JPH0340924B2 - - Google Patents

Info

Publication number
JPH0340924B2
JPH0340924B2 JP58005871A JP587183A JPH0340924B2 JP H0340924 B2 JPH0340924 B2 JP H0340924B2 JP 58005871 A JP58005871 A JP 58005871A JP 587183 A JP587183 A JP 587183A JP H0340924 B2 JPH0340924 B2 JP H0340924B2
Authority
JP
Japan
Prior art keywords
superconducting
superconducting coil
power supply
coil
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58005871A
Other languages
Japanese (ja)
Other versions
JPS59132108A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP58005871A priority Critical patent/JPS59132108A/en
Publication of JPS59132108A publication Critical patent/JPS59132108A/en
Publication of JPH0340924B2 publication Critical patent/JPH0340924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/02Quenching; Protection arrangements during quenching

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は超電導コイルの電源装置に関するもの
であり、特に相互インダクタンスを有する2個以
上の超電導コイル群とその電源装置群から成るシ
ステムに関するものである。 〔発明の技術的背景とその問題点〕 超電導コイルは、ある種の金属、合金(例えば
NbTi、Nb3Sn等)が極低温に於て電気抵抗零に
なる現象を利用して、低損失で高磁界を得、核融
合装置、加速器、エネルギー貯蔵装置等に応用し
ようとするものである。近年、高性能超電導線の
開発、超電導コイル巻線技術の進歩等超電導現
象・技術の研究開発はめざましい進歩をとげ、大
型、高磁界、高エネルギーの超電導コイルが製作
されるようになつた。超電導コイルに流れる電流
をI、自己インダクタンスをLとするその蓄積エ
ネルギーは1/2LI2となる。超電導コイルが運転中
に何らかの原因で、常電導転移(クエンチ)を起
こすと、このエネルギーはコイル内部でジュール
熱となり、コイルを破壊してしまう。 これを避ける為、コイルと電源との間にエネル
ギー吸収用の保護抵抗を挿入するのが一般的であ
る。第1図aにこの基本的な回路を示す。超電導
コイル1を励磁するためには、開閉器3(SW
2)を開いておき、開閉器4(SW1)を閉じ、
直流電源5(E)により電流Iを)流す。 超電導コイル1がクエンチした場合、開閉器3
を閉じ、開閉器4を開いて電源5を切り離し、超
電導コイル1と保護抵抗2とから成るL−R閉回
路にて電流を減衰させる。このときクエンチした
超電導コイル1の抵抗が保護抵抗2に比べて充分
小さいとすると、超電導コイルの電流Iは第1図
bに示す如く指数関係 I=IOe-R/L t ……(1) で減衰する。(但し、IOは開閉器4を開いたとき
超電導コイル1に流れていた電流値を示す。又R
は保護抵抗2の抵抗値、Lは超電導コイル1の自
己インダクタンスである。)(1)式から明らかなよ
うに、クエンチ時超電導コイル1の電流をできる
だけ早く減衰させる為には、保護抵抗2の値Rが
大きい方が良く、(減衰時定数τ=L/R)超電
導線の許容温度TFを越えないよう、すみやかに
電流Iを減衰させる為に必要な最小抵抗は以下の
条件より求められる。 ∫γI2dt∫TF TOmcdT ……(2) 但し、 γ:超電導線(含安定化材)の単位長さ当りの抵
抗値 m:超電導線(含安定化材)の単位当りの重さ c:超電導線(含安定化材)の比熱、 TF:超電導線(含安定化材)の許容温度 (例えば100k) TO:超電導線(含安定化材)の初期温度 (例えば4.2k) (2)式に(1)式を代入して整理し直すと(3)式を得
る。 R1/2LI2 O/∫TF TOmc/rdT ……(3) 一方、超電導コイル1の端子間に加わる電圧E
があまり高いと超電導コイル1は絶縁破壊してし
まうのでRには上限値が存在する。クエンチ発生
時前述の如く開閉器2を閉じ、開閉器1を開いた
場合、超電導コイル1の端子間に発生する電圧E
は(1)式よりE=RI=RIOe-R/L tとなる。したがつ
てEの最大値RIOが超電導コイル1の絶縁耐力EO
(例えば1000V)より小さいことが必要であり、
この条件よりRの上限値は(4)式で与えられる。 EO/IOR ……(4) 従来の超電導コイルの電源装置では保護抵抗は
前記(3)式、(4)式を満たす範囲でどちらかと言う
と、電流を速く減衰させる為に(4)式を満たす範囲
の上限値を選定していた。 次に、第2図aに示すように2個の超電導コイ
ルL1,L2が相互インダクタンスMで電磁的に
結合している場合を考える。超電導コイルL1,
L2に励磁電流I10、I20が流れている状態で、超
電導コイルL1がクエンチし、SW12を閉じ、
SW11を開放した場合、{現象を理解しやすく
する為超電コイルL2側の電源E2が無制御(バ
イパスペア運転相当)の場合を考えると、}超電
導コイルL1の電流は I1=I10e-t/〓 ……(5) 但し、τ=L1L2−M2/L2R で減衰し、超電導コイルL2の電流は I2I20+M/L2I10(1−e-t/〓) ……(6) 但し、τ=L1L2−M2/L2R で増加する。(第2図b参照)即ち超電導コイル
L2の電流I2は最大 I20+M/L2I10 ……(7) まで増加してしまい、(一例としてI10=I20、L1
L2、M=k√1 2k=0.5の場合を考えるとI20
M/L2I10=1.5I20、150%過電流となる。)クエンチ を起こしていない超電導コイルL2までクエンチ
してしまう可能性が極めて高かつた。又、超電導
コイルL2が引き続いてクエンチした場合の保護
も前述の場合と同様にSW22を閉じ、SW21
を開放し前述(3)式、(4)式の方法で決定した保護抵
抗R2でエネルギーを消費し保護していた。つま
り、従来のシステムは超電導コイル1個からなる
単純なシステムを単に電磁的に結合させた制御保
護方式にすぎず、1個の超電導コイルがクエンチ
すると他のクエンチしていない超電導コイルまで
クエンチしてしまい省エネルギーの観点からも極
めて不経済であつた。 〔発明の目的〕 本発明は電磁的に結合した複数個の超電導コイ
ルから成るシステムに於いて、ある超電導コイル
がクエンチしたとき、その超電導コイルの電流を
速やかに減衰させるとともに他のクエンチしてい
ない超電導コイル群をクエンチさせないようにし
た超電導コイル用電源装置を得ることを目的とす
る。 〔発明の実施例〕 以下本発明の原理を図面を参照して説明する。
以下の説明に於ては簡単の為超電導コイルが2個
の場合を考える。 第2図aに於て、超電導コイルL1がクエンチ
し、SW12閉、SW11開としたときの回路方
程式は(7)式、(8)式のようになる。 L1I〓1+MI〓2+R1I1=0 ……(7) L2I〓2+MI〓1=E2 ……(8) 電源E2の制御により超電導コイルL2の電流
を変化させないように制御する(つまりI〓2=0と
なるよう制御する。)と、 (7)式より (8)式より つまり電源E2
