JPS59132108A - Power supply device for superconductive coil - Google Patents

Power supply device for superconductive coil

Info

Publication number
JPS59132108A
JPS59132108A JP58005871A JP587183A JPS59132108A JP S59132108 A JPS59132108 A JP S59132108A JP 58005871 A JP58005871 A JP 58005871A JP 587183 A JP587183 A JP 587183A JP S59132108 A JPS59132108 A JP S59132108A
Authority
JP
Japan
Prior art keywords
superconducting
superconducting coil
coil
power supply
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58005871A
Other languages
Japanese (ja)
Other versions
JPH0340924B2 (en
Inventor
Yoshihisa Sato
義久 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58005871A priority Critical patent/JPS59132108A/en
Publication of JPS59132108A publication Critical patent/JPS59132108A/en
Publication of JPH0340924B2 publication Critical patent/JPH0340924B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/02Quenching; Protection arrangements during quenching

Abstract

PURPOSE:To prevent the influence and propagation of normal conductive displacement by keeping each parameter of a power supply device for a plurality of electromagnetically coupled superconducting coils in predetermined relationship. CONSTITUTION:When self-inductance of a plurality of superconducting coils is represented in L1, L2...Ln, No.k and No.i mutual inductance in Mki, excitation current values in I10, I20...In0, protective resistance values in R1, R2...Rn, rated inversion voltage of a DC power supply in [E1]INV..., a resistance value per unit length of a wire rod for the superconducting coil in r, weight in m, specific heat in c, the normal temperature of a superconducting wire in T0, an allowable upper-limit temperature in TF and the dielectric strength of the superconductive coil in EKO, these values satisfy the following formula. Accordingly, the influence and propagation of normal conduction displacement can be prevented.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は超電導コイルの電源装置に関するものであり、
特に相互インダクタンスを有する2個以上の超電導コイ
ル群とその電源装置群から成るシステムに関するもので
ある。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a power supply device for a superconducting coil,
In particular, the present invention relates to a system comprising two or more superconducting coil groups having mutual inductance and a power supply group thereof.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

超電導コイルは、ある種の金属、合金(例えばNbTi
 、Nb3Sn等)が極低温::於て電気抵抗零になる
現象を利用して、低損失で高磁界を得、核融合装置、加
速器、エネルギー貯蔵装置等に応用しようとするもので
ある。近年、高性能超電導線の開発。
Superconducting coils are made of certain metals, alloys (e.g. NbTi
, Nb3Sn, etc.), the electrical resistance becomes zero at extremely low temperatures, to obtain a high magnetic field with low loss, and to apply it to nuclear fusion devices, accelerators, energy storage devices, etc. In recent years, high-performance superconducting wires have been developed.

超電導コイル巻線技術の進歩等超電導現象・技術の研究
開発はめざましい進歩をとげ、大型、高磁界、高エネル
ギーの超電導コイルが製作されるようになった。超電導
コイルに流れる電流を工、自己インダクタンスをLとす
るとその蓄積エネルギ2 −は2 LI  となる。超電導コイルが運転中に何ら
かの原因で、常電導転移(クエンチ)を起こすと、この
エネルギーはコイル内部でジュール熱となり、コイルを
破壊してしまう。
Research and development of superconducting phenomena and technologies, such as advances in superconducting coil winding technology, have made remarkable progress, and large-sized, high-field, high-energy superconducting coils have been manufactured. Letting the current flowing through the superconducting coil be E and the self-inductance be L, the stored energy 2 - will be 2 LI . If a superconducting coil undergoes a normal conduction transition (quench) for some reason during operation, this energy becomes Joule heat inside the coil, destroying the coil.

これを避ける為、コイルと電源との間(ニエネルギー吸
収用の保護抵抗を挿入するのが一般的である。第1図(
a)Eこの基本的な回路を示す。超電導コイル1を励磁
するため(二は、開閉器3 (SW2)を開いておき、
開閉器4 (SWI)を閉じ、直流電源5(E)により
電流■を流す。
To avoid this, it is common to insert a protective resistor for energy absorption between the coil and the power supply.
a) E shows this basic circuit. In order to excite the superconducting coil 1 (second, open the switch 3 (SW2),
Close switch 4 (SWI) and apply current ■ from DC power supply 5 (E).

