JP2947927B2 - Superconducting current limiting device - Google Patents

Superconducting current limiting device

Info

Publication number
JP2947927B2
JP2947927B2 JP2330365A JP33036590A JP2947927B2 JP 2947927 B2 JP2947927 B2 JP 2947927B2 JP 2330365 A JP2330365 A JP 2330365A JP 33036590 A JP33036590 A JP 33036590A JP 2947927 B2 JP2947927 B2 JP 2947927B2
Authority
JP
Japan
Prior art keywords
current limiting
current
trigger element
superconducting
limiting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2330365A
Other languages
Japanese (ja)
Other versions
JPH04207924A (en
Inventor
築志 原
潔 岡庭
和行 ▲つる▼永
大佐 伊藤
喜之 杉山
博行 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2330365A priority Critical patent/JP2947927B2/en
Publication of JPH04207924A publication Critical patent/JPH04207924A/en
Application granted granted Critical
Publication of JP2947927B2 publication Critical patent/JP2947927B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は超電導限流装置に関し、特に、超電導体の
クエンチ現象を利用した交流電路の過電流抑制装置に於
いて、特に過電流抑制素子のクエンチ時抵抗を瞬時に上
昇させるための技術に関するものである。
The present invention relates to a superconducting current limiting device, and particularly to an overcurrent suppressing device for an AC circuit using a quench phenomenon of a superconductor. The present invention relates to a technique for instantaneously increasing a quenching resistance of an overcurrent suppressing element.

(従来の技術) 配電線等の交流電路に3相短絡や地絡事故が発生する
と数十kAにも及ぶ事故電流が流れ、電力系統や機器に大
きなダメージを与えてしまう。この様な事故電流を瞬時
に検出し抑制するための過電流抑制(以後限流という)
技術の一つに、最近超電導を応用したものが提案されて
いる。この種の装置としては、特願昭63−109129号公報
に記載のものが従来知られている。
(Prior Art) When a three-phase short circuit or a ground fault occurs in an AC power line such as a distribution line, a fault current of several tens of kA flows, causing serious damage to power systems and equipment. Overcurrent suppression to detect and suppress such fault current instantaneously (hereinafter referred to as current limiting)
As one of the techniques, a technique applying superconductivity has recently been proposed. As an apparatus of this type, an apparatus described in Japanese Patent Application No. 63-109129 has been conventionally known.

第7図は従来の過電流抑制装置(以下、限流器或いは
限流素子という)の構成を示すものである。この限流器
では複数の酸化物超電導限流素子71が絶縁スペーサ72に
より支持されると共に、各限流素子71は直列または並列
に接続されて電路に挿入される。この限流素子71と作用
としては、自己の臨界電流地(IC)以下の電流に対して
は抵抗0の状態を維持する一方、臨界電流地を越える過
電流が流れると自らがクエンチして高抵抗体に転移して
それを抑制する。この様な原理の限流素子71において
は、クエンチ後の抵抗の時間的上昇率が急峻であるほど
優れた限流性能が得られることになるが、現実の超電導
体にはこれを阻害するような特性が内在している。
FIG. 7 shows a configuration of a conventional overcurrent suppression device (hereinafter, referred to as a current limiting device or a current limiting element). In this current limiter, a plurality of oxide superconducting current limiting elements 71 are supported by an insulating spacer 72, and the current limiting elements 71 are connected in series or in parallel and inserted into an electric circuit. The function of the current limiting element 71 is to maintain a state of zero resistance with respect to a current lower than its own critical current ground (IC), and to quench itself when an overcurrent flows beyond the critical current ground. Transfers to the resistor and suppresses it. In the current limiting element 71 based on such a principle, an excellent current limiting performance is obtained as the temporal rise rate of the resistance after the quench is steeper. However, the actual superconductor may impede this. Characteristics are inherent.

