JPH0340888B2 - - Google Patents

Info

Publication number
JPH0340888B2
JPH0340888B2 JP60229645A JP22964585A JPH0340888B2 JP H0340888 B2 JPH0340888 B2 JP H0340888B2 JP 60229645 A JP60229645 A JP 60229645A JP 22964585 A JP22964585 A JP 22964585A JP H0340888 B2 JPH0340888 B2 JP H0340888B2
Authority
JP
Japan
Prior art keywords
watertight
compound
vinyl
eva
watertight compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60229645A
Other languages
Japanese (ja)
Other versions
JPS6288212A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP60229645A priority Critical patent/JPS6288212A/en
Publication of JPS6288212A publication Critical patent/JPS6288212A/en
Publication of JPH0340888B2 publication Critical patent/JPH0340888B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Insulated Conductors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> 本発明は、架空配電線等として用いられる水密
コンパウンドの充填された水密型ビニル絶縁電線
に関するものである。 <従来の技術> 従来、架空配電線に用いられる電線において、
導体と絶縁体層間に水密コンパウンドを充填する
ことによつて、導体部分への水の浸入を防止し、
導体の腐食劣化をなくし、長期に亙つて安定した
電気特性を得ることが一般的に行われている。 かゝる用途の水密コンパウンドとして、近年、
作業性等の点を考慮して、ゴムやプラスチツク樹
脂系のものを用いた、所謂ドライタイプの水密型
電線が増えてきている。 このドライタイプの水密コンパウンドとして、
比較的実積のある材料としては、EVA(エチレン
−酢酸ビニル共重合体)やEEA(エチレン−アク
リル酸エチル共重合体)等が挙げられ、既にこれ
らのコンパウンドを用いたポリエチレン絶縁電線
が提供されている。 ここで、EVAやEEAがよく用いられるのは、
これらの樹脂は導体金属及び絶縁体層のポリエチ
レンの両者に対して良好な接着性を有するという
重要な特性の他に、メルトインデツクス(MI)
や酢酸ビニル含有量(VA%)、アクリル酸エチ
ル含有量(EA%)等の異なる種々のグレード品
が市販品として揃つており、加工に際して、選択
の巾が広く、使い易い等の利点があるからであ
る。 <発明が解決しようとする問題点> しかし、上記のように優れたEVAやEEAであ
つても、ポリ塩化ビニル樹脂に対しては、接着性
が悪く、端末口出しの際、ポリ塩化ビニルのみ剥
がれ、水密コンパウンドが導体上に残つてしま
い、作業性を著しく低下させるという問題があつ
た。 このため、この種の絶縁電線では、EVAや
EEAは水密コンパウンドとして用いられていな
かつた。 そこで、本発明者等が、EVAやEEAを水密コ
ンパウンドとして用いたビニル絶縁電線を得るべ
く、種々の実験、研究を行つたところ、以下の結
論を得た。 つまり、水密コンパウンドとして、EVAや
EEA或いはこれら両者とビニル系接着性樹脂と
の混練物で、メルトフローレシオ(MFR)が15
〜300のものを用いると、この水密コンパウンド
とポリ塩化ビニルとが十分に接着されることが分
かつた。 本発明は、このような研究問題に基づいて、発
明されたものである。 <問題点を解決するための手段及びその作用> かゝる本発明は、撚線導体に、EVA又は/及
びEEAとビニル系接着性樹脂の混練物で、メル
トフローレシオが15〜300である水密コンパウン
ドを充填し、絶縁体をポリ塩化ビニルとした水密
型ビニル絶縁電線にある。 本発明では、このように水密コンパウンドを特
別な特性の混練物としてあるため、この水密コン
パウンドと絶縁体のポリ塩化ビニルとは良好に接
着される。 この本発明電線の一例を図示すると、第1図の
如くで、撚線導体1は中心素線1aと6本層の素
線1b……と12本層の素線1c……とからなり、
これらの各素線1a,1b……,1c……間には
EVA又はEEAとビニル系接着性樹脂の混練物で
メルトフローレシオが15〜300である水密コンパ
ウンド2が充填され、最外にはポリ塩化ビニルの
絶縁体3が被覆されている。 ここで、水密コンパウンドの充填に際しては、
押出機により撚線導間に圧入した後、ポリ塩化ビ
ニル絶縁体を押出たり(タンデム法)、或いはよ
り好ましい方法として、この水密コンパウンドと
ポリ塩化ビニル絶縁体とを2層同時押出により充
填、被覆するとよい(2層同時押出法)。 水密コンパウンドで使用されるビニル系接着樹
脂としては、ポリエステル系樹脂、カルボン酸金
属塩グラフト化樹脂、塩素化ポリエチレン、ポリ
塩化ビニル−酢酸ビニル−ポリエチレン三元共重
合体等が挙げられる。これらの市販品としては、
エルバロイ(三井デユボンポリケミカル社製)、
N−ポリマ−(日石化学社製)、ハイミラン(三井
石油化学社製)、アドマー(三井石油化学社製)、
スミグラフト(住友化学社製)、HPR(三井デユ
ポンポリケミカル社製)等がある。 水密コンパウンドで、当該ビニル系接着性樹脂
とEVA又は/及びEEAとを適宜混練するのは、
ビニル系接着性樹脂単独ではポリ塩化ビニルへの
接着の他、導体金属とも接着性がよ過ぎて、水密
コンパウンドが絶縁体皮剥ぎ時、導体上に残る恐
れがあり、又、EVAやEEAだけでは、充填上、
好ましい高MFR銘柄のものがなく、撚線導体へ
の十分な充填が困難であるからである。そこで、
これらの両者を混練するわけであるが、この混練
により、そのメルトフローレシオ(MFR)を15
〜300としたのは、メルトフローレシオが15未満
では、撚線導体への水密コンパウンドの充填が十
分行われず、又メルトフローレシオが300を越え
ると、高温時、水密コンパウンドが軟化して端末
より滴下する恐れが生ずるからである。 尚、水密コンパウンドが導体中心まで十分充填
されないときには、中心素線に予め水密コンパウ
ンドを塗布して、外属側の素線間の隙間を大きく
したり、又は、この充填の際、コンパウンドが十
分軟化する温度まで撚線導体を予熱したりする手
段を講ずるとよい。 又、水密コンパウンドには、必要により、適当
量のカーボンブラツク、老化防止剤、防錆剤等を