超電導コイル1がクエンチした場合、開閉器3を閉じ、
開閉器4を開いて電源5を切り離し、超電導コイルlと
保護抵抗2とから成るL−R閉回路にて電流を減衰させ
る。このときクエンチした超電導コイル1の抵抗が保護
抵抗2に比べて充分小さいとすると、超電導コイルの電
流工は第1図(tl)に示す如く指数関係I = I(
、e−”4’・・・・・・(1)で減衰する。(但し、
工0は開閉器4を開いたとき超電導コイルlに流れてい
た電流値を示す。スルは保護抵抗2の抵抗値、−Lは超
電導コイル1の自己インダクタンスである。)(L)式
から明らかなように、クエンチ時超電導コイルlの電流
をできるだけ早く減衰させる為には、保護抵抗2の値R
が大きい方が良く、(減衰時定数τ=L/R)超電導線
の許容温度Ill、を超えないよう、すみやかに電流■
を減衰させる為に必要な最小抵抗は以下の条件より求め
られる。
When the superconducting coil 1 quenches, close the switch 3,
The switch 4 is opened to disconnect the power source 5, and the current is attenuated in the L-R closed circuit consisting of the superconducting coil 1 and the protective resistor 2. Assuming that the resistance of the quenched superconducting coil 1 is sufficiently small compared to the protective resistor 2, the current flow of the superconducting coil has an exponential relationship I = I(
, e-"4'...attenuates at (1). (However,
0 indicates the current value flowing through the superconducting coil l when the switch 4 was opened. Suru is the resistance value of the protective resistor 2, and -L is the self-inductance of the superconducting coil 1. )(L), in order to attenuate the current in the superconducting coil l as quickly as possible during quenching, the value R of the protective resistor 2 must be
The larger the (attenuation time constant τ=L/R), the higher the current
The minimum resistance required to attenuate is determined from the following conditions.

fγI’dt < 4.” mcdT・・・・・・・・
・・・・(2)但し、γ:超電導線(含安定化材)の単
位長さ当りの抵抗値 m:超電導線(含安定化材)の単位長さ当りの重さ C:超電導線(含安定化材)の比熱 (例えば100k) To:超電導線(含安定化材)の初期温度(例えば4.
2k) (2)式に(【)式を代入して整理し直すと(3)式を
得る。
fγI'dt < 4. ”mcdT・・・・・・・・・
...(2) However, γ: resistance value per unit length of superconducting wire (including stabilizing material) m: weight per unit length of superconducting wire (including stabilizing material) C: superconducting wire ( Specific heat of the superconducting wire (stabilizing material included) (e.g. 100k) To: Initial temperature of the superconducting wire (stabilizing material containing) (e.g. 4.
2k) Substituting the equation ([) into the equation (2) and rearranging it, we get the equation (3).

R≧圭居/ぐ′÷dT・・・・・・・・・(3)一方、
超電導コイル1の端子間に加わる電圧Eがあまり高いと
超電導コイル1は絶縁破壊してしまうのでRには上限値
が存在する。クエンチ発生時前述の如く開閉器2を閉じ
、開閉器lを開いた場合、超電導コイル1の端子間に発
生する電圧Eは(1)式よりg=RI=)LI□ e−
: tとなる。したがってEの最大値RIoが超電導コ
イル【の絶縁耐力Eo(例えば1ooov )より小さ
いことが必要であり、この条件より凡の上限値は(4)
式で与えられる。
R≧Keii/gu'÷dT・・・・・・・・・・・・(3) On the other hand,
If the voltage E applied between the terminals of the superconducting coil 1 is too high, the superconducting coil 1 will suffer dielectric breakdown, so there is an upper limit value for R. When a quench occurs, when the switch 2 is closed and the switch 1 is opened as described above, the voltage E generated between the terminals of the superconducting coil 1 is g=RI=)LI□ e- from equation (1).
: It becomes t. Therefore, it is necessary that the maximum value RIo of E is smaller than the dielectric strength Eo (for example, 1ooov) of the superconducting coil, and from this condition, the upper limit value is (4)
It is given by Eq.