その第1は、抵抗率の温度依存性であり、第2は超電
導体内部の特性のばらつきである。一般的な酸化物超電
導体の温度依存性は第8図に示すように温度上昇に対し
て抵抗率も緩やかに上昇していく傾向を持っている。こ
の事は、所定サイズの限流素子を製作した場合におい
て、過電流の値によって作動抵抗値が大きく変化する事
を意味している。
The first is the temperature dependence of the resistivity, and the second is the variation in the characteristics inside the superconductor. As shown in FIG. 8, the temperature dependency of a general oxide superconductor has a tendency that the resistivity gradually increases with increasing temperature. This means that when a current limiting element having a predetermined size is manufactured, the operating resistance value greatly changes depending on the value of the overcurrent.

(発明が解決しようとする課題) しかしながら、クエンチ時の抵抗値上昇の大半を決定
する限流素子の温度上昇値は、素子発熱量から冷却媒体
の蒸発潜熱を減じた値と限流素子の熱容量との比で決定
されることから、条件の最適化が困難であり、場合によ
っては数サイクル間の時間を経てようやく最大クエンチ
抵抗値に達するような素子とならざるを得ない。従っ
て、従来技術においては、源流作動後のクエンチ抵抗の
立ち上がり速度が鈍く急峻な源流特性が得られないこ
と、及び作動後も抵抗限流方式のため、冷媒の消費が著
しく、連続限流が困難という問題点があった。
(Problems to be Solved by the Invention) However, the temperature rise value of the current limiting element, which determines most of the increase in the resistance value at the time of quenching, is a value obtained by subtracting the latent heat of evaporation of the cooling medium from the calorific value of the element and the heat capacity of the current limiting element. Therefore, it is difficult to optimize the conditions, and in some cases, the device must reach the maximum quench resistance value only after a period of several cycles. Therefore, in the prior art, the rising speed of the quench resistor after the operation of the source flow is slow, and a steep source flow characteristic cannot be obtained, and since the resistance current limiting method is used even after the operation, the consumption of the refrigerant is remarkable, and the continuous current limiting is difficult. There was a problem.

この発明は以上のような事情に鑑み成されたもので、
臨界電流値を越える過電流が流れて限流素子が作動した
後の抵抗値上昇速度を高めると共に、作動後の限流イン
ピーダンスを任意に設定するようにして、作動後の連続
限流を可能にした超電導限流装置の提供を目的とする。
The present invention has been made in view of the above circumstances,
Increases the rate of rise in resistance after the current-limiting element is activated due to an overcurrent exceeding the critical current value, and allows the current-limiting impedance after operation to be arbitrarily set to enable continuous current-limiting after operation. The purpose of the present invention is to provide a superconducting current limiting device.

〔発明の構成〕[Configuration of the invention]

(課題を解決するための手段) 前記目的を達成する本発明の超電導限流装置の第1の
形態の構成が第1図(a)に示される。この形態の超電
導限流装置は、電路の過電流を抑制するための限流装置
であって、所定の臨界電流値を有する超電導体から成る
トリガ素子1と、任意臨界電流値とインダクタンスを有
する超電導コイル3およびコンデンサ5からなる直列回
路とが並列に接続され、超電導コイル3とによってトリ
ガ素子1に磁界が印加されるようになっていることを特
徴としている。
(Means for Solving the Problems) FIG. 1 (a) shows a configuration of a first embodiment of a superconducting current limiting device of the present invention which achieves the above object. The superconducting current limiting device of this embodiment is a current limiting device for suppressing overcurrent in an electric circuit, and includes a trigger element 1 composed of a superconductor having a predetermined critical current value, and a superconducting device having an arbitrary critical current value and an inductance. It is characterized in that a series circuit including the coil 3 and the capacitor 5 is connected in parallel, and a magnetic field is applied to the trigger element 1 by the superconducting coil 3.

