JPH0340957A - Production of superconductor and its molded material - Google Patents

Production of superconductor and its molded material

Info

Publication number
JPH0340957A
JPH0340957A JP1176209A JP17620989A JPH0340957A JP H0340957 A JPH0340957 A JP H0340957A JP 1176209 A JP1176209 A JP 1176209A JP 17620989 A JP17620989 A JP 17620989A JP H0340957 A JPH0340957 A JP H0340957A
Authority
JP
Japan
Prior art keywords
oxide superconductor
superconductor
crystal grains
mixture
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1176209A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Nishikawa
西川 善之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Cable Industries Ltd
Original Assignee
Mitsubishi Cable Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries Ltd filed Critical Mitsubishi Cable Industries Ltd
Priority to JP1176209A priority Critical patent/JPH0340957A/en
Publication of JPH0340957A publication Critical patent/JPH0340957A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently produce the oxide superconductor having excellent characteristics by extrusion-molding a mixture of the flaky oxide superconductor crystal grains having a specified width-to-thickness ratio and an org. high molecular binder and sintering the molded product. CONSTITUTION:When a Bi-Pb-Sr-Ca-Cu-O-based superconductor, for example, is produced as the oxide superconductor, the powders of Bi2O3, PbO, SrCO3, CaCO3 and CuO as the raw material are mixed in a specified ratio, the mixture is calcined at 700-850 deg.C for about 12hr, the calcined material is crushed, the obtained powder is pelletized, and the pellets are sintered at 830-870 deg.C to obtain the pellets of Bi-Pb-Sr-Ca-Cu-O-based oxide superconductor. The pellets are recrushed to obtain flaky crystal grains having >=10 width-to-thickness ratio, and 50-100 pts.wt. of an org. high molecular binder such as PVA is added to 100 pts.wt. of the grains and mixed. The mixture is extrusion-molded into a rod, and the rod is sintered at 800-900 deg.C to produce the oxide superconductor having a high critical temp. and a high critical current density.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、酸化物超電導体含有物を押出成形し成形体を
焼結処理することからなる超電導体の製造方法及びその
押出成形用の成形材に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a superconductor, which comprises extruding a material containing an oxide superconductor and sintering the molded body, and a molding material for the extrusion molding. .

従来の技術 線材等の実用形態に加工された酸化物S電導体の提供が
重要な課題となっている。
BACKGROUND OF THE INVENTION Providing an oxide S conductor processed into a practical form such as a wire rod has become an important issue.

従来、超電導体の製造方法としては、金属パイプに酸化
物超電導体の粉末を充填し、この充填体を所望の形状に
塑性加工したのち焼結処理する方法、導体等の表面に酸
化物超電導体の蒸着層を形成する方法が提案されている
Conventionally, methods for producing superconductors include filling a metal pipe with oxide superconductor powder, plastically processing this filling into a desired shape, and then sintering it; A method of forming a vapor deposited layer has been proposed.

しかしながら、金属パイプを用いる方法には工程数が多
くて製造効率に劣る問題点があり、蒸着層を形成する方
法には高度な蒸着技術と設備を要して製造効率に劣るこ
とのほめ)、長尺体等の大型品を得難い問題点があった
However, the method using metal pipes has the problem of having a large number of steps and being inferior in manufacturing efficiency, and the method of forming a vapor deposition layer requires advanced vapor deposition technology and equipment, resulting in poor manufacturing efficiency). There was a problem in that it was difficult to obtain large products such as long objects.

発明が解決しようとする課題 本発明者は、かかる問題点を踏まえて押出成形方式によ
ることに想到し、その方式を達成すべく鋭意研究を重ね
た結果、酸化物超電導体含有の成形材を調製してこれを
所定形状に押出成形し、成形体を焼結処理する方法の開
発に成功した。しかし、この開発方法によれば前記した
問題点は克服できるものの、得られる超電導体が超電導
特性、就中、臨界電流密度に劣ることが判明した。
Problems to be Solved by the Invention In view of these problems, the present inventor came up with the idea of using an extrusion molding method, and as a result of intensive research to achieve that method, the inventor prepared a molded material containing an oxide superconductor. We succeeded in developing a method for extruding this into a predetermined shape and sintering the molded body. However, although this development method can overcome the above-mentioned problems, it has been found that the superconductor obtained is inferior in superconducting properties, particularly in critical current density.