Bo/工。≧R01000000,(4)従来の超電導
コイルの電源装置では保護抵抗は前記(3)式、(4)
式を満たす範囲でどちらかと言うと、電流を速く減衰さ
せる為に(4)式を満たす範囲の上限値を選定していた
Bo/Eng. ≧R01000000, (4) In the conventional superconducting coil power supply device, the protective resistance is expressed by the above formula (3), (4)
In order to attenuate the current quickly within the range that satisfies the equation (4), the upper limit value of the range that satisfies the equation (4) was selected.

次に、第2図(a)に示すように2個の超電導コイルL
t、L2が相互インダクタンスMで電磁的に結合してい
る場合を考える。超電導コイルL1.L2に励磁電流1
1゜l ’IQが流れている状態で、超電導コイルL1
がクエンチし、8W12を閉じ、5w11を開放した場
合、(現象を理解しやすくする為超電コイルL2側の電
源E2が無制御(バイパスペア運転相当)の場合を考え
ると、)超電導コイルLLの電流は 1 i、= I、。eτ  ・・・・・・・・・・・・・・
・・・・(5)で減衰し、超電導コイルL2の電流は M     t Ir I20+7Ito(l e−r )  −=−−
(61で増加する。(第2図(b)参照)即ち超電導コ
イルL2の電流工、は最大 ■、。+π工、。    ・・・・・・・・・・・・(
7)まで増加してしまい、(−例として11゜”” 2
01 LI””M L、 r M=に四に=0.5 の場合を考えると”2
0 +1.、”10=15I2o、150チ過電流とな
る。)クエンチを起こしていない超電導コイルL2まで
クエンチしてしまう可能性が極めて高かった。又、超電
導コイルL2が引き続いてクエンチした場合の保護も前
述の場合と同様に5w22を閉じ、 5w21を開放し
前述(3)式、(4)式の方法で決定した保護抵抗鳥で
エネルギーを消費し保護していた。つまり、従来のシス
テムは超電導コイル1個からなる単純なシステムを単に
電磁的に結合させた制御保護方式にすぎず、1個の超電
導コイルがクエンチすると他のクエンチしていない超電
導コイルまでクエンチしてし壕イ省エネルギーの観点か
らも極めて不経済であった。
Next, as shown in Fig. 2(a), two superconducting coils L
Consider the case where t and L2 are electromagnetically coupled by mutual inductance M. Superconducting coil L1. Excitation current 1 in L2
1゜l 'When IQ is flowing, superconducting coil L1
is quenched, 8W12 is closed, and 5W11 is opened. The current is 1 i, = I,. eτ ・・・・・・・・・・・・・・・
It is attenuated by (5), and the current in superconducting coil L2 is M t Ir I20+7Ito(l e-r ) −=−−
(It increases by 61. (See Figure 2 (b).) In other words, the current of the superconducting coil L2 is maximum ■, +π.
7), (for example, 11°"" 2
01 LI""M L, r Considering the case where M= 4 = 0.5, "2"
0 +1. , "10 = 15I2o, 150chi overcurrent.) There was an extremely high possibility that superconducting coil L2, which has not yet quenched, would be quenched. Also, the protection in case superconducting coil L2 is quenched is as described above. As in the case, 5w22 is closed, 5w21 is opened, and energy is consumed and protected using the protective resistor determined by the methods of equations (3) and (4) above.In other words, the conventional system uses one superconducting coil. It is simply a control and protection method that electromagnetically couples a simple system consisting of the It was the economy.

