation-dehydrogenation metal (e.g.
Co, Ni, W, V, Mo, Pt, Pd or a combination thereof) becomes a hydrogen cracking catalyst. In general, B metals or B metals or group metals or combinations thereof supported on acidic supports as described above are subjected to various catalytic hydroconversions such as resid conversion, reforming, etc. hydroconversion). Condensed Chemical Dictionary
Defined in the periodic table on page 662 of the 9th edition. Preferred catalytic materials are alumina or silica-alumina or zeolites as supports for Co or Mo or Re or platinum group metals, alone or in combination. Metal contaminants may arise from metal components of the feedstock or reactor columns and transfer lines used during production. Examples of metal contaminants that can be removed with oxalic acid include iron, panadium, nickel, sodium, magnesium, chromium, copper, strontium, lithium, and lead. Such metals are generally undesirable because they can lead to catalyst deactivation through catalyst poisoning and/or blockage. As previously mentioned, oxalic acid extraction to remove metal contaminants can also result in acid attack of the acid sensitive support and/or the active catalyst metal. Additionally, some oxalic acid treatments include
Some require high temperatures and/or high concentrations of acid, thus exacerbating the above problems. The inventors have discovered that buffering oxalic acid can solve these problems without adversely affecting the ability of oxalic acid to extract metal contaminants. The buffer of the present invention contains an aqueous oxalic acid solution of 2 to
10, preferably a buffering agent capable of buffering within the PH range of 4.5 to 8.5. Preferred buffers are those that do not contain sufficient Group A cations or Group A cations to cause catalyst poisoning. An example of a preferred buffer is ammonium acetate. Another group of buffers for the removal of metal contaminants from hydroconversion catalysts includes water/
Included are buffers useful in non-aqueous solvent systems. For example, in a 90% MeOH/10% H 2 O solution, 0.01 molar oxalic acid, 0.01 molar ammonium oxalate will change the pH.
Buffer to 4.23. In a 60% MeOH/40% H2O solution, this same buffer gives a pH of 2.58
Controls (Buffers for PH and Metallon
Control)” DD Perrin and B. Dempsey (D.
D.Perrin and B.Dempsey), John Wiley and Sons,
New York, 1974, p. 84-88]. Aqueous/non-aqueous systems are useful for removing metal contaminants from hydroconversion catalysts because dissolution of alumina is greatly inhibited compared to aqueous systems. In some cases, the buffer can include low concentrations of Group A components. In this case, such buffer systems may be useful for removing metal contaminants from hydroconversion catalysts. The amount of buffer required depends on the concentration of oxalic acid used. The oxalic acid concentration can range from 0.0001M to 5.0M, with a concentration range of 0.01 to 2.0M being preferred. The required concentration of buffer is the PH of oxalic acid.
is sufficient to keep it within the desired range. As the concentration of oxalic acid increases, depending on the buffering capacity,
Generally, a larger amount of a given buffer will be required. The temperature range is from about 0°C to about 100°C, preferably from 20 to 75°C. Higher temperatures have no particular benefit with respect to metal contaminant removal and may cause excessive acid attack of the support and/or catalyst metal. Unlike regular oxalic acid, buffered oxalic acid can be contacted with deactivated catalyst for extended periods of time without dissolving the support material. The method of contacting the catalyst with the buffered oxalic acid solution is not critical. The deactivated catalyst can be soaked in a buffered oxalic acid solution. Then, at predetermined time intervals, samples of the catalyst or buffered oxalic acid solution are removed and tested for the extent of metal contamination. Alternatively, continuous extraction can be performed, for example by recycling the buffered oxalic acid in a countercurrent extractor. Preferred embodiments for the removal of metal contaminants from hydroconversion catalysts typically include one metal or another metal (preferably Re) supported on an acidic support such as alumina or silica-alumina. or noble metals) on the regeneration of homing catalysts containing Pt.
Reforming catalysts include Fe, Pb, Cu, Ca, Na
It gradually becomes contaminated with metals such as
Fe is particularly troublesome. 0.5M oxalic acid supported on contaminated γ-Al 2 O 3
When slurried with Pt or Pt/lr or Pt/Re catalysts and heated, along with the desired Fe contaminants,
Significant amounts of support and precious metals are removed. In contrast, ammonium acetate-buffered oxalic acid extraction with the same catalyst system selectively removes Fe and γ
- Very little catalyst loss occurs, which is attributable to mechanical losses rather than chemical attack on the alumina support. For Fe removal using buffered oxalic acid solution,
Low temperatures of 20-75°C are preferred. After extraction, the Pt/Re catalyst was extracted in the presence of O2 .