第1図(b)は本発明の超電導限流装置の第2の形態
の超電導限流装置を示すものであって、第1の形態の超
電導限流装置におけるトリガ素子1に、このトリガ素子
1のクエンチと同時に開極操作されるスイッチ2が直列
に挿入されていることを特徴としている。
FIG. 1 (b) shows a superconducting current limiting device according to a second embodiment of the superconducting current limiting device of the present invention. The switch 2 that is operated to open simultaneously with the quench is inserted in series.

(作用) この発明の超電導限流装置では、トリガ素子は定常状
態においてはトリガ素子及び限流コイルの双方共超電導
状態にあり、スイッチは閉路されている。従って、回路
電流の殆どは無誘電で超電導状態のトリガ回路(トリガ
素子に直列にスイッチが接続された回路)を流れ、正常
に負荷給電される。しかし、負荷短絡等が発生し回路に
過電流が流れると、トリガ素子がクエンチして中抵抗体
に転移する。その結果、電流は限流コイル側へも分流し
トリガ素子は限流コイルの発生する磁界にさらされる。
トリガ素子は外部磁界を受けると抵抗率が上昇するため
にさらに高抵抗となり、過電流を抑制すると同時に、限
流コイル側への事故電流を促進し、その後スイッチによ
りトリガ回路が遮断される。従って、事故電流は限流コ
イルのリアクトル作用によって損失(熱)を生じること
無く限流し続けると同時に、その間トリガ素子は冷却さ
れて超電導を回復する。この結果、事故解除後は、スイ
ッチを閉路操作することにより容易に定常状態へ復帰す
ることが可能となる。
(Operation) In the superconducting current limiting device according to the present invention, in the steady state, both the trigger element and the current limiting coil are in the superconducting state, and the switch is closed. Therefore, most of the circuit current flows through the trigger circuit in a non-conductive and superconducting state (a circuit in which a switch is connected in series with the trigger element), and the load is fed normally. However, when an overcurrent flows through the circuit due to a load short circuit or the like, the trigger element is quenched and transferred to a medium resistor. As a result, the current is also diverted to the current limiting coil side, and the trigger element is exposed to the magnetic field generated by the current limiting coil.
When the trigger element receives an external magnetic field, the resistivity rises further because the resistivity increases, thereby suppressing an overcurrent and at the same time promoting an accidental current to the current limiting coil side. Accordingly, the fault current continues to be limited without causing loss (heat) due to the reactor action of the current limiting coil, and at the same time, the trigger element is cooled and the superconductivity is restored. As a result, after the accident is cleared, it is possible to easily return to the steady state by closing the switch.

(実施例) 以下、この発明を実施例により図面を参照しつつ詳細
に説明する。
(Examples) Hereinafter, the present invention will be described in detail by examples with reference to the drawings.

第2図(a)はこの発明の一実施例の超電導限流装置
10の構成を示すものである。図において、1はトリガ素
子、2はスイッチ、3は所定のインダクタンス値を有す
る超電導限流コイル(以下、限流コイルと言う)、4は
ボビンを示している。この実施例においてトリガ素子1
は所定の臨界電流値を有する複数の棒状超電導体から成
り、絶縁体であるボビン4に極力無誘導に近くなるよう
に装着される。限流コイル3はこのボビン4に巻装さ
れ、トリガ素子1が限流コイル3の磁界中に配置されて
いる。また、各トリガ素子1とスイッチ2とは直列に接
続されトリガ回路を構成している。
FIG. 2 (a) shows a superconducting current limiting device according to an embodiment of the present invention.
10 shows the configuration of ten. In the figure, 1 is a trigger element, 2 is a switch, 3 is a superconducting current limiting coil (hereinafter referred to as a current limiting coil) having a predetermined inductance value, and 4 is a bobbin. In this embodiment, the trigger element 1
Is composed of a plurality of rod-shaped superconductors having a predetermined critical current value, and is mounted on the bobbin 4 as an insulator so as to be as non-inductive as possible. The current limiting coil 3 is wound around the bobbin 4, and the trigger element 1 is arranged in the magnetic field of the current limiting coil 3. Each trigger element 1 and switch 2 are connected in series to form a trigger circuit.