[Technical Field of the Invention] The present invention relates to a power supply device for superconducting coils, and more particularly to a system comprising two or more superconducting coil groups having mutual inductance and their power supply group. [Technical background of the invention and its problems] Superconducting coils are made of certain metals or alloys (e.g.
By utilizing the phenomenon that electrical resistance of NbTi, Nb 3 Sn, etc.) becomes zero at extremely low temperatures, it is possible to obtain a high magnetic field with low loss and apply it to nuclear fusion devices, accelerators, energy storage devices, etc. . In recent years, research and development of superconducting phenomena and technologies, such as the development of high-performance superconducting wires and advances in superconducting coil winding technology, have made remarkable progress, and large-sized, high-magnetic-field, high-energy superconducting coils have come to be manufactured. The stored energy is 1/2LI 2 , where I is the current flowing through the superconducting coil and L is the self-inductance. If a superconducting coil undergoes a normal conduction transition (quench) for some reason during operation, this energy becomes Joule heat inside the coil, destroying the coil. To avoid this, it is common to insert a protective resistor for energy absorption between the coil and the power source. Figure 1a shows this basic circuit. In order to excite the superconducting coil 1, a switch 3 (SW
2) and close switch 4 (SW1).
A current I) is caused to flow by the DC power supply 5 (E). When superconducting coil 1 quenches, switch 3
is closed, the switch 4 is opened to disconnect the power source 5, and the current is attenuated in the L-R closed circuit consisting of the superconducting coil 1 and the protective resistor 2. Assuming that the resistance of the quenched superconducting coil 1 is sufficiently smaller than the protective resistor 2, the current I of the superconducting coil has an exponential relationship as shown in Figure 1b: I=I O e -R/L t ...(1 ) attenuates. (However, I O indicates the current value flowing through the superconducting coil 1 when the switch 4 was opened. Also, R
is the resistance value of the protective resistor 2, and L is the self-inductance of the superconducting coil 1. ) As is clear from equation (1), in order to attenuate the current in superconducting coil 1 as quickly as possible during quenching, it is better to have a larger value R of protective resistor 2, and (attenuation time constant τ = L/R) superconducting The minimum resistance required to quickly attenuate the current I without exceeding the wire's permissible temperature T F is determined from the following conditions. ∫γI 2 dt∫ TF TO mcdT ...(2) However, γ: Resistance value per unit length of superconducting wire (including stabilizing material) m: Weight per unit of superconducting wire (including stabilizing material) c : Specific heat of superconducting wire (including stabilizing material), T F : Allowable temperature of superconducting wire (including stabilizing material) (e.g. 100k) TO : Initial temperature of superconducting wire (including stabilizing material) (e.g. 4.2k) ( Substituting equation (1) into equation (2) and rearranging it, we obtain equation (3). R1/2LI 2 O /∫ TF TO mc/rdT ...(3) On the other hand, the voltage E applied between the terminals of superconducting coil 1
If R is too high, the superconducting coil 1 will suffer dielectric breakdown, so there is an upper limit to R. When a quench occurs, when the switch 2 is closed and the switch 1 is opened as described above, the voltage E generated between the terminals of the superconducting coil 1