It was baked at 500°C for 4 hours. H2 and of regenerated catalyst
The chemisorption value of Co was almost the same as that of the fresh catalyst, and no toxic effect or surface modification was shown by treatment with buffered oxalic acid solution. Fe-extracted Pt/lr catalyst was compared for naphthalene homing activity against unextracted catalyst containing 0.35 wt% Fe and fresh Pt/lr catalyst. After 400 hours, the extracted catalyst had only a 25% reduction in reforming activity compared to the fresh catalyst, compared to the reduced reforming activity of the catalyst that was not extracted with an acid solution of buffered oxalic acid. was 70%. The method of the present invention will be further explained below with reference to Examples. Catalyst The catalyst has a BET surface area of 150 to 190 m 2 /g.
It was supported on an Al 2 O 3 support. Pt/Re/Al 2 O 3 This platinum-rhenium bimetallic catalyst is a commercially available sample with an initial composition of 0.3% Pt, 0.3%
Re, 0.9% Cl (all percentages are by weight unless otherwise noted). Pt/lr/Al 2 O 3 This platinum-iridium bimetallic catalyst was a commercially available sample. Fresh catalyst is 0.3% Pt,
Contains 0.3% LR, 0.7% Cl. Many used Pt/
lr/Al 2 O 3 samples were also obtained from the refinery. Pt/Al 2 O 3 This monometallic platinum catalyst was a commercially available sample and had a composition of 0.3% Pt and 0.7% Cl. Iron-doped catalyst/Fresh Pt/Re/Al 2 O 3
and Pt/lr/Al 2 O 3 catalyst using the incipient wetness method using a standardized aqueous iron nitrate solution.
A known amount of Fe was added according to the procedure), and 120
After drying under air for 16 hours at 0.degree. C., the impregnation was calcined at 270.degree. C. for 4 hours under 20% O 2 /He (500 c.c./min) to ensure nitrate decomposition. Among the following Examples, Examples 5, 6, and 7 are examples of the present invention. Example 1 This example is a reference example showing the harmful effect of Fe on chemisorption of noble metal bimetallic catalysts. Sinfelt and Yates (J.
Hydrogen and carbon monoxide chemisorption studies were performed using the conventional glass vacuum apparatus described in Catal, 8, 82 (1967). Hydrogen and carbon monoxide adsorption values were measured at 25±2° C. on reduced and evacuated samples. Typically, each adsorption point was left for 30 minutes. Assuming that the hydrogen adsorption value at zero pressure corresponds to the saturation coverage of the metal,
The H/M ratio was calculated. The hydrogen adsorption value at zero pressure is determined by Benson, Bondart, Wilson and Hall [J.Cata., 4 , 704 (1965) and
17, 190 (1970)], it was determined by extrapolation of the high-pressure linear portion of the isotherm. CO/M
The ratio was calculated by measuring the carbon monoxide adsorption value on the reduced, exhaust sample and assuming that this value represents the total carbon monoxide weakly bound to the Al2O3 support and strongly bound to the metal surface. The sample was then evacuated (10 -5 Torr) for 10 minutes at room temperature and a second carbon monoxide isotherm was measured. Since the second isotherm measures only carbon monoxide weakly adsorbed on the support, the difference between the two isotherms gives the amount of carbon monoxide strongly bound to the metal component. The amount of strongly bound carbon monoxide at 100 Torr is determined by the saturation coverage of the metal.
coverage). The hydrogen chemisorption properties of fresh Pt/Re and Pt/lr catalysts and iron-impregnated Pt/Re and Pt/lr catalysts are shown in Table 1. TABLE The last column in Table 1 normalizes the hydrogen adsorption values for iron contaminated catalysts with respect to the adsorption values for fresh Pt/Re and Pt/lr catalysts. It was found that the hydrogen chemisorption capacity of both bimetallic catalysts decreased systematically as the iron concentration increased. At 0.36% iron concentration, the hydrogen adsorption values of both bimetallic catalysts are 40-50% lower than that of fresh catalyst. The Fe/noble metal molar ratio of catalysts containing 0.1-0.8% Fe ranges from 0.5-4. Thus, an iron concentration of 0.2% is high enough to interact with all noble metal components present in the Pt/Re and Pt/lr reforming catalysts. The significant decrease in the H/M value that occurs at low iron concentrations points to the fact that iron alloys or physically adheres to a significant fraction of the noble metals. A reduction in chemisorption capacity may necessarily reduce reforming activity. This is because H-H and C-H bond activation processes are very important in catalytic reforming. Example 2 This example is a reference example showing the influence of iron on the reforming activity of a bimetallic catalyst. The naphthalene homing reaction was carried out in a 25 c.c. stainless steel fixed bed isothermal hydrotreater operated in one pass mode. The reforming experiment was carried out at 487-489℃, 14.06
It was carried out under a total pressure of Kg/cm 2 gauge pressure (200 psig).
The weight space velocity is 2.1WHW, and hydrogen is