添加することができる。 実施例 EVA又はEEA100重量部に対して、無水マレイ
ン酸グラフト化EVA(三井デユポンポリケミカ
ル、商品名:HPR、MFR=8)20重量部を混練
し、水密コンパウンドを造つた。 この水密コンパウンドのMFRはベースEVA又
はEEAを変えることにより、第1表に示す範囲
のものを得た。 このようにした得た水密コンパウンドとポリ塩
化ビニル絶縁体(被覆厚:1.4mm)とを、60mm2
撚線銅導体(1本/6本/12本の素線構成)に、
押出機により180℃の温度で2層同時押出するこ
とにより、ビニル絶縁電線(比較例No.1、実施例
No.2〜5、比較例No.6)を得た。 これらの各電線について、下記の試験を行い、
その結果を第1表に併記した。 <水密試験> 長さ2mの電線の片端より、1Kg/cm2の水圧を
掛け、24時間後の他端からの水漏れの有無で調べ
た。 <滴下試験> 長さ13mの電線の一端を長さ3cm以内で口出
し、この口出し部分を下にして恒温層中に垂直に
吊し、80℃、24時間加熱して、水密コンパウンド
の滴下の有無を調べた。 <剥離試験> 電線皮剥き器を用いて電線絶縁体の皮剥きを行
つたときの導体上に残る水密コンパウンドの有無
を調べた。 実施例 EVA100重量部に対し、第2表に示した各種ビ
ニル接着性樹脂20重量部を混練して、種々の水密
コンパウンドを得た。これらの水密コンパウンド
のMFRはEVA及びビニル接着性樹脂のMFRを
選択することにより、約100となるように調整し
た。 この各水密コンパウンドを撚線銅導体に充填し
てビニル絶縁電線(構造は上記実施例と同じ、
実施例No.7〜11、比較No.12〜13)を造つた。この
際の水密コンパウンドの充填は次の2方法によつ
た。 <タンデム法> 180℃の温度で導体に水密コンパウンドを充填
した後、同温度(180℃)でポリ塩化ビニル絶縁
体を押出機により押出被覆した。 <2層同時押出法> 水密コンパウンドとポリ塩化ビニル絶縁体を押
出機により、180℃で、2層を同時に押出して被
覆した。 この各電線について、上記実施例のときと同
様にしてなる<剥離試験>、<水密試験>、<滴下
試験>の各試験を行い、その結果を第2表に併記
した。
<Industrial Application Field> The present invention relates to a watertight vinyl insulated wire filled with a watertight compound used as an overhead power distribution line or the like. <Conventional technology> Conventionally, in electric wires used for overhead distribution lines,
By filling a watertight compound between the conductor and the insulator layer, water can be prevented from entering the conductor.
It is a common practice to eliminate corrosion deterioration of conductors and obtain stable electrical characteristics over a long period of time. In recent years, as a watertight compound for such uses,
In consideration of workability, etc., so-called dry type watertight electric wires using rubber or plastic resin-based wires are increasing. As this dry type watertight compound,
Materials that have a relatively proven track record include EVA (ethylene-vinyl acetate copolymer) and EEA (ethylene-ethyl acrylate copolymer), and polyethylene insulated wires using these compounds have already been provided. ing. EVA and EEA are often used here.
In addition to the important property that these resins have good adhesion to both the conductive metal and the polyethylene of the insulating layer, they also have a melt index (MI)
There are various grades available on the market with different grades, vinyl acetate content (VA%), ethyl acrylate content (EA%), etc., and they have advantages such as a wide range of choices and ease of use when processing. It is from. <Problems to be solved by the invention> However, even though EVA and EEA are excellent as described above, they have poor adhesion to polyvinyl chloride resin, and only the polyvinyl chloride peels off when the terminal is exposed. However, there was a problem in that the watertight compound remained on the conductor, significantly reducing workability. For this reason, this type of insulated wire is
EEA has not been used as a watertight compound. Therefore, the present inventors conducted various experiments and research in order to obtain a vinyl insulated wire using EVA or EEA as a watertight compound, and came to the following conclusion. In other words, as a watertight compound, EVA and