From equation (1), E=RI=RI O e -R/L t . Therefore, the maximum value of E RI O is the dielectric strength E O of superconducting coil 1
(e.g. 1000V),
Based on this condition, the upper limit value of R is given by equation (4). E O /I O R ...(4) In the conventional superconducting coil power supply device, the protective resistor is set within the range that satisfies the above equations (3) and (4), in order to attenuate the current quickly. ) was selected as the upper limit of the range that satisfied the formula. Next, consider a case where two superconducting coils L1 and L2 are electromagnetically coupled through mutual inductance M, as shown in FIG. 2a. superconducting coil L1,
With excitation currents I 10 and I 20 flowing through L2, superconducting coil L1 is quenched, SW12 is closed,
When SW11 is opened, {to make it easier to understand the phenomenon, consider the case where the power supply E2 on the superconducting coil L2 side is uncontrolled (equivalent to bypass pair operation)} The current in the superconducting coil L1 is I 1 = I 10 e -t/ 〓 ……(5) However, it is attenuated by τ=L 1 L 2 −M 2 /L 2 R, and the current in superconducting coil L2 is I 2 I 20 +M/L 2 I 10 (1−e -t / 〓) ……(6) However, it increases as τ=L 1 L 2 −M 2 /L 2 R. (See Figure 2b) That is, the current I 2 of the superconducting coil L2 increases to a maximum of I 20 +M/L 2 I 10 (7) (for example, I 10 = I 20 , L 1 =
L 2 , M=k√ 1 2 Considering the case of k=0.5, I 20 +
M/L 2 I 10 = 1.5I 20 , resulting in 150% overcurrent. ) There was an extremely high possibility that superconducting coil L2, which was not quenched, would also be quenched. In addition, for protection when the superconducting coil L2 is subsequently quenched, SW22 is closed and SW21 is closed as in the case described above.
was opened and energy was consumed and protected by the protective resistance R 2 determined by the methods of equations (3) and (4) above. In other words, the conventional system is simply a control and protection method that electromagnetically couples a simple system consisting of one superconducting coil, and when one superconducting coil quenches, other unquenched superconducting coils are also quenched. Moreover, it was extremely uneconomical from the point of view of energy conservation. [Object of the Invention] The present invention provides a system comprising a plurality of electromagnetically coupled superconducting coils, in which when one superconducting coil is quenched, the current in that superconducting coil is quickly attenuated and the current in the other superconducting coils is not quenched. An object of the present invention is to obtain a power supply device for superconducting coils that does not quench a group of superconducting coils. [Embodiments of the Invention] The principles of the present invention will be explained below with reference to the drawings.
In the following explanation, for simplicity, a case will be considered in which there are two superconducting coils. In FIG. 2a, when the superconducting coil L1 is quenched, SW12 is closed, and SW11 is open, the circuit equations are as shown in equations (7) and (8). L 1 I〓 1 +MI〓 2 +R 1 I 1 =0 ...(7) L 2 I〓 2 +MI〓 1 =E 2 ...(8) The current in superconducting coil L2 is not changed by controlling the power source E2 . (In other words, control so that I〓 2 = 0.) From equation (7), we get From equation (8) That is, the power supply E 2