第2図(b)は第2図(a)のように構成された超電
導限流装置10を電気的に模式化した図であり、限流コイ
ル3の磁界内にトリガ素子1が配されていること、スイ
ッチ2がトリガ素子1に直列に接続されている状態を示
している。
FIG. 2 (b) is a diagram schematically showing the superconducting current limiting device 10 configured as shown in FIG. 2 (a), in which the trigger element 1 is arranged in the magnetic field of the current limiting coil 3. 2 shows that the switch 2 is connected to the trigger element 1 in series.

第3図はこのトリガ素子1を構成する超電導体の抵抗
率ρの温度及び外部磁界Bの依存性を示すものであり、
トリガ素子1は温度一定のもとでは外部磁界Bが強くな
るほど抵抗率ρが増大することを示している。尚、スイ
ッチ2は図示しない操作機構によりトリガ素子1のクエ
ンチ発生と同時に開極操作されるよう構成されている。
限流コイル3は限流作動時にもクエンチしない程度の臨
界電流値を有する超電導線から成り、ボビン4、即ちト
リガ素子1の外周部に所定のインダクタンス値を有する
よう巻装されている。
FIG. 3 shows the dependence of the resistivity ρ of the superconductor constituting the trigger element 1 on the temperature and the external magnetic field B.
The trigger element 1 shows that the resistivity ρ increases as the external magnetic field B increases when the temperature is constant. The switch 2 is configured to be opened simultaneously with the occurrence of quench of the trigger element 1 by an operation mechanism (not shown).
The current limiting coil 3 is made of a superconducting wire having a critical current value that does not quench even during the current limiting operation, and is wound around the bobbin 4, that is, the outer peripheral portion of the trigger element 1 so as to have a predetermined inductance value.

第4図は以上のように構成された超電導限流装置10の
実際の回路への適用例を示す回路図であり、11は電源、
12は遮断器、13は負荷を示している。そして、電源11、
遮断器12、および負荷13は全て超電導限流装置10に直列
に接続されている。
FIG. 4 is a circuit diagram showing an example of application of the superconducting current limiting device 10 configured as described above to an actual circuit.
12 indicates a circuit breaker and 13 indicates a load. And power supply 11,
The circuit breaker 12 and the load 13 are all connected in series to the superconducting current limiting device 10.

第5図は、第4図に於ける定常及び負荷短絡発生時の
回路電流波形と前述のトリガ素子1の抵抗変化を示す線
図であり、iTCがトリガ回路電流、iLCが限流コイル電
流、RTCがトリガ素子の抵抗値を示している。ここで、
これらの図を用いてこの実施例の超電導限流装置10の作
用について説明する。
FIG. 5 is a diagram showing a circuit current waveform at the time of occurrence of a steady state and a load short circuit and a change in resistance of the trigger element 1 in FIG. 4, where i TC is a trigger circuit current, and i LC is a current limiting coil. The current and RTC indicate the resistance value of the trigger element. here,
The operation of the superconducting current limiting device 10 of this embodiment will be described with reference to these drawings.

今、遮断器12が閉路し、負荷13も正常状態にある場
合、トリガ素子1は超電導状態にあるため回路電流の殆
どが無誘導で超電導(インピーダンス0)のトリガ回路
を流れる。次に、例えば負荷13に短絡が第5図“a"点で
発生して事故電流(図中の記載は規約短絡電流)が流
れ、その値がトリガ素子1の臨界電流値ICIを超える
と、トリガ素子1はクエンチして中抵抗体に転移する。
この時のトリガ素子1の抵抗RTCの上昇率は、第3図に
示す通り超電導体の温度上昇値に比例して増加するた
め、条件にもよるが第5図“b"〜“c"点に示すように比
較的穏やかな上昇カーブとなる。
Now, when the circuit breaker 12 is closed and the load 13 is in a normal state, the trigger element 1 is in the superconducting state, and most of the circuit current flows through the superconducting (impedance 0) trigger circuit without induction. Next, for example, when a short circuit occurs in the load 13 at the point “a” in FIG. 5 and an accident current (the description in the figure is a specified short circuit current) flows and the value exceeds the critical current value ICI of the trigger element 1, The trigger element 1 is quenched and changes to a medium resistor.
At this time, the rising rate of the resistance RTC of the trigger element 1 increases in proportion to the temperature rise value of the superconductor as shown in FIG. 3, and therefore, depending on the conditions, "b" to "c" in FIG. As shown by the dots, the curve becomes relatively gentle.