It was fed at a rate of 6000SCFH 2 /BBL. A commercially available naphtha feedstock was used and the sulfur concentration was adjusted to 0.5 ppm by addition of thiophene. After hydrogen reduction at 500 °C, using a dilute H2S / H2 mixture,
The catalyst was sulphurized. We conducted a research method octane rating (RON) analysis of Reformate.
Octane number was used to define relative catalytic activity (RCA). The naphthalene homing activities of fresh Pt/Re and Pt/lr catalysts and iron-contaminated Pt/Re and Pt/lr catalysts are shown in comparison in Table 2. Table: The relative catalytic activities clearly show that 0.36% iron has a significant detrimental effect on both bimetallic catalysts. Similar coke formation was observed for all catalysts. The 55-65% lower activity exhibited by iron-containing catalysts indicates that the noble metal is deactivated by interaction with iron. In these catalysts, Fe/
Since the noble metal molar ratio is around 2, Pt, lr, Re
There will be enough iron available to denature all of the The reduced reforming activity is consistent with the reduced hydrogen chemisorption capacity seen with iron-contaminated catalysts. Example 3 This example is a comparative example showing the solubility of γ-Al 2 O 3 in water, oxalic acid solution, and ammonium acetate buffered oxalic acid solution, and these solubility are shown in Table 3 for comparison. . [Table] γ-Al 2 O 3 slurry after refluxing in H 2 O for 30 min.
The PH reaches a self-buffering level of approximately 5.0. The acidity of Al2O3 - H2O slurries is known in the art. Slurry of Al2O3 in oxalic acid is 100
It exhibits a pH of about 2 at °C. Thus, the acidity of the Al2O3 -oxalic acid slurry is about three orders of magnitude greater than the acidity of the Al2O3 - H2O slurry. Al2O3 -ammonium acetate buffered oxalate slurry was found to maintain a relatively constant PH value of about 4.4 times in contrast to oxalate slurry. Thus, the PH of the buffered slurry is similar to the PH of the aqueous slurry of Al 2 O 3 . PH value can be recovered unchanged from the slurry
reflected in the amount of Al 2 O 3 . Essentially complete Al2O3 recovery was obtained from the H2O and buffered oxalic acid slurry. However, oxalic acid slurry readily dissolves significant amounts of Al2O3 . After refluxing for 30 minutes,
Approximately half of the starting amount of Al 2 O 3 was converted to soluble aluminum species. Example 4 This example is a comparative example showing non-selective extraction of iron from a noble metal catalyst. Pt catalyst, Pt/lr catalyst,
The results of a representative study using oxalic acid solution for extraction of iron from Pt/Re catalysts are shown in Table 4. [Table] After 60 minutes at 50℃ with 0.5M oxalic acid solution, approx.
10% Al2O3 support is dissolved . When the extraction is carried out at 100 °C, 30-40% of the Al2O3 carrier is dissolved in 60 minutes. These significant losses of support are too high to seriously consider oxalic acid as an extractant for metal contaminants. High temperature (100℃)
During the extraction carried out in , a significant proportion of the precious metal components are extracted along with the iron. The loss of Re is particularly noticeable,
It cannot be suppressed by lowering the extraction temperature or reducing the concentration of the oxalic acid solution. Example 5 This example, in contrast to Example 4, demonstrates the invention providing selective extraction of iron from noble metal catalysts using buffered oxalic acid. Pt catalyst, Pt/lr catalyst, Pt/
The results of studies using ammonium acetate buffered oxalic acid solutions for the extraction of iron from Re catalysts are shown in Table 5. The iron-contaminated catalyst was typically reduced under H2 before extraction with buffered oxalic acid solution. [Table] [Table] Compared to the oxalic acid slurry, the buffered oxalic acid solution does not dissolve the Al 2 O 3 support. The apparent catalyst loss of 2-4% is primarily due to mechanical loss over time of the slurry rather than dissolution of the Al 2 O 3 into the buffer solution. Although iron is selectively extracted, no obvious removal of precious metals occurs even at an extraction temperature of 100 °C. The extraction data further indicates that iron removal is advantageous at lower processing temperatures. This behavior is consistent with the fact that iron oxalate complexes are more stable at lower temperatures. In the case of a 2% iron contaminated Pt/lr catalyst, the influence of catalyst particle size on extraction efficiency is shown. The smaller the catalyst particle size, the more surface is expected to be exposed to the extraction medium. Thus, under given extraction conditions, removal of iron and other extractable contaminants should be more advantageous with smaller particle sizes.