【式】のよ うに制御すれば超電導コイルL2の電流は変化し
ないことになる。 従来のシステムでは電源E1、E2の出力電圧は
コイル励磁時間Tと励磁電流、コイル自己インダ
クタンスからE1L1I10/T、E2L2I20/T(例えばL1 =L2=10H、I10=I20=10KA、T=60分の場合
E1=E2=10H×10×103A/60×60S≒28V)と保護
抵抗とは無関係に決めていたが、本発明は電源
E2のインバータ電圧と保護抵抗を関係づけ〔E2
INV=−MR1I10/L1となるように設計し、(例えばL1 =10H、M=5H、R1=20mΩ、I10=10KAのと
き〔E2INV=−100Vとなる。) 超電導コイルL1クエンチ時に電源E2を(10)式
の如く制御することにより超電導コイルL2の電
流変化を零とし、クエンチの波及伝播を防止する
ことを可能ならしめる超電導コイルの電源装置を
提供するものである。 以上の説明では、超電導コイルL1がクエンチ
した場合を考えたが、逆に超電導コイルL2がク
エンチした場合も含めて考えると、電磁的に結合
された2個の超電導コイルとその励磁電源から構
成されるシステムに於て、保護抵抗の抵抗値、励
磁電源の定格インバータ電圧を以下の関係式を満
足するよう決定することにより1個の超電導コイ
ルがクエンチした場合、そのコイル電流はすみや
かに減衰させ、他の健全な超電導コイルは定電流
制御し、クエンチの波及伝播を防止し、かつ省エ
ネルギー効果をもたせることを特徴とする超電コ
イルの電源装置を提供出来る。 (9)式から明らかな様に保護抵抗R1、R2の値は
直流電源E1,E2のインバータ電圧と比例関係
にあるので、電源装置を合理的で安価にする為に
は保護抵抗R1,R2は(9)式を満たす範囲で下限
値を選定することが望ましい。 次に、以上の関係を電磁的に結合された複数個
の超電導コイルの場合に拡張適用する場合を考え
る。電磁的に結合されたn個の超電導コイル群に
於てi番目の超電コイルがクエンチし、このコイ
ルを前述の方法に従つて保護抵抗Riにより保護し
た場合の回路方程式は以下のようになる。 ここでi番目の超電導コイル以外の超電導コイ
ルの電流を定電流制御したとすると、I〓k=0、k
=1〜n、k≠iであるから(10)式は LiI〓i+RiIi=0 MkiI〓i=Ek ……(11) となる。したがつて(11)式を解いて(12)式を
得る。 つまり、i番目のコイルがクエンチし、保護抵
抗Riで電流を減衰させたときk番目(k=1〜
n、k≠i)コイルの電源装置のインバータ電圧
は最大〔Ek〕INV=−MkiRiIip/Li出力可能なように 設計されていれば、k番目のコイルは定電流制御
可能となる。ここでi=1〜n、i≠kのいずれ
かのコイルがクエンチした場合でもk番目のコイ
ルを定電流制御可能ならしめるためには(13)式
が成立すればよい。 〔EkINV=−Max〔Mk1R1I10/L1、Mk2R2I20/L2
、…、MkoRoIop/Lo〕……(13) 但し、記号Max〔x1、x2、…、xo〕はx1、x2
…xnのうち最大値を示す。例えばx1x2
xoのときMax〔x1、x2、…xo〕=xoとなる。 さらに保護抵抗の制約条件を加えて、k番目の
コイルの電源装置の保護抵抗の抵抗値Rk、直流
電源の定格インバータ電圧〔EkINVを(14)式を
満足するように決定することにより、n個の超電
導コイルのいづれがクエンチしてもk番目の超電
導コイルは定電流制御可能となりクエンチの波
及・伝播を防止し、省エネルギー効果大の超電導
コイルの電源装置を提供出来る。 〔発明の効果〕 上記(14)式から明らかなように(14a)式を
満たす範囲で最小の抵抗値を選択すれば(14b)
式から決まる直流電流の定格インバータ電圧が低
くなり、合理的で安価な超電導コイル用電源装置
を提供出来る。
If it is controlled as shown in [Formula], the current in superconducting coil L 2 will not change. In the conventional system, the output voltage of the power supplies E 1 and E 2 is calculated from the coil excitation time T, excitation current, and coil self-inductance as E 1 L 1 I 10 /T, E 2 L 2 I 20 /T (for example, L1 = L2 = 10H). , I 10 = I 20 = 10KA, T = 60 minutes
E 1 = E 2 = 10 H × 10 × 10 3 A / 60 × 60 S ≒ 28 V) was determined regardless of the protective resistance, but the present invention
Relationship between E 2 inverter voltage and protective resistance [E 2 ]
It is designed so that INV = -MR 1 I 10 /L 1 (for example, when L 1 = 10H, M = 5H, R 1 = 20 mΩ, and I 10 = 10KA, [E 2 ] INV = -100V. ) To provide a power supply device for a superconducting coil, which makes it possible to make the current change in the superconducting coil L2 zero by controlling the power source E2 as shown in equation (10) when the superconducting coil L1 is quenched, thereby preventing the spread of quench. It is something. In the above explanation, we considered the case where the superconducting coil L1 is quenched, but if we also consider the case where the superconducting coil L2 is quenched, the superconducting coil consists of two electromagnetically coupled superconducting coils and their excitation power source. In such a system, when one superconducting coil quenches, the coil current is immediately attenuated by determining the resistance value of the protective resistor and the rated inverter voltage of the excitation power source to satisfy the following relational expression. It is possible to provide a