〔発明の■的〕[■Target of invention]

本発明は電磁的に結合した複数個の超電導コイルから成
るシステムに於いて、ある超電導コイルがクエンチした
とき、その超電導コイルの電流を速やかに減衰させると
ともに他のクエンチしていない超電導コイル群をクエン
チさせないようにした超電導コイル用電源装置を得るこ
とを目的とする。
In a system consisting of a plurality of electromagnetically coupled superconducting coils, when one superconducting coil quenches, the present invention quickly attenuates the current of that superconducting coil and quenches the other unquenched superconducting coils. An object of the present invention is to obtain a power supply device for a superconducting coil that prevents

し発明の実施例〕 以下本発明の原理を図面を参照して説明する。Examples of the invention] The principle of the present invention will be explained below with reference to the drawings.

以下の説明に於ては簡単の為超電導コイルが2個の場合
を考える。
In the following explanation, for simplicity, a case will be considered in which there are two superconducting coils.

第2図(a) l1於て、超電導コイルL1がクエンチ
し、8W12閉、5Wll開としたときの回路方程式は
(方式、(8)式のようになる。
FIG. 2(a) In l1, the circuit equation when the superconducting coil L1 is quenched, 8W12 is closed, and 5W11 is open is as shown in formula (8).

Lll、 + M I、 + RIIt =O−10,
I力L2I、 + MI、    =g、    ・・
・・・・・・・(8)電源E、の制御により超電導コイ
ルL2の電流を変化させないように制御する(つまり工
、=0となるよう制御する。)と、 御すれば超電導コイルL2の電流は変化しないことにな
る。
Lll, + M I, + RIIt =O-10,
I force L2I, + MI, =g, ・・
(8) When the power source E is controlled so that the current in the superconducting coil L2 does not change (in other words, it is controlled so that the current is 0), the current in the superconducting coil L2 is The current will not change.

従来のシステムでは電源E1. B、の出力電圧はコイ
ル励磁時間Tと励磁電流、コイル自己インダクタンスか
らE、 2 Ll−1sL 、 F12≧L、−f(例
えばLL=L2=−LOHlIt。= I 2o= I
Q KA 、 T= 60分の場合E、−E、==lQ
’X10X10’A/60X60sy28V ) ト保
Wi抵抗トハm関係ニ決めていたが、本発明は電源E、
のインバータ電圧うに設計し、(例えばL1=lOH、
M =58 、 R,=20mΩ。
In the conventional system, the power supply E1. The output voltage of B is calculated from the coil excitation time T, excitation current, and coil self-inductance as follows:
Q KA , for T = 60 minutes E, -E, ==lQ
'X10X10'A/60X60sy28V) The power supply E,
The inverter voltage is designed to be (for example, L1=lOH,
M=58, R,=20mΩ.

I+a=LOKAのときし”’JrNv= toovと
なる。)超電導コイルL1クエンチ時に電源E2を(1
01式の如く制御することにより超電導コイルL2の電
流変化を零とし、クエンチの波及伝播を防止するととを
可能ならしめる超電導コイルの電源装置を提供するもの
である。
When I + a = LOKA, "'JrNv = toov.) When superconducting coil L1 is quenched, power supply E2 is set to (1
The present invention provides a power supply device for a superconducting coil that makes it possible to reduce the current change in the superconducting coil L2 to zero and prevent the spread of quench by controlling as shown in Equation 01.

以上の説明では、超電導コイルLlがクエンチした場合
を瑚えだが、逆に超電導コイルL2がクエンチした場合
も含めて考えると、電磁的に結合された2個の超電導コ
イルとその励磁電源から構成されるシステム(1於て、
保護抵抗の抵抗値、励磁電源の定格インバータ電圧を以
下の関係式を満足するよう決定することにより1個の超
電導コイルがクエンチした場合、そのコイル電流はすみ
やかに紘衰させ、他の健全な超電導コイルは定電流制御
し、クエンチの波及伝播を防止し、かつ省エネルギー効
果をもたせることを特徴とする超電コイルの電源装置を
提供出来る。
In the above explanation, we are concerned with the case where the superconducting coil Ll is quenched, but if we also consider the case where the superconducting coil L2 is quenched, the superconducting coil is composed of two electromagnetically coupled superconducting coils and their excitation power source. system (1)
If one superconducting coil quenches by determining the resistance value of the protective resistor and the rated inverter voltage of the excitation power source so as to satisfy the following relational expression, the current in that coil is quickly decayed, and the current in the other healthy superconducting coils is quenched. It is possible to provide a power supply device for a superelectric coil, which is characterized in that the coil is controlled at a constant current, prevents the spread of quench, and has an energy saving effect.