本発明は、その超電導特性問題を解決し、実用たりうる
押出成形方式による超電導体の製造方法の開発を課題と
する。
The object of the present invention is to solve the problem of superconducting properties and to develop a method for manufacturing a superconductor using an extrusion molding method that can be put into practical use.

課題を解決するための手段 本発明は、特殊な結晶形態の酸化物超電導体を用いて前
記の課題を克服したものである。
Means for Solving the Problems The present invention overcomes the above problems by using an oxide superconductor with a special crystalline form.

すなわち本発明は、酸化物超電導体からなる輻/厚さ比
が10以上の平板状結晶粒子と、有機高分子からなるバ
インダを成分とする混合物を押出成形し、成形体を焼結
処理することを特徴とする超電導体の製造方法、及び 酸化物超電導体からなる幅/厚さ比が10以上の平板状
結晶粒子と、有機高分子からなるバインダを成分とする
混合物からなることを特徴とする押出成形用の成形材を
提供するものである。
That is, the present invention involves extrusion molding a mixture containing tabular crystal grains having a radius/thickness ratio of 10 or more made of an oxide superconductor and a binder made of an organic polymer, and sintering the molded body. A method for producing a superconductor, characterized by comprising a mixture comprising tabular crystal grains having a width/thickness ratio of 10 or more made of an oxide superconductor and a binder made of an organic polymer. The present invention provides a molding material for extrusion molding.

作用 酸化物超電導体の結晶粒子を有機高分子からなるバイン
ダで保持することにより、押出成形が可能な超電導体形
成用の成形材とすることができる。
By holding the crystal particles of the active oxide superconductor with a binder made of an organic polymer, a molding material for forming a superconductor that can be extruded can be obtained.

その際、酸化物超電導体として幅/厚さ比が10以上の
平板状結晶粒子を用いることにより、これを押出成形し
た場合にその酸化物超電導体粒子の幅方向を押出方向に
配向させることができ、焼結時に結晶粒がその配向方向
に優位に成長する。酸化物超電導体の平板状結晶におけ
る幅(長さ)方向は厚さ方向よりも電流が流れやすく、
その結果、長手方向く押出方向〉に電流が流れやすい超
電導体が形成される。
In this case, by using tabular crystal grains with a width/thickness ratio of 10 or more as the oxide superconductor, when extruded, the width direction of the oxide superconductor particles can be oriented in the extrusion direction. During sintering, crystal grains grow predominantly in the direction of their orientation. Current flows more easily in the width (length) direction of the tabular crystal of an oxide superconductor than in the thickness direction.
As a result, a superconductor is formed in which current flows easily in the longitudinal direction (extrusion direction).