ところが、このトリガ素子1のクエンチによりトリガ
素子1の両端には電圧が生じこの電圧に対して90゜の送
れ位相をもった電流iLCが限流コイル3に流れる。この
限流コイル電流iLCにより限流コイル3内にはそのター
ン数に応じた磁界が生じる(例えば、巻き数8Tの場合B
(8T))ため、トリガ素子1の抵抗率ρは第3図に示す
ように素子温度に関係なく瞬時に最大値迄上昇する。即
ち、トリガ素子1の抵抗値が第5図“c"以降に示す通り
に急激に増大するため、事故電流の殆どが限流コイル3
側へ転流し、この後、トリガ回路はスイッチ2によって
遮断される(第5図“e"点)。
However, a voltage is generated at both ends of the trigger element 1 due to the quenching of the trigger element 1, and a current i LC having a phase of 90 ° with respect to this voltage flows through the current limiting coil 3. Due to this current limiting coil current i LC , a magnetic field corresponding to the number of turns is generated in the current limiting coil 3 (for example, when the number of turns is 8T, B
(8T)) Therefore, the resistivity ρ of the trigger element 1 instantaneously rises to the maximum value regardless of the element temperature as shown in FIG. That is, since the resistance value of the trigger element 1 rapidly increases as shown in FIG.
Side, after which the trigger circuit is shut off by switch 2 (point "e" in FIG. 5).

以上の作用により、事故電流は超電導限流コイル3に
よって任意時間、所定の値に限流され続ける。尚、超電
導体は冷却されると比較的短時間の内に超電導復帰す
る。従って、トリガ素子1の完全冷却の後、スイッチ2
を閉路すればこの実施例の超電導限流装置は定常状態
(インピーダンス0)に復帰することが可能となる。
By the above operation, the fault current is continuously limited to a predetermined value by the superconducting current limiting coil 3 for an arbitrary time. When the superconductor is cooled, it returns to superconductivity within a relatively short time. Therefore, after the trigger element 1 is completely cooled, the switch 2
Is closed, the superconducting current limiting device of this embodiment can return to the steady state (impedance 0).

以上のように、この実施例によれば、従来は温度上昇
特性に左右されていたトリガ素子1のクエンチ抵抗上昇
特定を、磁気的な制御を付加することで事故発生後半サ
イクル以内に確実に最大クエンチ抵抗値まで高めること
が可能となり、応答の高速化が図れる。また、並列に超
電導限流コイル3を配したので、事故電流を任意の値
に、且つ任意の時間、無損失で限流し続けることが可能
となる。
As described above, according to this embodiment, the increase in the quenching resistance of the trigger element 1 which has conventionally been affected by the temperature rise characteristics can be reliably specified within the latter half cycle of the accident by adding magnetic control. The quenching resistance can be increased, and the response can be speeded up. Further, since the superconducting current limiting coil 3 is arranged in parallel, it is possible to continuously limit the fault current to an arbitrary value for an arbitrary time without loss.