(9)式から明らかな様に保護抵抗)LL、R2の値は
直流電源EL、FJ2のインバータ電圧と比例関係にあ
るので、電源装置を合理的で安価にする為には保護抵抗
R1,R2は(9)式を満たす範囲で下限値を選定する
ことが望ましい。
As is clear from equation (9), the values of the protective resistors LL and R2 are proportional to the inverter voltage of the DC power supplies EL and FJ2, so in order to make the power supply rational and inexpensive, the protective resistors R1 and R2 must be It is desirable to select the lower limit value within a range that satisfies equation (9).

次に、以上の関係を電磁的に結合された複数個の超電導
コイルの場合に拡張適用する場合を考える。電磁的に結
合されたn個の超電導コイル群に於て1番目の超電コイ
ルがクエンチし、このコイルを前述の方法に従って保護
抵抗Riにより保護した場合の回路方程式は以下のよう
になる。
Next, consider extending the above relationship to the case of a plurality of electromagnetically coupled superconducting coils. When the first superconducting coil in a group of n superconducting coils electromagnetically coupled is quenched and this coil is protected by the protective resistor Ri according to the method described above, the circuit equation is as follows.

ここでi番目の超電導コイル以外の超電導コイルの電流
を定電流制御したとすると、I k= 0.1c=l〜
n。
If we assume that the currents of the superconducting coils other than the i-th superconducting coil are controlled at a constant current, I k = 0.1c = l~
n.

k〜iであるから(1111式は となる。したがって01式を解いてα2式を得る。Since k ~ i (formula 1111 is becomes. Therefore, equation 01 is solved to obtain equation α2.

つまり、鳳香目のコイルがクエンチし、保護抵抗Ri 
 で電流を減衰させたときに番目(k=1〜n。
In other words, the coil of Hokome is quenched, and the protective resistance Ri
When the current is attenuated at (k=1 to n.

k〜I)コイルの電源装置のインバータ電圧は最大[E
J INV ニー !!にす5」胎−出力可能なように
設計されi でいれば、k番目のコイルは定電流制御可能となる。こ
こでi = l〜n、凰〜にのいずれのコイルがクエン
チした場合でもに番目のコイルを定電流制御可能ならし
めるためには131式が成立すればよい。
k to I) The inverter voltage of the coil power supply is maximum [E
J INV knee! ! If the k-th coil is designed to be able to output 5" output, the k-th coil can be controlled with a constant current. Here, in order to enable constant current control of the i-th coil even if any of the coils i = l to n, 凰 to ni is quenched, formula 131 should hold true.

Mkn FjnIn。Mkn FjnIn.

Ln〕・・・・・・・・・a3 但し、記号Max[Xt + X!p −、Xn 〕は
x11X!j・・・xm のうち最大値を示す。例えば
x、≦X、≦・・・≦XnのときMaX(、Xl 、X
g g ・・・HXn) ”” Xfl となる。
Ln]・・・・・・・・・a3 However, the symbol Max[Xt + X! p −, Xn] is x11X! Indicates the maximum value among j...xm. For example, when x, ≦X, ≦...≦Xn, MaX(,
g g...HXn) "" Xfl.