発明の構成要素の例示 本発明において用いる酸化物超電導体については特に限
定はない6 YBa2 Cu30aやYt−bBabC
ubcの如きY系酸化物超電導体、Bat−dKtiB
 i O3の如きBa系酸化物超電導体、Nd2−ac
e@Cu04−fの如きNd系酸化物超電導体、B i
 2−tPbt Sr2 Ca2 Cu30hやBi2
 Sr2 Cat−IY、 CL1208−Jの如きB
i系酸化物超電導体、その他La系酸化物超電導体、T
I系酸化物超電導体、Pb系酸化物超電導体など、また
前記のY等の成分を他の希土類元素で置換したもの、な
いしBa等の成分を他のアルカリ土類金属で置換したも
の、あるいはO成分をFなどで置換したものなど、公知
物のいずれも用いることができる。なおかかる酸化物超
電導体は例えば、所定の組成となる配合割合で原料を共
沈法やゾルゲル法等の湿式混合法、ないしその他の適宜
な混合法で混合し、その混合物を仮焼処理ないし焼結処
理して超電導体とすることにより得ることができる。
Examples of Constituent Elements of the Invention There are no particular limitations on the oxide superconductor used in the present invention, such as 6 YBa2 Cu30a or Yt-bBabC.
Y-based oxide superconductor such as ubc, Bat-dKtiB
i Ba-based oxide superconductor such as O3, Nd2-ac
Nd-based oxide superconductor such as e@Cu04-f, B i
2-tPbt Sr2 Ca2 Cu30h or Bi2
Sr2 Cat-IY, B like CL1208-J
i-based oxide superconductor, other La-based oxide superconductor, T
I-based oxide superconductors, Pb-based oxide superconductors, etc., those in which components such as Y are replaced with other rare earth elements, or those in which components such as Ba are replaced with other alkaline earth metals, or Any known materials can be used, such as those in which the O component is replaced with F or the like. The oxide superconductor can be produced by, for example, mixing raw materials at a predetermined composition ratio using a wet mixing method such as a coprecipitation method or a sol-gel method, or any other suitable mixing method, and then calcining or sintering the mixture. It can be obtained by subjecting it to a crystallization treatment to form a superconductor.

用いる酸化物超電導体は、幅/厚さ比が10以上の平板
状結晶粒子であり、これは例えば前記した焼結処理体等
を粉砕することにより得ることができる。粒径は幅ない
し長さ方向に基づき100μm以下、就中50μm以下
が適当である。
The oxide superconductor used is a tabular crystal grain having a width/thickness ratio of 10 or more, which can be obtained, for example, by pulverizing the sintered body described above. The particle size is preferably 100 μm or less, especially 50 μm or less based on the width or length direction.

本発明の押出成形用の成形材は、酸化物超電導体の平板
状結晶粒子を有機高分子からなるバインダと混合するこ
とにより得ることができる。混合には、例えばロールや
加圧ニーダ等の適宜な混練機を用いてよい。混合に際し
ては、有機物からなる可塑剤、助剤、溶剤などの適宜な
調節剤を併用してよい。
The molding material for extrusion molding of the present invention can be obtained by mixing tabular crystal grains of an oxide superconductor with a binder made of an organic polymer. For mixing, an appropriate kneader such as a roll or a pressure kneader may be used. During mixing, appropriate regulators such as organic plasticizers, auxiliaries, and solvents may be used in combination.

用いる有機高分子は、酸化物超電導体の平板状結晶粒子
との混合物として押出成形に必要な流動性を付与しうる
ものであればよい。一般には、ポリビニルアルコール、
ポリエチレングリコール、ポリビニルブチラール、ポリ
メタクリル酸メチルの如き熱可塑性樹脂やゴム系高分子
などが用いられる。
The organic polymer used may be any organic polymer as long as it can provide the fluidity necessary for extrusion molding as a mixture with the tabular crystal grains of the oxide superconductor. Generally, polyvinyl alcohol,
Thermoplastic resins such as polyethylene glycol, polyvinyl butyral, and polymethyl methacrylate, rubber-based polymers, and the like are used.