power supply device for a superconducting coil, which is characterized in that other healthy superconducting coils are controlled at a constant current to prevent the spread of quench, and have an energy saving effect. As is clear from equation (9), the values of the protective resistors R 1 and R 2 are proportional to the inverter voltage of the DC power supplies E1 and E2. It is desirable to select a lower limit value for R2 within a range that satisfies equation (9). Next, consider extending the above relationship to the case of a plurality of electromagnetically coupled superconducting coils. When the i-th superconducting coil in a group of n superconducting coils electromagnetically coupled is quenched and this coil is protected by the protective resistor R i according to the method described above, the circuit equation is as follows: Become. Here, if we assume that the current of the superconducting coils other than the i-th superconducting coil is controlled at a constant current, I〓k=0, k
=1 to n, and k≠i, so equation (10) becomes L i I〓 i +R i I i =0 MkiI〓 i =Ek (11). Therefore, equation (11) is solved to obtain equation (12). In other words, when the i-th coil is quenched and the current is attenuated by the protective resistor R i , the k-th (k = 1 to
n, k≠i) The inverter voltage of the coil power supply is the maximum [Ek] INV = -MkiR i I ip /L i If it is designed to be able to output, the kth coil can be controlled with constant current. . Here, even if any of the coils with i=1 to n and i≠k is quenched, equation (13) should hold in order to enable constant current control of the k-th coil. [E k ] INV = −Max [M k1 R 1 I 10 /L 1 , M k2 R 2 I 20 /L 2
,..., M ko R o I op / L o ]... (13) However, the symbol Max [x 1 , x 2 ,..., x o ] is x 1 , x 2 ,
...x indicates the maximum value among n . For example x 1 x 2 ...
When x o , Max [x 1 , x 2 , ... x o ] = x o . Furthermore, by adding the protective resistance constraints, determine the resistance value R k of the protective resistor of the power supply device of the k-th coil and the rated inverter voltage [E k ] INV of the DC power supply so as to satisfy equation (14). Therefore, even if any of the n superconducting coils is quenched, the k-th superconducting coil can be controlled at a constant current, thereby preventing the spread and propagation of the quench, and providing a superconducting coil power supply device with a large energy-saving effect. [Effect of the invention] As is clear from the above equation (14), if the minimum resistance value is selected within the range that satisfies equation (14a), (14b)
The rated inverter voltage of the direct current determined by the formula is lowered, and a rational and inexpensive power supply device for superconducting coils can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a、第2図aは本発明の背景、原理を示
す回路図であり、第1図b、第2図bは時刻t=
t0でクエンチが発生し、保護動作を行なつた場合
の電流波形を示す。 1……超電導コイル、2……保護抵抗、3……
開閉器、4……開閉器、5……直流電源。
1a and 2a are circuit diagrams showing the background and principle of the present invention, and FIGS. 1b and 2b are circuit diagrams showing the time t=
The current waveform is shown when a quench occurs at t 0 and a protective operation is performed. 1...Superconducting coil, 2...Protection resistor, 3...
Switch, 4...Switch, 5...DC power supply.