This is consistent with the fact that more iron was removed from the powdered catalyst. The extraction data shown in Table 5 was obtained from crude slurry experiments and was not optimized. However, by recycling the catalyst into fresh extraction medium or by devising the extraction method so that the catalyst is continuously contacted with a buffered oxalic acid solution, the It is reasonable to think that all the iron can be removed. Buffered oxalic acid solutions can also be used for the removal of iron and other extractable metals such as Na, V, Ni, Cu, etc. from a wide variety of hydrocarbon conversion catalysts. Although oxalic acid is preferred for metal contaminant removal, oxalic acid can also be substituted for other organic acids in the method of the invention. Example 6 It is known that iron can act as a poison for noble metal catalysts. This example demonstrates the beneficial effects of the present invention of iron removal on the chemisorption behavior of Pt/Re catalysts. The results are shown in Table 6. An increased chemisorption of the catalyst was observed, close to that of fresh catalyst. 【table】
Extracted with um-buffered oxalic acid solution
[Table] When 0.37% iron is added to fresh Pt/Re catalyst,
H2 and Co adsorption values decreased by about 50%. When this iron-contaminated catalyst is extracted with ammonium acetate buffered oxalic acid solution at 50°C, the iron concentration starts from 0.37%.
It decreased to 0.08%. The extracted catalyst was calcined at 500° C. under 20% O 2 /He for 4 hours to ensure that the last traces of extractant were removed from the catalyst surface. After the extraction and calcination steps, the chemisorption value increased to a value close to that exhibited by fresh catalyst. by iron removal
The recovery of chemisorption values for the Pt/Re catalyst indicates that the buffered oxalic acid extractant does not poison or modify the metal surface. The redispersed Pt/lr catalyst showed lower hydrogen and carbon monoxide adsorption values than the fresh catalyst.
X-ray diffraction measurements of the redispersed catalyst showed neither a Pt nor an LR diffraction pattern, thus it is reasonable to assume that the catalyst is well dispersed. Therefore, the presence of 0.35% iron on the redispersed catalyst may be responsible for the unusually low hydrogen and carbon monoxide adsorption values. By extracting iron from the catalyst with ammonium acetate buffered oxalic acid solution, the iron concentration was reduced from 0.35% to 0.1%.
It declined to . After the standard extraction procedure, the catalyst was calcined at 270° C. under 2% O 2 /He for 4 hours. The iron-extracted and calcined pt/lr catalyst exhibited hydrogen and carbon monoxide adsorption values that were somewhat lower than those exhibited by the redispersed catalyst. Since the iron extraction catalyst was only subjected to a 270 °C calcination step, the low chemisorption values may be due to residual amounts of adsorbent adhering to the metal surface.
The low chemisorption values exhibited by this extraction catalyst did not adversely affect the reforming activity of this catalyst, as described below. This finding suggests that residual extractant
This suggests that it can be removed from the catalyst at high reforming temperatures. Example 7 In this example, the naphthalene homing activity of a redispersed Pt/lr catalyst (containing 0.35% Fe) was compared to a fresh Pt/lr catalyst.
The catalyst and Fe are compared with the catalyst extracted according to the invention. The results are shown in Table 7. The reforming reaction conditions are as described in Example 2. Table: After 400 hours of feeding, the redispersed catalyst exhibited a reforming activity that was only 30% of that of the fresh catalyst. The reduced reforming activity exhibited by the redispersed catalyst suggests that iron contamination is one important factor for deactivation. After iron extraction, the reforming activity of the extraction catalyst after 400 hours of feeding is about 80% of the activity of fresh Pt/lr catalyst. Thus,
Removal of iron from the redispersed sample will provide a significantly more active catalyst. 0.37 effect on reforming activity of Pt/Re catalyst
The adverse effects of % Fe are shown in Table 8. Table: The reforming activity of the iron-contaminated catalyst after 350 hours of feeding is only 50% of the fresh activity. The same iron-contaminated catalyst showed 50% lower hydrogen and carbon monoxide adsorption values than the fresh catalyst (see Table 6). Thus, for iron-contaminated Pt/Re catalysts, there is excellent agreement between catalytic activity and chemisorption measurements. Extraction of 80% iron from this iron-contaminated Pt/Re catalyst yields a catalyst with hydrogen and carbon monoxide adsorption values and reforming activity close to those of fresh catalyst. This agreement between chemisorption values and catalytic reforming activity indicates that iron poisons bimetallic catalysts by interacting with metal components. The proportion of noble metals inactivated by iron increases with increasing iron concentration. Example 8 This example is a comparative example showing that mineral acids are not equivalent to oxalic acid in removing iron from the catalyst. 0.28%Pt, 0.27%lr, 2.0% on Al2O3 support
The Fe-containing catalyst was treated with hydrochloric acid and hydrochloric acid buffered with ammonium acetate with the results shown in Table 9. [Table] Dried.
These results indicate that buffered hydrochloric acid results in large carrier losses with little iron removal.