また、必要に応じて用いる可塑剤としては例えば、ジブ
チルフタレート、ジエチルフタレート、ジオクチルフタ
レートの如きフタル酸エステル類、脂肪酸エステル類、
ポリエチレングリコール誘導体類、グリセリン、ポリア
ルキルグリコール類などが、助剤としては例えば、天然
魚油、ベンゼンスルホン酸、リン酸塩、グリセリントリ
オレートの如き脂肪酸類、合成界面活性剤、パラフィン
ワックス、ステアリン酸などが、溶剤としては例えば、
メタノール、エタノールの如きアルコール類、トルエン
、キシレン、ベンゼンの如き芳香族炭化水素類、トリク
ロロエチレン、ジクロロエチレン、メチルエチルケトン
、アセトンなどが用いられる。
In addition, examples of plasticizers used as necessary include phthalic acid esters such as dibutyl phthalate, diethyl phthalate, and dioctyl phthalate, fatty acid esters,
Polyethylene glycol derivatives, glycerin, polyalkyl glycols, etc., and auxiliary agents include natural fish oil, benzenesulfonic acid, phosphates, fatty acids such as glycerin triolate, synthetic surfactants, paraffin wax, stearic acid, etc. However, as a solvent, for example,
Alcohols such as methanol and ethanol, aromatic hydrocarbons such as toluene, xylene and benzene, trichloroethylene, dichloroethylene, methyl ethyl ketone, acetone and the like are used.

有機高分子からなるバインダの使用量は、酸化物超電導
体の平板状結晶粒子100重量部あたり、5〜100重
量部が適当である。その使用量が5重量部未満では保形
力に乏しくて成形体の取り扱い時に壊れやすいものとな
るし、100重量部を超えると緻密な超電導体が得難く
なる。
The appropriate amount of the organic polymer binder used is 5 to 100 parts by weight per 100 parts by weight of the tabular crystal grains of the oxide superconductor. If the amount used is less than 5 parts by weight, the molded product will have poor shape retention and will be easily broken when handled, while if it exceeds 100 parts by weight, it will be difficult to obtain a dense superconductor.

本発明の製造方法は、酸化物超電導体の平板状結晶粒子
を含有する前記成形材を押出成形し、成形体を焼結処理
して超電導体とするものである。
In the manufacturing method of the present invention, the molded material containing tabular crystal grains of an oxide superconductor is extruded, and the molded product is sintered to obtain a superconductor.

押出成形機としてはスクリュー式やラム式等の適宜なも
のを用いてよい。成形形態は、例えば紐状やテープ状な
ど任意である。焼結温度は、酸化物超電導体の種類等に
応じ適宜に決定してよい。−般には700〜1200℃
である。成形体の焼結処理に際しては、予め脱脂処理し
て有機成分を除去してもよい。また例えば成形体を支持
体に巻回するなど、適宜な二次加工を施してもよい。焼
結雰囲気は酸化物超電導体に応じ決定される。焼結時間
は通例、200時間以下、就中2〜150時間であるが
これに限定されない。焼結処理により酸化物超電導体の
結晶粒子が一体化し、目的とする超電導体が形成される
As the extrusion molding machine, an appropriate one such as a screw type or a ram type may be used. The molding form may be arbitrary, such as string-like or tape-like. The sintering temperature may be determined as appropriate depending on the type of oxide superconductor, etc. -Generally 700-1200℃
It is. When sintering the molded body, it may be degreased in advance to remove organic components. Further, appropriate secondary processing may be performed, such as winding the molded body around a support. The sintering atmosphere is determined depending on the oxide superconductor. The sintering time is typically 200 hours or less, especially from 2 to 150 hours, but is not limited thereto. The sintering process integrates the crystal grains of the oxide superconductor to form the desired superconductor.

発明の効果 本発明によれば、輻/厚さ比が10以上の平板状結晶粒
子からなる酸化物超電導体を用いたので、押出成形方式
により臨界電流密度等の超電導特性に優れる超電導体を
効率的に製造することができる。また大型の超電導体の
製造も容易である。
Effects of the Invention According to the present invention, since an oxide superconductor consisting of tabular crystal grains with a radius/thickness ratio of 10 or more is used, a superconductor having excellent superconducting properties such as critical current density can be efficiently produced using an extrusion molding method. It can be manufactured as follows. It is also easy to manufacture large-sized superconductors.