ところで、前述の実施例においては、限流コイル3の
磁界発生がトリガ素子電流、即ち事故電流に対して90゜
の送れ位相となるため、その分、限流動作も送れてしま
うことが懸念される。すなわち、この種の限流装置にお
いては、トリガ素子1のクエンチ発生と同時に素子低値
を最大値まで上昇させることが理想である。これを実現
する方法としては限流コイル3に直列にコンデンサを付
加する方法がある。
By the way, in the above-described embodiment, since the magnetic field generation of the current limiting coil 3 has a sending phase of 90 ° with respect to the trigger element current, that is, the fault current, there is a concern that the current limiting operation may be sent accordingly. You. In other words, in this type of current limiting device, it is ideal to raise the element low value to the maximum value simultaneously with the occurrence of the quench of the trigger element 1. As a method of realizing this, there is a method of adding a capacitor in series with the current limiting coil 3.

第6図はこの発明の他の実施例を示すものであり、第
5図の実施例の限流コイル3に、進相用コンデンサ5を
直列に挿入したものである。このコンデンサ5は限流コ
イル回路をトリガ回路により進み電流要素とし、且つ、
事故電流に対して所定のインピーダンスを有する作用を
もつ。即ちこの実施例によれば、事故電流が生じてトリ
ガ素子1がクエンチすると、瞬時に限流コイル回路に事
故電流が転流する。その結果、限流コイル3による磁界
がトリガ素子1のクエンチと同期して発生することにな
りトリガ素子1はそれにより最大クエンチ抵抗値にまで
瞬時に上昇する。
FIG. 6 shows another embodiment of the present invention, in which a phase-advancing capacitor 5 is inserted in series with the current limiting coil 3 of the embodiment of FIG. This capacitor 5 uses a current limiting coil circuit as a current element by a trigger circuit, and
It has an action of having a predetermined impedance with respect to the fault current. That is, according to this embodiment, when the fault current occurs and the trigger element 1 is quenched, the fault current is instantaneously commutated to the current limiting coil circuit. As a result, the magnetic field generated by the current limiting coil 3 is generated in synchronization with the quench of the trigger element 1, and the trigger element 1 thereby instantaneously rises to the maximum quench resistance value.

従って、第6図の実施例によれば、第4図の実施例の
超電導限流装置により更に急峻な限流特性を有する超電
導限流装置を得ることができる。
Therefore, according to the embodiment of FIG. 6, a superconducting current limiting device having a steeper current limiting characteristic can be obtained by the superconducting current limiting device of the embodiment of FIG.