A mixture of EEA or both of these and vinyl adhesive resin, with a melt flow ratio (MFR) of 15.
~300 was found to provide sufficient adhesion between this watertight compound and polyvinyl chloride. The present invention was invented based on such research problems. <Means for solving the problems and their effects> The present invention provides a stranded wire conductor with a mixture of EVA or/and EEA and a vinyl adhesive resin, which has a melt flow ratio of 15 to 300. Watertight vinyl insulated wire filled with watertight compound and made of polyvinyl chloride as an insulator. In the present invention, since the watertight compound is kneaded with special characteristics, the watertight compound and the insulating polyvinyl chloride are well bonded to each other. An example of the electric wire of the present invention is shown in FIG. 1, where the stranded conductor 1 is composed of a central strand 1a, 6 layers of strands 1b, and 12 layers of strands 1c.
Between each of these strands 1a, 1b..., 1c...
A watertight compound 2 made of a kneaded mixture of EVA or EEA and a vinyl adhesive resin and having a melt flow ratio of 15 to 300 is filled, and the outermost layer is covered with an insulator 3 made of polyvinyl chloride. Here, when filling the watertight compound,
After being press-fitted between the stranded conductors using an extruder, a polyvinyl chloride insulator is extruded (tandem method), or as a more preferable method, this watertight compound and a polyvinyl chloride insulator are filled and coated by simultaneous extrusion of two layers. It is recommended to do so (two-layer coextrusion method). Examples of the vinyl adhesive resin used in the watertight compound include polyester resins, carboxylic acid metal salt grafted resins, chlorinated polyethylene, and polyvinyl chloride-vinyl acetate-polyethylene terpolymers. These commercially available products include:
Elvaloy (manufactured by Mitsui Dubon Polychemical Co., Ltd.),
N-Polymer (manufactured by Nisseki Chemical Co., Ltd.), Himilan (manufactured by Mitsui Petrochemical Co., Ltd.), Admer (manufactured by Mitsui Petrochemical Co., Ltd.),
Examples include Sumigraft (manufactured by Sumitomo Chemical Co., Ltd.) and HPR (manufactured by Mitsui DuPont Polychemical Co., Ltd.). The appropriate mixing of the vinyl adhesive resin and EVA or/and EEA in a watertight compound is as follows:
Vinyl-based adhesive resin alone does not only adhere to polyvinyl chloride, but also adheres too well to conductor metals, and there is a risk that watertight compounds may remain on the conductor when stripping the insulation. , on the filling,
This is because there is no preferred high MFR brand, and it is difficult to sufficiently fill the stranded conductor. Therefore,
Both of these are kneaded, and this kneading increases the melt flow ratio (MFR) to 15