さらに保護抵抗の制約条件を加えC%に番目のコイルの
電源装置の保護抵抗の抵抗値Rk、直流電源の定格イン
バータ電圧[Ek)INvをα荀式を満足するように次
定することにより、n個の超電導コイルのいづれがクエ
ンチしてもに番目の超電導コイルは定電流制御可能とな
りクエンチの波及・伝播を防止し、省エネルギー効果大
の超電導コイルの電源装置を提供出来る。
Furthermore, by adding the constraint condition of the protective resistor to C%, and determining the resistance value Rk of the protective resistor of the power supply device of the th coil and the rated inverter voltage [Ek)INv of the DC power supply so as to satisfy the α-sun equation, Even if any of the n superconducting coils is quenched, the next superconducting coil can be controlled at a constant current, thereby preventing the spread and propagation of the quench, thereby providing a superconducting coil power supply device with great energy-saving effects.

〔発明の効果〕〔Effect of the invention〕

上記I式から明らかなように(14a)式を満たす範囲
で最小の抵抗値を選択すれば(14b)式から決まる直
流電流の定格インバータ電圧が低くなり、合理的で安価
な超電導コイル用電源装置を提供出来る。
As is clear from Equation I above, if the minimum resistance value is selected within the range that satisfies Equation (14a), the rated inverter voltage of the DC current determined from Equation (14b) will be lowered, resulting in a rational and inexpensive power supply device for superconducting coils. can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)、第2図(a)は本発明の背景、原理を示
す回路図であり、第1図(b)、第2図(b)は時刻【
=10でクエンチが発生し、保護動作を行なった場合の
電流波形を示す。 【・・・超電導コイル  2・・・保護抵抗3・・・開
閉器     4・・・開閉器5・・・直流電源 代理人 弁理士 則 近 憲 佑 (ほか1名)t:じ
1図 (a−ン Wl
1(a) and 2(a) are circuit diagrams showing the background and principle of the present invention, and FIG. 1(b) and FIG. 2(b) are circuit diagrams showing the background and principle of the present invention.
The current waveform is shown when a quench occurs at =10 and a protective operation is performed. [...Superconducting coil 2...Protective resistor 3...Switch 4...Switch 5...DC power supply agent Patent attorney Noriyuki Chika (and 1 other person) t: Figure 1 (a) -n Wl

Claims (1)

【特許請求の範囲】 1、 電磁的に結合された複数個の超電導コイルと、そ
の各々の超電導コイルに蓄積エネルギー吸収用の保護抵
抗を備えてなる超電導コイル用電源装置において、前記
複数個の超電導コイルの自己インダクタンスをり、、L
、、・・・、Ln、に番目と】i番目の超電導コイルの
相互インダクタンスをMki、励磁電流値を”I(1’
t01・・・、Ino各保護抵抗値を亀、−1・・・、
an、直流電源の定格逆変換電圧を[L)rNv+・・
・[En ) Inv 又、前記超電導コイルの線材の
単位長さ当りの抵抗値をr1重量をm、比熱を、C1超
電導線の常温をTo、許容上限温度をT2、超電導コイ
ルの絶縁耐力をEkoとしたときこたらの値が下記関係
式を満足するようにしたことを特徴とする超電導コイル
用電源装置。 k=1.2.・・・n 2、 前記関係式を満足する超電導システムに於て、あ
る1個の超電導コイルが常電導転移を生じたとき、当該
超電導コイルの電流を保護抵抗により減衰させるととも
に他の健全群超電導コイルの電流値は一定となるように
制御することを特徴とする特許請求の範囲第1項記載の
超電導コイル用電源装置。
[Claims] 1. A superconducting coil power supply device comprising a plurality of electromagnetically coupled superconducting coils and a protective resistor for absorbing accumulated energy in each superconducting coil, wherein the plurality of superconducting coils are provided with a protective resistor for absorbing accumulated energy. The self-inductance of the coil is, L
,...,Ln, the mutual inductance of the ith superconducting coil and the ith superconducting coil is Mki, and the excitation current value is ``I(1'
t01..., Ino each protection resistance value, -1...,
an, the rated reverse conversion voltage of the DC power supply is [L)rNv+...
・[En) Inv Also, the resistance value per unit length of the wire of the superconducting coil is r1, the weight is m, the specific heat is C1, the normal temperature of the superconducting wire is To, the allowable upper limit temperature is T2, and the dielectric strength of the superconducting coil is Eko. A power supply device for a superconducting coil, characterized in that the value of kotara satisfies the following relational expression when . k=1.2. ...n 2. In a superconducting system that satisfies the above relational expression, when one superconducting coil undergoes a normal conduction transition, the current in the superconducting coil is attenuated by a protective resistor, and the other healthy group superconducting 2. The power supply device for a superconducting coil according to claim 1, wherein the current value of the coil is controlled to be constant.
JP58005871A 1983-01-19 1983-01-19 Power supply device for superconductive coil Granted JPS59132108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58005871A JPS59132108A (en) 1983-01-19 1983-01-19 Power supply device for superconductive coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58005871A JPS59132108A (en) 1983-01-19 1983-01-19 Power supply device for superconductive coil