Claims (1)

【特許請求の範囲】 1 電磁的に結合された複数個の超電導コイル
と、その各々の超電導コイルに蓄積エネルギー吸
収用の保護抵抗を備えてなる超電導コイル用電源
装置において、前記複数個の超電導コイルの自己
インダクタンスをL1、L2、…Lo、k番目とi番
目の超電導コイルの相互インダクタンスをMki、
励磁電流値をI10、I20、…、Ino各保護抵抗値を
R1、R2、…、Ro、直流電源の定格逆変換電圧を
〔E1INV、…〔EoINV又、前記超電導コイルの線材
の単位長さ当りの抵抗値をr、重量をm、比熱を
c、超電導線の常温をTp、許容上限温度をTF
超電導コイルの絶縁耐力をEkoとしたときこたら
の値が下記関係式を満足するようにしたことを特
徴とする超電導コイル用電源装置。 k=1、2、…n 1/2LkIkp 2/∫TF TOmc/rdTRkEkp/Ikp 〔EkINV=− maxi≠k 〔MkiRiIip/Li〕 2 前記関係式を満足する超電導システムに於
て、ある1個の超電導コイルが常電導転移を生じ
たとき、当該超電導コイルの電流を保護抵抗によ
り減衰させるとともに他の健全群超電導コイルの
電流値は一定となるように制御することを特徴と
する特許請求の範囲第1項記載の超電導コイル用
電源装置。
[Scope of Claims] 1. A superconducting coil power supply device comprising a plurality of electromagnetically coupled superconducting coils and a protective resistor for absorbing stored energy in each superconducting coil, wherein the plurality of superconducting coils are provided with a protective resistor for absorbing stored energy. Let the self - inductances of
The excitation current value is I 10 , I 20 , ..., Ino each protection resistance value is
R 1 , R 2 , ..., R o , the rated inverse conversion voltage of the DC power supply [E 1 ] INV , ... [E o ] INV Also, the resistance value per unit length of the wire of the superconducting coil is r, the weight m, specific heat c, normal temperature of superconducting wire T p , allowable upper limit temperature T F ,
A power supply device for a superconducting coil, characterized in that, when the dielectric strength of the superconducting coil is Eko, the value of Eko satisfies the following relational expression. k=1, 2,...n 1/2L k I kp 2 /∫ TF TO mc/rdTR k E kp /I kp [E k ] INV = - max i≠k [M ki R i I ip /L i ] 2. In a superconducting system that satisfies the above relational expression, when one superconducting coil undergoes normal conduction transition, the current of the superconducting coil is attenuated by a protective resistor, and the current values of other healthy superconducting coils are A power supply device for a superconducting coil according to claim 1, characterized in that the power supply device is controlled to be constant.
JP58005871A 1983-01-19 1983-01-19 Power supply device for superconductive coil Granted JPS59132108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58005871A JPS59132108A (en) 1983-01-19 1983-01-19 Power supply device for superconductive coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58005871A JPS59132108A (en) 1983-01-19 1983-01-19 Power supply device for superconductive coil