実施例 Bi2O3、PbO5SrCO3、CaCO3及びCu
Oの粉末の所定量を混合し、750〜850℃で12時
間仮焼し、得られた仮焼体を粉砕してそれを2−×20
−のペレットに成形し、これを830〜870℃で50
時間焼結処理して、B12−t Pbr 5r2Ca2
Cu 30 h (t −0,6)からなる超電導体の
ペレットを得た。
Examples Bi2O3, PbO5SrCO3, CaCO3 and Cu
A predetermined amount of O powder is mixed and calcined at 750 to 850°C for 12 hours.
- molded into pellets and heated at 830 to 870°C for 50
After time sintering treatment, B12-t Pbr 5r2Ca2
A superconductor pellet consisting of Cu 30 h (t −0,6) was obtained.

次に、そのペレットを粉砕して幅/厚さ比が(0〜50
で粒径が0.1−10μ麿の平板状結晶粒子を得、その
100重量部をポリビニルアルコール50重量部、ジブ
チルフタレート5重量部、トルエン20重量部と共に加
圧ニーダで混合し、成形材を得た・ついで、前記の成形
材をL/Dが12の押出機に供給し、80〜180℃の
種々の設定温度で押出成形して外形が1.omの紐体を
得、その紐体を800〜900℃で焼結処理して一連の
棒体からなる超電導体を得た。なお焼結時間は12〜1
00時間の種々の時間とした。
The pellets are then crushed to a width/thickness ratio of (0 to 50).
To obtain tabular crystal grains with a particle size of 0.1-10 μm, 100 parts by weight of these were mixed with 50 parts by weight of polyvinyl alcohol, 5 parts by weight of dibutyl phthalate, and 20 parts by weight of toluene in a pressure kneader to form a molding material. The obtained molded material was then fed to an extruder with an L/D of 12, and extruded at various temperature settings from 80 to 180°C to obtain an outer shape of 1. A superconductor consisting of a series of rods was obtained by sintering the string at 800 to 900°C. The sintering time is 12 to 1
00 hours.

得られた各超電導体の長手方向における臨界温度は、1
00〜105にであり、臨界電流密度は、3000〜1
0000 A / ctj (77,3K )であった
The critical temperature in the longitudinal direction of each superconductor obtained is 1
00 to 105, and the critical current density is 3000 to 1
0000 A/ctj (77,3K).

なお、臨界温度は0 、1 A / cjの電流密度下
、液体ヘリウムで冷却しなから4端子法により電気抵抗
の塩度による変化を測定し、電圧端子間の発生電圧がO
となったときの温度である。
The critical temperature is determined by measuring the change in electrical resistance due to salinity using the four-terminal method under a current density of 0, 1 A/cj without cooling with liquid helium.
This is the temperature when .

また、臨界電流密度はパワーリードと共に液体窒素で冷
却しながら徐々に電流値をあげて4端子法により電圧端
子間の電圧の印加電流による変化を測定し、x−yレコ
ーダーにおいて1μV / cmの電圧が出現したとき
の電流値を超電導体の断面積で除した値である。
In addition, the critical current density was determined by gradually increasing the current value while cooling the power lead with liquid nitrogen, measuring the change in voltage between the voltage terminals due to the applied current using the four-terminal method, and measuring the voltage at 1 μV / cm with an x-y recorder. This is the value obtained by dividing the current value when the appears by the cross-sectional area of the superconductor.

比較例 幅/厚さ比が10未満の結晶粒子からなるB i 2−
tPbt Sr2 Caz CL130h  (t =
0.6)を用いたほかは実施例に準じて成形材を調製し
、これを用いて押出成形体、及び焼結処理体を得た。
Comparative Example B i 2- consisting of crystal grains with a width/thickness ratio of less than 10
tPbt Sr2 Caz CL130h (t =
A molding material was prepared according to the example except that 0.6) was used, and an extrusion molded product and a sintered product were obtained using this material.