Claims (1)

【特許請求の範囲】 1 耐火無機酸化物上に担持されたB族または
B族または族からの少なくとも1種の金属を
含むハイドロコンバージヨン触媒、またはアルミ
ナまたはシリカまたはシリカーアルミナまたはゼ
オライトまたはクレーの少なくとも1種を含む接
触分解用触媒からの金属汚染物質の除去方法であ
つて、汚染された触媒を酢酸アンモニウム緩衝シ
ユウ酸溶液と接触させることからなる方法。 2 酢酸アンモニウム緩衝シユウ酸溶液がPHを2
〜10に保ために十分な酢酸アンモニウムで緩衝さ
れている、特許請求の範囲第1項記載の方法。 3 シユウ酸の濃度が0.0001M〜5.0Mである、
特許請求の範囲第1項記載の方法。 4 温度が約0℃〜100℃である、特許請求の範
囲第1項記載の方法。 5 担体が酸可溶性である、特許請求の範囲第1
項記載の方法。 6 触媒がまたアルミナまたはシリカーアルミナ
またはゼオライト上に担持されたCoまたはMoま
たはReあるいは白金属金属の少なくとも1種を
含む、特許請求の範囲第1項記載の方法。 7 汚染触媒を、無機酸化物を溶解することなく
金属汚染物質を抽出するために十分な時間、酢酸
アンモニウム緩衝シユウ酸溶液と接触させる、特
許請求の範囲第1項記載の方法。 8 酢酸アンモニウム緩衝シユウ酸溶液が水/非
水溶媒系中のシユウ酸の混合物である、特許請求
の範囲第1項記載の方法。
Claims: 1. A hydroconversion catalyst comprising group B or at least one metal from group B or group supported on a refractory inorganic oxide, or alumina or silica or silica alumina or zeolite or clay. A method for removing metal contaminants from a catalytic cracking catalyst comprising at least one catalyst, the method comprising contacting the contaminated catalyst with an ammonium acetate buffered oxalic acid solution. 2 Ammonium acetate buffered oxalic acid solution lowers the pH to 2
2. The method of claim 1, wherein the method is buffered with sufficient ammonium acetate to maintain a concentration of .about.10. 3 The concentration of oxalic acid is 0.0001M to 5.0M,
A method according to claim 1. 4. The method of claim 1, wherein the temperature is about 0<0>C to 100<0>C. 5 Claim 1, wherein the carrier is acid-soluble
The method described in section. 6. The method of claim 1, wherein the catalyst also comprises at least one of Co or Mo or Re or platinum metal supported on alumina or silica alumina or zeolite. 7. The method of claim 1, wherein the contaminated catalyst is contacted with the ammonium acetate buffered oxalic acid solution for a sufficient time to extract the metal contaminants without dissolving the inorganic oxides. 8. The method of claim 1, wherein the ammonium acetate buffered oxalic acid solution is a mixture of oxalic acid in an aqueous/non-aqueous solvent system.
JP19514383A 1982-10-18 1983-10-18 Removal of metal contaminant from catalyst used in buffer oxalic acid Granted JPS5992027A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US43473082A 1982-10-18 1982-10-18
US434730 1982-10-18