Publications (2)

Publication Number Publication Date
JPS59132108A JPS59132108A (en) 1984-07-30
JPH0340924B2 true JPH0340924B2 (en) 1991-06-20

Family

ID=11622990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58005871A Granted JPS59132108A (en) 1983-01-19 1983-01-19 Power supply device for superconductive coil

Country Status (1)

Country Link
JP (1) JPS59132108A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0121846D0 (en) * 2001-09-10 2001-10-31 Oxford Instr Superconductivity Superconducting magnet assembly and method
DE102005040374B4 (en) * 2005-08-25 2008-10-02 Bruker Biospin Ag Superconducting magnet arrangement with contactable resistance elements

Also Published As

Publication number Publication date
JPS59132108A (en) 1984-07-30

Similar Documents

Publication Publication Date Title
JP2005109511A (en) Superconducting resistance type current limiter
JPS59144106A (en) Device for protecting superconductive magnet coil unit
US4812796A (en) Quench propagation device for a superconducting magnet
Smith Protection of superconducting coils
US6809910B1 (en) Method and apparatus to trigger superconductors in current limiting devices
US3263133A (en) Superconducting magnet
US3360692A (en) Device for producing high-intensity magnetic fields of short duration
US3711744A (en) Passive energy dump for superconducting coil protection
JPS61114509A (en) Superconductive coil device
JPH0340924B2 (en)
JPS6115565B2 (en)
Dong et al. Influences of the resistive SFCL on the incremental power frequency relay of transmission lines
US20110116199A1 (en) Power Dampener for a Fault Current Limiter
Matsumura et al. Fundamental performance of flux-lock type fault current limiter with two air-core coils
US6411479B1 (en) Arrangement for current limiting using a superconductor transformer
Baynham et al. Transient stability of high current density superconducting wires
Dick ERIL-Equational reasoning: an interactive laboratory
DE2410148A1 (en) Super conductive protective resistance - is made from stack of laminar disc stampings with super conductive coating
JP3231837B2 (en) Superconducting current limiting device
JPS6086808A (en) Protective device for superconducting device
JPS61115308A (en) Superconducting device
Konjukhov et al. Quenching of multisection superconducting magnets and internal and external shunt resistors
Xiao et al. Case study on quench evolution and passive protection of high Tc superconducting pancake coil
Flora et al. Quench development in magnets made with multifilamentary NbTi cable
Zannella et al. Inductive high-Tc superconducting fault current limiter based on Bi-2212 tube