得られた各超電導体の長手方向における臨界温度は10
0〜105にで実施例の場合とほぼ同じであったが1、
臨界電流密度はlO〜50 A /cd (77,3K
 )と低かった。
The critical temperature in the longitudinal direction of each superconductor obtained was 10
0 to 105, which was almost the same as in the example, but 1,
The critical current density is lO~50 A/cd (77,3K
) was low.

Claims (2)

【特許請求の範囲】[Claims] 1.酸化物超電導体からなる幅/厚さ比が10以上の平
板状結晶粒子と、有機高分子からなるバインダを成分と
する混合物を押出成形し、成形体を焼結処理することを
特徴とする超電導体の製造方法。
1. A superconductor characterized by extrusion molding a mixture of tabular crystal grains having a width/thickness ratio of 10 or more made of an oxide superconductor and a binder made of an organic polymer, and then sintering the molded body. How the body is manufactured.
2.酸化物超電導体からなる幅/厚さ比が10以上の平
板状結晶粒子と、有機高分子からなるバインダを成分と
する混合物からなることを特徴とする押出成形用の成形
材。
2. 1. A molding material for extrusion molding, comprising a mixture comprising tabular crystal grains having a width/thickness ratio of 10 or more made of an oxide superconductor and a binder made of an organic polymer.
JP1176209A 1989-07-07 1989-07-07 Production of superconductor and its molded material Pending JPH0340957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1176209A JPH0340957A (en) 1989-07-07 1989-07-07 Production of superconductor and its molded material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1176209A JPH0340957A (en) 1989-07-07 1989-07-07 Production of superconductor and its molded material

Publications (1)

Publication Number Publication Date
JPH0340957A true JPH0340957A (en) 1991-02-21

Family

ID=16009531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1176209A Pending JPH0340957A (en) 1989-07-07 1989-07-07 Production of superconductor and its molded material

Country Status (1)

Country Link
JP (1) JPH0340957A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256564A (en) * 1987-04-14 1988-10-24 Kanegafuchi Chem Ind Co Ltd Superconductive ceramic of scalelike oxide and its production

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63256564A (en) * 1987-04-14 1988-10-24 Kanegafuchi Chem Ind Co Ltd Superconductive ceramic of scalelike oxide and its production

Similar Documents

Publication Publication Date Title
EP0303249B1 (en) Method of manufacturing oxide superconductor, and method of manufacturing composite oxide powder which is the precursor of the oxide superconductor
CN1173419C (en) Shaped body consisting of textured superconductor material and method for producing same
JP3089294B2 (en) Manufacturing method of superconducting tape material
JPH04292819A (en) Manufacture of oxide superconductive wire
JPH0340957A (en) Production of superconductor and its molded material
JPH0251469A (en) Production of superconductive article
JPH0360455A (en) Production of superconductor
JPH0193465A (en) Method and composition for forming superconductive ceramic and superconductive products
JP2678619B2 (en) Oxide superconducting wire and its manufacturing method
JP3160900B2 (en) Manufacturing method of superconducting material
JPH0340958A (en) Production of superconductor
Chien Polymer precursor synthesis of high T c superconductors
JPH0498715A (en) Manufacture of oxide superconducting wire
JPS63277554A (en) Oxide superconductive ceramic linear sintered material and production thereof
JPH01309503A (en) High performance antenna
JP2978538B2 (en) Superconducting material with high density crystal structure
JP2590370B2 (en) Superconducting material and manufacturing method thereof
Sastry et al. Fabrication of (Hg, Re)-Ba-Ca-Cu-O (1223) single phase fibers for current leads
JPH0692717A (en) Production of bi based oxiee superconductor
JP2556545B2 (en) Method for manufacturing oxide superconducting wire
JPH0380145A (en) Production of oxide superconductor
JPH0362906A (en) Manufacture of superconducting coil and superconductor forming material
JPH01126257A (en) Method for molding high-temperature superconductive ceramics
Mathur et al. Microstructure and superconductivity in Bi (Pb) SrCaCuO oxide ceramic
JPH01274320A (en) Manufacture of ceramics superconductive wire