Publications (2)

Publication Number Publication Date
JPS5992027A JPS5992027A (en) 1984-05-28
JPH0424107B2 true JPH0424107B2 (en) 1992-04-24

Family

ID=23725431

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19514383A Granted JPS5992027A (en) 1982-10-18 1983-10-18 Removal of metal contaminant from catalyst used in buffer oxalic acid

Country Status (4)

Country Link
JP (1) JPS5992027A (en)
CA (1) CA1217468A (en)
DE (1) DE3337619C2 (en)
NL (1) NL191143C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0285715A1 (en) * 1987-04-09 1988-10-12 Mobil Oil Corporation Reactivitation of noble metal containing zeolite catalysts
US5141904A (en) * 1991-02-15 1992-08-25 Phillips Petroleum Company Reactivation of spent cracking catalysts
US5900383A (en) * 1996-01-02 1999-05-04 New Life Catalyst, Inc. Process for increasing the activity of zeolite containing particulate solids
US6753286B2 (en) * 2002-01-29 2004-06-22 Exxonmobil Research And Engineering Company Supported catalyst regeneration
CA3008612A1 (en) * 2018-06-18 2019-12-18 Nova Chemicals Corporation Removing and cleaning dehydrogenation catalysts

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2380731A (en) * 1941-12-09 1945-07-31 Socony Vacuum Oil Co Inc Restoration of catalysts
GB589796A (en) * 1945-04-06 1947-06-30 George Frederick Horsley Improvements in and relating to the activation of catalysts
US2704281A (en) * 1953-04-30 1955-03-15 Universal Oil Prod Co Purification of noble metal-metal oxide composite
US3213033A (en) * 1962-11-09 1965-10-19 Air Prod & Chem Method of removing metallic contaminants from particulate solid catalyst
US3536637A (en) * 1968-09-03 1970-10-27 Betz Laboratories Process for the rejuvenation of fouled ion-exchange materials
GB1245358A (en) * 1968-11-05 1971-09-08 Inst Francais Du Petrole Process for regenerating catalysts used for hydro-treating hydrocarbons
US3791989A (en) * 1971-03-12 1974-02-12 Chevron Res Catalyst rejuvenation with oxalic acid
US4089806A (en) * 1977-04-01 1978-05-16 Union Oil Company Of California Method for rejuvenating hydroprocessing catalysts

Also Published As

Publication number Publication date
DE3337619A1 (en) 1984-04-19
NL8303596A (en) 1984-05-16
CA1217468A (en) 1987-02-03
JPS5992027A (en) 1984-05-28
NL191143B (en) 1994-09-16
DE3337619C2 (en) 1994-06-16
NL191143C (en) 1995-02-16

Similar Documents

Publication Publication Date Title
US4522928A (en) Removal of metal comtaminants from catalysts using buffered oxalic acid
US4678764A (en) Reactivation of noble metal-zeolite catalysts
US3134732A (en) Reactivation of regenerated noble metal catalysts with gaseous halogens
US6740615B2 (en) Regeneration of used supported noble metal catalysts
KR950009711B1 (en) A process for regenerating a monofunctional large-pore zeolite catalyst howing high selectivity for paraffin dehydrocyclization
US4139433A (en) Hydrocracking process with aqueous ammonia rejuvenated zeolite catalyst comprising non-zeolitic noble metal
JPS583740B2 (en) iridium gun
US3117076A (en) Reactivation of platinum cataysts
US3943051A (en) Hydrocarbon conversion processes utilizing rejuvenated zeolite catalysts
US4467045A (en) Redispersion of Ir catalysts by low temperature reduction step
US3849293A (en) Hydrocracking process utilizing rejuvenated catalyst
US3835028A (en) Hydrocracking process with rejuvenated catalyst
US4190553A (en) Rejuvenation of damaged zeolite-supported metal catalysts
US3899441A (en) Rejuvenation of damaged zeolite-supported metal catalysts
JPH0424107B2 (en)
US4555495A (en) Reactivation of noble metal-containing zeolite catalyst materials
EP0306170B1 (en) Process for dispersing or redispersing a group viii noble metal species on a porous inorganic support
AU5201686A (en) Rejuvenation of a deactivated catalyst
CA2173724C (en) Sulfur removal
US4826792A (en) Method of noble metal-zeolite catalyst activation with Bronsted acid compound
JP3486756B2 (en) Method for removing arsenic in hydrocarbons by passing over presulfurized capture material
US4952543A (en) Process for dispersing or redispersing a Group VIII noble metal species on a porous inorganic support
EP1345693B1 (en) Regeneration method of heterogeneous catalysts and adsorbents
US7368409B2 (en) Regeneration method of heterogeneous catalysts and adsorbents
US2917466A (en) Platinum metal catalysts