Publications (2)

Publication Number Publication Date
JPS59132108A true JPS59132108A (en) 1984-07-30
JPH0340924B2 JPH0340924B2 (en) 1991-06-20

Family

ID=11622990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58005871A Granted JPS59132108A (en) 1983-01-19 1983-01-19 Power supply device for superconductive coil

Country Status (1)

Country Link
JP (1) JPS59132108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178911A (en) * 2001-09-10 2003-06-27 Oxford Instruments Superconductivity Ltd Superconducting magnet assembly and method therefor
JP2007059920A (en) * 2005-08-25 2007-03-08 Bruker Biospin Ag Superconducting magnet structure comprising connectable resistor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003178911A (en) * 2001-09-10 2003-06-27 Oxford Instruments Superconductivity Ltd Superconducting magnet assembly and method therefor
JP2007059920A (en) * 2005-08-25 2007-03-08 Bruker Biospin Ag Superconducting magnet structure comprising connectable resistor element
JP4583349B2 (en) * 2005-08-25 2010-11-17 ブルーカー バイオシュピン アー・ゲー Superconducting magnet structure with connectable resistive elements

Also Published As

Publication number Publication date
JPH0340924B2 (en) 1991-06-20

Similar Documents

Publication Publication Date Title
Ye et al. Modeling and simulation of high temperature resistive superconducting fault current limiters
Maddock et al. Protection and stabilisation of large superconducting coils
KR100505054B1 (en) Resistive type superconducting fault current limiter
JP2010503237A (en) Inductive quench for magnet protection
Meerovich et al. Performance of an inductive fault current limiter employing BSCCO superconducting cylinders
Yang et al. Further study of a novel inductive SFCL for multiterminal HVDC systems
EP0567293A1 (en) Superconducting current limiting device
US3263133A (en) Superconducting magnet
WO2014058871A1 (en) Fast superconducting switch for superconducting power devices
JPS59132108A (en) Power supply device for superconductive coil
Dong et al. Influences of the resistive SFCL on the incremental power frequency relay of transmission lines
JP2010147370A (en) Electromagnet device
US20110116199A1 (en) Power Dampener for a Fault Current Limiter
Baynham et al. Transient stability of high current density superconducting wires
Matsumura et al. Fundamental performance of flux-lock type fault current limiter with two air-core coils
Dick ERIL-Equational reasoning: an interactive laboratory
JP2947927B2 (en) Superconducting current limiting device
CN110428949B (en) Magnetic circuit coupling-based active energy release device and method for non-contact superconducting magnet
Cavallucci et al. Modeling of Quench in the ITER Poloidal Field Coils
Verhaege et al. Protection of superconducting AC windings
Ballarino et al. Scaling of superconducting switches for extraction of magnetic energy
JPH0350497B2 (en)
Zannella et al. Inductive high-Tc superconducting fault current limiter based on Bi-2212 tube
Fazilleau et al. The R3B-GLAD Quench Protection System
Iwai et al. Development of a Bypass Circuit for a REBCO Coil Using Flux Flow Resistance