~300 is because if the melt flow ratio is less than 15, the watertight compound will not be sufficiently filled into the stranded wire conductor, and if the melt flow ratio exceeds 300, the watertight compound will soften at high temperatures and become loose from the terminals. This is because there is a risk of dripping. If the watertight compound is not sufficiently filled to the center of the conductor, apply watertight compound to the center wire in advance to increase the gap between the outer wires, or make sure the compound is sufficiently softened during filling. It is advisable to take measures such as preheating the stranded wire conductor to a temperature that Further, appropriate amounts of carbon black, anti-aging agent, rust preventive agent, etc. can be added to the watertight compound, if necessary. Example 100 parts by weight of EVA or EEA was mixed with 20 parts by weight of maleic anhydride grafted EVA (Mitsui Dupont Polychemicals, trade name: HPR, MFR=8) to prepare a watertight compound. The MFR of this watertight compound was obtained within the range shown in Table 1 by changing the base EVA or EEA. The thus obtained watertight compound and polyvinyl chloride insulator (covering thickness: 1.4 mm) were applied to stranded copper conductors (1/6/12 strands) of 60 mm2 .
Vinyl insulated wire (Comparative Example No. 1, Example
Nos. 2 to 5 and Comparative Example No. 6) were obtained. The following tests were conducted on each of these wires.
The results are also listed in Table 1. <Watertight test> A water pressure of 1 kg/cm 2 was applied to one end of a 2 m long electric wire, and the test was conducted to check for water leakage from the other end 24 hours later. <Dripping test> One end of a 13 m long electric wire is opened within 3 cm in length, hung vertically in a constant temperature layer with the opened part facing down, heated at 80°C for 24 hours, and tested to see if the watertight compound drips. I looked into it. <Peeling test> The presence or absence of watertight compound remaining on the conductor was examined when the wire insulation was stripped using a wire stripper. Examples Various watertight compounds were obtained by kneading 100 parts by weight of EVA with 20 parts by weight of various vinyl adhesive resins shown in Table 2. The MFR of these watertight compounds was adjusted to approximately 100 by selecting the MFR of EVA and vinyl adhesive resin. Each of these watertight compounds is filled into a stranded copper conductor to make a vinyl insulated wire (the structure is the same as in the above example,
Examples Nos. 7 to 11 and Comparative Nos. 12 to 13) were produced. At this time, the following two methods were used to fill the watertight compound. <Tandem method> After filling the conductor with a watertight compound at a temperature of 180°C, a polyvinyl chloride insulator was extruded and coated with an extruder at the same temperature (180°C). <Two-layer co-extrusion method> A watertight compound and a polyvinyl chloride insulator were simultaneously extruded and coated in two layers at 180° C. using an extruder. Each of these electric wires was subjected to the <peel test>, <watertight test>, and <drop test> in the same manner as in the above examples, and the results are also listed in Table 2.