〔発明の効果〕〔The invention's effect〕

以上説明したようにこの発明によれば、従来困難とさ
れていた事故電流の第1波限流が可能となり、更に超電
導リアクトルおよびコンデンサによる限流方式としたた
め損失が極めて小さく、連続限流も可能となる等の効果
が得られる。また、進相コンテンザを付加したので、ト
リガ素子作動時に生じるサージ電圧の抑制効果も期待で
きる。
As described above, according to the present invention, the first wave current limiting of the fault current, which has been considered difficult in the past, becomes possible. Further, since the current limiting method using the superconducting reactor and the capacitor is used, the loss is extremely small and continuous current limiting is also possible. And the like. Further, since the phase advance contenser is added, an effect of suppressing a surge voltage generated when the trigger element is operated can be expected.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は本発明の超電導限流装置の第1の形態の
原理構成図、 第1図(b)は本発明の超電導限流装置の第2の形態の
原理構成図、 第2図(a)はこの発明の一実施例の超電導限流装置の
構成を示す斜視図、 第2図(b)は第2図(a)の超電導限流装置の電気的
模式図、 第3図はこの発明の超電導限流装置を構成するトリガ素
子の温度−抵抗率特性の一例を示す線図、 第4図は超電導限流装置の実際の回路への適用例を示す
回路図、 第5図は第4図の回路における限流装置の動作特性を示
す波形図、 第6図は第4図の超電導限流装置の変形実施例を示す
図、 第7図は従来の限流器構成を示す斜視図、 第8図は従来の一般的な酸化物超電導体の抵抗率の温度
依存性を示す温度−抵抗率特性の線図である。 1……トリガ素子、 2……スイッチ、 3……限流コイル、 4……ボビン、 10……限流器、 11……電源、 12……遮断器、 13……負荷を表す、 15……進相コンデンサ、 71……限流素子、 72……絶縁スペーサ、 ICI……トリガ素子の臨界電流値、 iTC……トリガ回路電流、 iLC……限流コイルを流れる電流、 RTC……トリガ素子の抵抗値を表す。
FIG. 1 (a) is a principle configuration diagram of a first embodiment of the superconducting current limiting device of the present invention, FIG. 1 (b) is a principle configuration diagram of a second embodiment of the superconducting current limiting device of the present invention, 2A is a perspective view showing the configuration of a superconducting current limiting device according to an embodiment of the present invention, FIG. 2B is an electrical schematic diagram of the superconducting current limiting device of FIG. 2A, FIG. Is a diagram showing an example of a temperature-resistivity characteristic of a trigger element constituting the superconducting current limiting device of the present invention; FIG. 4 is a circuit diagram showing an example of application of the superconducting current limiting device to an actual circuit; Is a waveform diagram showing the operation characteristics of the current limiting device in the circuit of FIG. 4, FIG. 6 is a diagram showing a modified embodiment of the superconducting current limiting device of FIG. 4, and FIG. 7 is a diagram showing a conventional current limiting device configuration. FIG. 8 is a temperature-resistivity characteristic diagram showing the temperature dependence of the resistivity of a conventional general oxide superconductor. 1… Trigger element, 2… Switch, 3… Current limiting coil, 4… Bobbin, 10… Current limiting device, 11… Power supply, 12… Circuit breaker, 13… Represents load, 15… ... phase-advancing capacitor, 71 ... current-limiting element, 72 ... insulating spacer, ICI ... critical current value of trigger element, i TC ... trigger circuit current, i LC ... current flowing through current-limiting coil, R TC ... ... represents the resistance value of the trigger element.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 ▲つる▼永 和行 東京都府中市東芝町1番地 株式会社東 芝府中工場内 (72)発明者 伊藤 大佐 神奈川県川崎市幸区小向東芝町1 株式 会社東芝総合研究所内 (72)発明者 杉山 喜之 東京都港区芝浦1丁目1番1号 株式会 社東芝本社事務所内 (72)発明者 奥村 博行 東京都府中市東芝町1番地 株式会社東 芝府中工場内 (56)参考文献 特開 平2−202320(JP,A) 特開 平1−190219(JP,A) 特開 昭51−136156(JP,A) (58)調査した分野(Int.Cl.6,DB名) H02H 9/02 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor ▲ Tsuru ▼ Kazuyuki Naga Eighth Toshiba-cho, Fuchu-shi, Tokyo Inside the Toshiba Fuchu Plant (72) Inventor Osamu Ito Komukai Toshiba-cho, Saiwai-ku, Kawasaki-shi, Kanagawa 1 Toshiba Research Institute, Inc. (72) Inventor Yoshiyuki Sugiyama 1-1-1, Shibaura, Minato-ku, Tokyo Inside Toshiba Corporation Head Office (72) Inventor Hiroyuki Okumura 1 Toshiba-cho, Fuchu-shi, Tokyo Higashi Corporation (56) References JP-A-2-202320 (JP, A) JP-A-1-190219 (JP, A) JP-A-51-136156 (JP, A) (58) Fields studied (Int .Cl. 6 , DB name) H02H 9/02

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電路の過電流を抑制するための限流装置で
あって、所定の臨界電流値を有する超電導体から成るト
リガ素子(1)と、任意臨界電流値とインダクタンスを
有する超電導コイル(3)およびコンデンサ(5)から
なる直列回路とを並列に接続し、この超電導コイル
(3)によって前記トリガ素子(1)に磁界を印加する
ように構成したことを特徴とする超電導限流装置。
1. A current limiting device for suppressing an overcurrent in an electric circuit, comprising: a trigger element comprising a superconductor having a predetermined critical current value; and a superconducting coil having an arbitrary critical current value and an inductance. A superconducting current limiting device, wherein a series circuit comprising 3) and a capacitor (5) are connected in parallel, and a magnetic field is applied to the trigger element (1) by the superconducting coil (3).
【請求項2】前記トリガ素子(1)に、このトリガ素子
(1)のクエンチと同時に開極操作されるスイッチ
(2)を直列に挿入したことを特徴とする請求項1に記
載の超電導限流装置。
2. The superconducting limit according to claim 1, wherein a switch (2) that is operated to open at the same time as the quenching of the trigger element (1) is inserted in series with the trigger element (1). Flow device.
JP2330365A 1990-11-30 1990-11-30 Superconducting current limiting device Expired - Lifetime JP2947927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2330365A JP2947927B2 (en) 1990-11-30 1990-11-30 Superconducting current limiting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2330365A JP2947927B2 (en) 1990-11-30 1990-11-30 Superconducting current limiting device

Publications (2)

Publication Number Publication Date
JPH04207924A JPH04207924A (en) 1992-07-29
JP2947927B2 true JP2947927B2 (en) 1999-09-13

Family

ID=18231794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2330365A Expired - Lifetime JP2947927B2 (en) 1990-11-30 1990-11-30 Superconducting current limiting device

Country Status (1)

Country Link
JP (1) JP2947927B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160013635A1 (en) * 2013-04-01 2016-01-14 Sumitomo Electric Industries, Ltd. Current-limiting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014204460A (en) * 2013-04-01 2014-10-27 住友電気工業株式会社 Current-limiting/current flow controller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160013635A1 (en) * 2013-04-01 2016-01-14 Sumitomo Electric Industries, Ltd. Current-limiting device
US10218170B2 (en) * 2013-04-01 2019-02-26 Sumitomo Electric Industries, Ltd. Current-limiting device utilizing a superconductor for a current-limiting operation

Also Published As

Publication number Publication date
JPH04207924A (en) 1992-07-29

Similar Documents

Publication Publication Date Title
Hara et al. Development of a new 6.6 kV/1500 A class superconducting fault current limiter for electric power systems
US3925707A (en) High voltage current limiting circuit breaker utilizing a super conductive resistance element
KR20050031750A (en) Resistive type superconducting fault current limiter
US6043731A (en) Current limiting device
Radmanesh et al. Novel high performance DC reactor type fault current limiter
JPS62138021A (en) Ac current limiter
Shimizu et al. A study on required volume of superconducting element for flux flow resistance type fault current limiter
Shimizu et al. Proposal of flux flow resistance type fault current limiter using Bi2223 high T/sub c/superconducting bulk
US5414586A (en) Superconducting current limiting device
Liang et al. Tests and analysis of a small-scale hybrid-type DC SFCL prototype
US6809910B1 (en) Method and apparatus to trigger superconductors in current limiting devices
Galvin et al. Experimental examples of quench protection with varistors to reduce quench voltages and hot-spot peak temperatures
JP2006295994A (en) Fault current limiter and power system using it
Devi et al. Simulation of resistive super conducting fault current limiter and its performance analysis in three phase systems
JP2947927B2 (en) Superconducting current limiting device
Sharma et al. Basic concepts of superconducting fault current limiter
Dong et al. Influences of the resistive SFCL on the incremental power frequency relay of transmission lines
AU2007358210B2 (en) Power dampener for a fault current limiter
Matsumura et al. Fundamental performance of flux-lock type fault current limiter with two air-core coils
Leung et al. High temperature superconducting fault current limiter for utility applications
JP3231837B2 (en) Superconducting current limiting device
Morandi et al. Conduction Cooling and Fast Recovery in $\hbox {MgB} _ {2} $-Based DC Resistive SFCL
JP3045165B1 (en) Current limiting device
JPH09233692A (en) Superconuctive current limiter
Jiang et al. Experiment of a MOSFETs-based bridge type fault current limiter prototype

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080702

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090702

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100702

Year of fee payment: 11