【表】【table】

【表】【table】

【表】 <発明の効果> 以上の説明から明らかなように、本発明によれ
ば、EVA又は/及びEEAにビニル接着性樹脂を
混練した水密コンパウンドを用いるため、ポリ塩
化ビニル絶縁体と水密コンパウンドとの密着性が
向上し、その結果、剥離性の良好な絶縁電線を得
ることができる。又、水密コンパウンドのMFR
を15〜300に設定してあるため、コンパウンドの
充填性がよく、導体との接着性も適度で、且つ高
温下でもコンパウンドの滴下のない優れた水密型
ビニル絶縁電線を得ることができる。
[Table] <Effects of the Invention> As is clear from the above description, according to the present invention, a watertight compound in which vinyl adhesive resin is kneaded with EVA or/and EEA is used. As a result, an insulated wire with good peelability can be obtained. Also, MFR of watertight compound
is set at 15 to 300, it is possible to obtain an excellent watertight vinyl insulated wire with good compound filling properties, moderate adhesion to the conductor, and no compound dripping even at high temperatures.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係るビニル絶縁電線の一例を
示した縦断面図である。 図中、1……撚線筒体、1a,1b,1c……
素線、2……水密コンパウンド、3……絶縁体。
FIG. 1 is a longitudinal sectional view showing an example of a vinyl insulated wire according to the present invention. In the figure, 1... twisted wire cylinder, 1a, 1b, 1c...
Element wire, 2... watertight compound, 3... insulator.

Claims (1)

【特許請求の範囲】[Claims] 1 撚線導体に、EVA又は/及びEEAとビニル
系接着性樹脂の混練物で、メルトフローレシオが
15〜300である水密コンパウンドを充填し、絶縁
体をポリ塩化ビニルとしたことを特徴とする水密
型ビニル絶縁電線。
1 A mixture of EVA or/and EEA and vinyl adhesive resin is added to the stranded wire conductor to improve the melt flow ratio.
A watertight vinyl insulated electric wire characterized by being filled with a watertight compound having a molecular weight of 15 to 300 and using polyvinyl chloride as the insulator.
JP60229645A 1985-10-15 1985-10-15 Water-sealed pvc insulated wire Granted JPS6288212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60229645A JPS6288212A (en) 1985-10-15 1985-10-15 Water-sealed pvc insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60229645A JPS6288212A (en) 1985-10-15 1985-10-15 Water-sealed pvc insulated wire

Publications (2)

Publication Number Publication Date
JPS6288212A JPS6288212A (en) 1987-04-22
JPH0340888B2 true JPH0340888B2 (en) 1991-06-20

Family

ID=16895444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60229645A Granted JPS6288212A (en) 1985-10-15 1985-10-15 Water-sealed pvc insulated wire

Country Status (1)

Country Link
JP (1) JPS6288212A (en)

Also Published As

Publication number Publication date
JPS6288212A (en) 1987-04-22

Similar Documents

Publication Publication Date Title
JPH0340888B2 (en)
JPH10204227A (en) Watertight composition and watertight insulated electric cable
JP3692315B2 (en) A watertight insulated wire using a compressed conductor.
JP4445727B2 (en) Watertight resin composition and watertight insulated wire
JP2010161040A (en) Watertight material, watertight insulated wire, method of manufacturing the same, and power cable
JP2829527B2 (en) Water resistant cable
JPS59175506A (en) Crosslinked polyethylene insulated high voltage cable
JPH0777090B2 (en) Outdoor PVC insulated wire
JPS6130367B2 (en)
JPS62128402A (en) Water tight polyvinyl chloride insulated wire
JPH0531784Y2 (en)
JPH01182337A (en) Watertight blend
JPS598742A (en) Composition for conductive material having watertightness
JPH09180549A (en) Water-tight admixture and water-tight electric wire using the water-tight admixture
JP2657507B2 (en) Watertight conductor
JP2918900B2 (en) Watertight conductor
JPS62157615A (en) Water-tight insulated wire
JP2829528B2 (en) Water resistant cable
JPS62133613A (en) Manufacture of water-tight insulated wire
JPH059778Y2 (en)
JPS5925108A (en) Watertight wire
JP2918910B2 (en) Watertight insulated wire core
JPH0128586Y2 (en)
JPH0453044B2 (en)
JPH01167350A (en) Water-tight blend

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees