JPH01167350A - Water-tight blend - Google Patents

Water-tight blend

Info

Publication number
JPH01167350A
JPH01167350A JP32809687A JP32809687A JPH01167350A JP H01167350 A JPH01167350 A JP H01167350A JP 32809687 A JP32809687 A JP 32809687A JP 32809687 A JP32809687 A JP 32809687A JP H01167350 A JPH01167350 A JP H01167350A
Authority
JP
Japan
Prior art keywords
watertight
vinyl acetate
ethylene
pts
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32809687A
Other languages
Japanese (ja)
Other versions
JPH0692510B2 (en
Inventor
Isao Yamazaki
山崎 勇夫
Chikashi Takeya
竹谷 千加士
Takeshi Bando
坂東 武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP32809687A priority Critical patent/JPH0692510B2/en
Publication of JPH01167350A publication Critical patent/JPH01167350A/en
Publication of JPH0692510B2 publication Critical patent/JPH0692510B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain the title blend bonding to both of a conductor such as crosslinked PE coated electric wire and insulator, by blending an ethylene-vinyl acetate copolymer with a modified polyolefin based adhesive and trimethyl- dihydroquinoline polymer at a specific ratio. CONSTITUTION:(A) 100 pts.wt. ethylene-vinylacetate copolymer (preferably having 15-45wt.% vinyl acetate copolymer content) is blended with (B) 1-20 pts.wt., preferably 3-10 pts.wt. modified polyolefin based adhesive (preferably consisting of a modified ethylene-vinylacetate copolymer having at least two kind of polar groups among OH, acetoxyl and carboxyl in a molecular chain) and (C) 0.1-20 pts.wt., preferably 3-10 pts.wt. 2,2,4-trimethyl-1,2- dihydroquinoline polymer (preferably having 1.04-1.12 specific gravity and >=70 softening point) to provide the aimed blend.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は水密性混和物に関するものであり、より詳しく
は、架橋ヂリエチレン等で被覆された絶縁電線における
撚線導体間の空隙及び撚線導体と外被絶縁体との間に充
填されて、導体と絶縁体との双方に接着する水密性混和
物に関するものであ、る。
[Industrial Application Field] The present invention relates to a watertight mixture, and more specifically, the present invention relates to a watertight mixture, and more specifically, to a watertight mixture, and more specifically, to a watertight mixture, and more particularly, to a watertight mixture, the gap between the stranded conductors and the gap between the stranded conductor and the jacket insulator in an insulated wire coated with cross-linked diethylene, etc. It relates to a watertight mixture that is filled between conductors and insulators and adheres to both conductors and insulators.

【従来の技術とその問題点】[Conventional technology and its problems]

従来、架空絶縁電線等の屋外用電線においては、撚線導
体への水の侵入を防止し、応力腐食による導体の劣化を
防止するために、撚線導体間の空隙及び撚線導体と外被
絶縁体との間に水密性混和物が充填されている。 この水密性混和物としては、近年、作業性等を考慮して
、高粘度のプラスチック混和物が多く用いられている。 しかし、水密性混和物の粘度が高すぎると、撚線導体に
圧入することが困難であるので、素線を撚り合わせる時
に充填しなければならないなど、複雑な製造方法が必要
となり、製造設備も大型化するという問題がある。 そのため、低分子量ポリエチレンやポリエチレンワック
スなどを混入して充填時の溶融粘度を小さくし、撚り合
わせ後の撚線導体に圧入充填できるようにしたものがあ
るが、かかる混和物は導体や絶縁体との接着性が悪く、
かつゴム弾性に乏しいため、この混和物を用いて製造し
た絶縁電線は、初期には水密性があっても、架線時に電
線が屈曲すると、導体と水密性混和物との間で剥離が生
じ、水密性を失うという問題があった。 そこで、撚線導体に圧入充填できる程度の溶融粘度を有
し、しかも導体及び絶縁体との接着性が良く、これを充
填した絶縁電線は屈曲しても水密性を失うことがないと
いう優れた水密性混和物がいくつか開発された。 しかしながら、このような水密性混和物を用いて製造し
た絶縁電線においては、高温状態で長期間放置した後に
低温下で使用する場合に、皮剥性に難点があることが判
明した。すなわち、製造後夏季に数ケ月間放置した絶縁
電線を冬季に使用すると、導体と水密性混和物との間の
接着力が増加しているため、外被絶縁体を剥ぎ取る際に
水密性混和物が導体上に残り、皮剥ぎ作業の能率が悪い
のである。 本発明の目的は、撚線導体への圧入充填が容易で、導体
及び絶縁体との接着強が良く、しかも、電線製造後長期
間放置しても導体との接着強度の変化しない水密性混和
物を提供する処にある。 [問題点を解決するための手段] 本発明の水密性混和物は、エチレン酢酸ビニル共重合体
100重量部に対して、変性ポリオレフィン系接着剤1
〜20重量部と、2.2.4−トリメチル−1,2−ジ
ヒドロキノリン重合物0.1〜20重量部とを、配合し
てなるものである。 本発明に用いるエチレン酢酸ビニル共重合体(EVA)
としては、酢酸ビニル(VA)含有量が15〜45重量
%のものが好ましい。その理由は、酢酸ビニル含有量が
15重量%未満のものを充填すると、導体の可撓性が損
われ、45重量%をこえるものを用いると、絶縁体との
接着力が小さくなるからである。 また、本発明に用いるエチレン酢酸ビニル共重合体とは
、1種類のエチレン酢酸ビニル共重合体単独だけでなく
、酢酸ビニル含有量の異なる2種類以上のエチレン酢酸
ビニル共重合体の混合物を含むものである。 さらに、エチレン酢酸ビニル共重合体としては、電線が
屈曲を受けても、それによって生ずるひずみに対応でき
るゴム弾性のあるものが望ましい。 また、本発明に用いる変性ポリオレフィン系接着剤とは
、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル
共重合体など、各種のポリオレフィンに官能基をグラフ
ト重合等により導入し、金属やプラスチックとの接着性
を付与した合成樹脂をいう。 変性ポリオレフィン系接着剤を配合するのは、水密性混
和物の接着力の増大のためであり、接着剤として変性ポ
リオレフィンをベースとしたものを選択する理由は、エ
チレン酢酸ビニル共重合体との相溶性が良いことにある
。 なかでも、分子鎖中に、水酸基、アセトキシル基、カル
ボキシル基のうちの少なくとも2種以上の極性基を有す
る変性エチレン酢酸ビニル共重合体から成るものが好ま
しいが、−例としでは、下記の化学構造式であられされ
るエチレン酢酸ビニル共重合体の部分ケン化物から成る
接着剤(武田薬品工業社製、デュミラン、Cタイプ)が
ある。 X−C)1 X−CHま ただし、X : C0OH基を含む。 このような変性ポリオレフィン系接着剤の配合量は、エ
チレン酢酸ビニル共重合体100重量部に対して、1〜
20重量部である。接着剤の配合量が1重量部未満の場
合は接着効果が乏しく、20重量部をこえる場合は導体
との接着力が強すぎて、絶縁・体を剥ぎ取る時に、水密
性混和物が、導体に接着したまま残る。好ましい配合量
は3〜10重量部である。 なお、変性ポリオレフィン系接着剤としては、前記デュ
ミランのほか、たとえばアトマー(三井石油化学工業■
商品名)があるが、これを用いる場合は、エチレン酢酸
ビニル共重合体100重量部に対して、3〜10ffi
量部配合するのが好ましい。 本発明に用いる2、2.4−トリメチル−1,2−ジヒ
ドロキノリン重合物は、比重が1.04〜1゜12で軟
化点が70℃以上のものであり、アンチゲンRD −F
 ’(住友化学社製)、ツクラック224(入内新興社
製)、ノンフレックスRD(精工化学社製)、アンテー
ジRD(川口化学社製)等として市販されている。この
2.2.4−トリメチル−1,2−ジヒドロキノリン重
合物は、水密性混和物と導体との接着強度を安定に維持
する働きがある。 2.2.4−)サメチル−1,2−ジヒドロキノリン重
合物の配合量は、エチレン酢酸ビニル共重合体100!
Il量部に対して、0.1〜20重量部である。配合量
が0.1重量部未満の場合は、この水密性混和物を用い
て製造した絶縁電線を高温状態で長期間放置した後に低
温下で皮剥ぎ作業をすると、導体上に水密性混和物が残
る。配合量が20重量部を超える場合は、導体との接着
性が悪くなり、水密性が劣る。好ましい配合量は3〜1
0重量部である。 なお、水密性混和物のメルトインデックスは5〜200
であるのが好ましい。メルトインデックスが5に満たな
いものは、撚線導体内へ充填するのに過大な圧力を必要
とし、製造設備が大型化するので好ましくない。一方、
メルトインデックスが200を超える水密性混和物を用
いて製造した絶縁電線においては、使用温度が高くなっ
た時に軟化したり、滴下したりするおそれがあるだけで
なく、スリーブによる導体接続部の抗張力も低下するの
で好ましくない。 水密性混和物のメルトインデックスを上記の好ましい値
とするに・は、主として、適切なメル 1トインデツク
スを有するエチレン酢酸ビニル共重合体を選択すればよ
い。 本発明の水密性混和物には、以上に述べた成分の外に必
要に応じて、エチレンエチルアクリレート共重合体(E
EA)、老化防止剤、加工助剤等を配合してもよい。 [発明の効果] 本発明に係る水密性混和物は、架橋ポリエチレン等の絶
縁用樹脂及び導体金属との接着強度が優れているだけで
なく、導体金属との接着強度が、外温の変動にかかわら
ず長期間安定である。従って、絶縁電線の水密用の充填
剤として使用すれば、製造された電線は、初期、屈曲後
を問わず、優れた水密性を有する。しがも、絶縁電線を
長期間(特に夏季)放置した後に低温下(例えば冬季)
で使用する場合でも、水密性混和物が外被絶縁体と一体
となって剥離されるので、電気工事の作業性が、−年を
通して常に良好である。 [実施例] 次に、実施例および比較例により本発明をさらに詳細に
説明するが、本発明はかかる実施例のみに限定されるも
のではない。 実施例1〜5、比較例1〜6 次表に示す実施例及び比較例の組成の水密性混和物をニ
ーダ−で混練りし、これを、2. 0關φ硬銅線を19
本撚り合せた導体断面積6゜1m2の撚線導体に充填し
た後に、その上に厚さ2.5anの耐候性架橋ポリエチ
レンを押出肢覆して水密性の架橋ポリエチレン絶縁電線
を作製した。これらの水密性混和物及び絶縁電線におけ
る諸特性を測定した結果を次表に示す。 表における諸特性は、下記の方法によって測定・評価し
たものである。 (1)メルトインデックス(MI) 水密性混和物についてJIS  K  6760 に規
定された方法により、荷重2,160gをかけ、190
℃における10分間の流出量を測定した。 (2)接着性 銅テープ(1關厚、25mm幅)の上に、水密性混和物
のシート(1mra厚)および架橋剤を入れたポリエチ
レンのシート(2mm厚)を、順次貼り合わせ、50k
g/clT+2の圧力下で、170℃、10分間熱した
ものを試料とする(ポリエチレンのシートは、水密性混
和物のシートに、一部分貼り合わさずに残す)。引張試
験機にて、ポリエチレンシートの未貼合せ部を把持し、
毎分100止の速度で引張った。その結果を以下の基準
により評価した。 弱:銅テープと水密性混和物のシートとの間で剥離し、
その強度が0.5kg/25 +n幅未満のもの 適:銅テープと水密性混和物のシートとの間で剥離し、
その強度が0.5kg/251111幅以上のもの 強:水密性混和物のシートが引きちぎれ、銅テープとポ
リエチレンシートの両方 に残ったもの (3)充填性 水密性混和物を撚線導体に圧入充填する際の作業性で評
価した。 (4)非滴下性 13cm長の絶縁電線の片端3cI11の外被絶縁体を
剥ぎ取り、その部分を下にして100℃の恒温槽中に垂
直につるし、24時間経過後に水密性混和物の滴下の有
無を調べ、その結果を以下の基準により評価した。 O:滴下しなかったもの ×:滴下したもの (5)初期の水密性 2m長の絶縁電線の片端より、0.5kg/Cl112
の水圧をかけて24時間放置した後、他端よりの漏水の
有無を調べ以下の基準により評価した。 O:漏水しなかったもの X:漏水したもの (6)屈曲後の水密性 2m長の絶縁電線を自己径の20倍径のマンドレルの半
周に巻付け、しかる後巻戻し、この往復を1回として、
5回屈曲し、その後前記水密性試験と同様の試験を行い
、同様の基準により評価した。 (7)初期の皮剥性 絶縁電線の外被絶縁体層を電工ナイフで剥離した際に、
撚線導体上に残った水密性混和物の量で、以下の基準に
より評価した。 O:水密性混和物が全く残らなかったものX:水密性混
和物が少しでも残ったもの(8)加熱後の皮剥性 40℃の恒温槽中で絶縁電線を30日間加熱後、常温で
1日放置し、−10℃まで冷却して前記皮剥性試験と同
様の試験を行ない、同様の基準により評価した。 表から明らかなように、実施例1〜5の水密性混和物及
びそれらを用いて製造した絶縁電線は、いずれも優れた
特性を有するものであった。 なお、実施例5においては、エチレンエチルアクリレー
ト共重合体を配合することにより、水密性混和物のメル
トインデックスを調節した。 一方、比較例1の水密性混和物においては、メルトイン
デックスが大きすぎるため、非滴下性が劣った。逆に、
比較例2の水密性混和物においては、メルトインデック
スが小さすぎるため、充填性が劣った。 比較例3の水密性混和物は、2.2.4−)サメチル−
1,2−ジヒドロキノリン重合物の配合量が小さいため
、これを用いて製造した絶縁電線においては、加熱後の
皮剥性が劣った。逆に、比較例4の水密性混和物は、2
.2.4−トリメチル−1,2−ジヒドロキノリン重合
物の配合量が大きいため、絶縁電線の水密性が劣った。 比較例5の水密性混和物は、変性ポリオレフィン系接着
剤の配合量が大きいため、これを用いて製造した絶縁電
線においては、初期及び加熱後のいずれの皮剥性も劣っ
た。逆に、比較例6の水密性混和物は、変性ポリオレフ
ィン系接む剤の配合量が少ないため、絶縁電線の水密性
が劣った。 特許出願人 タック電線株式会社、 代  理  人  弁理士  蔦  1) 璋  子ほ
か1名
Conventionally, in outdoor electric wires such as overhead insulated wires, in order to prevent water from entering the stranded conductors and prevent deterioration of the conductors due to stress corrosion, gaps between the stranded conductors and the outer sheath between the stranded conductors have been A watertight mixture is filled between the insulator and the insulator. In recent years, high viscosity plastic mixtures have been widely used as watertight mixtures in consideration of workability and the like. However, if the viscosity of the watertight mixture is too high, it is difficult to press-fit it into the stranded conductor, so complicated manufacturing methods are required, such as filling it when the wires are twisted together, and manufacturing equipment is also required. There is a problem with increasing the size. For this reason, some products mix low-molecular-weight polyethylene or polyethylene wax to reduce the melt viscosity at the time of filling so that they can be press-fitted into stranded wire conductors after twisting. has poor adhesion,
In addition, because it has poor rubber elasticity, even if insulated wires manufactured using this mixture are initially watertight, when the wire is bent during overhead wiring, separation occurs between the conductor and the watertight mixture. There was a problem of loss of watertightness. Therefore, we developed an excellent product that has a melt viscosity that can be press-fitted into stranded conductors, has good adhesion to conductors and insulators, and that insulated wires filled with this do not lose watertightness even when bent. Several watertight admixtures have been developed. However, it has been found that insulated wires manufactured using such watertight mixtures have difficulty in peeling when used at low temperatures after being left at high temperatures for a long period of time. In other words, when an insulated wire that has been left for several months in the summer after manufacturing is used in the winter, the adhesion between the conductor and the watertight compound increases, so when the jacket insulation is stripped off, the watertight compound is removed. The material remains on the conductor, making the stripping process inefficient. The purpose of the present invention is to provide watertight compatibility that can be easily press-fitted into a stranded conductor, has good adhesive strength with the conductor and insulator, and does not change the adhesive strength with the conductor even if the wire is left for a long time after manufacturing. It's a place that provides things. [Means for Solving the Problems] The watertight mixture of the present invention contains 1 part by weight of the modified polyolefin adhesive per 100 parts by weight of the ethylene-vinyl acetate copolymer.
~20 parts by weight and 0.1 to 20 parts by weight of 2,2,4-trimethyl-1,2-dihydroquinoline polymer. Ethylene vinyl acetate copolymer (EVA) used in the present invention
Preferably, the vinyl acetate (VA) content is 15 to 45% by weight. The reason is that if the vinyl acetate content is less than 15% by weight, the flexibility of the conductor will be impaired, and if it is more than 45% by weight, the adhesive strength with the insulator will be reduced. . Furthermore, the ethylene vinyl acetate copolymer used in the present invention includes not only one type of ethylene vinyl acetate copolymer alone, but also a mixture of two or more types of ethylene vinyl acetate copolymers having different vinyl acetate contents. . Further, as the ethylene vinyl acetate copolymer, it is desirable that the copolymer has rubber elasticity that can cope with the strain caused even when the electric wire is bent. Furthermore, the modified polyolefin adhesive used in the present invention is one in which functional groups are introduced into various polyolefins such as polyethylene, polypropylene, and ethylene-vinyl acetate copolymers through graft polymerization, etc., to give them adhesive properties with metals and plastics. Synthetic resin. The reason why a modified polyolefin-based adhesive is blended is to increase the adhesive strength of the watertight mixture, and the reason why a modified polyolefin-based adhesive is selected is because it is compatible with ethylene-vinyl acetate copolymer. It has good solubility. Among these, a modified ethylene vinyl acetate copolymer having at least two types of polar groups among hydroxyl group, acetoxyl group, and carboxyl group in the molecular chain is preferable. There is an adhesive (manufactured by Takeda Pharmaceutical Company, Dumilan, Type C) made of a partially saponified ethylene-vinyl acetate copolymer expressed by the formula: X-C)1 X-CH However, X: Contains a COOH group. The blending amount of such modified polyolefin adhesive is 1 to 1 to 100 parts by weight of ethylene vinyl acetate copolymer.
It is 20 parts by weight. If the amount of adhesive is less than 1 part by weight, the adhesion effect will be poor, and if it exceeds 20 parts by weight, the adhesion to the conductor will be too strong, and the watertight mixture will not adhere to the conductor when the insulation/body is removed. remains adhered to. The preferred amount is 3 to 10 parts by weight. In addition to the above-mentioned Dumilan, examples of modified polyolefin adhesives include Atmer (Mitsui Petrochemical Industries Ltd.)
There is a trade name), but when using this, 3 to 10 ffi is used for 100 parts by weight of ethylene vinyl acetate copolymer.
It is preferable to mix a certain amount. The 2,2,4-trimethyl-1,2-dihydroquinoline polymer used in the present invention has a specific gravity of 1.04 to 1°12, a softening point of 70°C or higher, and antigen RD-F.
' (manufactured by Sumitomo Chemical Co., Ltd.), Tsukrak 224 (manufactured by Iriuchi Shinko Co., Ltd.), Nonflex RD (manufactured by Seiko Kagaku Co., Ltd.), Antige RD (manufactured by Kawaguchi Kagaku Co., Ltd.), etc. This 2.2.4-trimethyl-1,2-dihydroquinoline polymer has the function of stably maintaining the adhesive strength between the watertight mixture and the conductor. 2.2.4-) The blending amount of samethyl-1,2-dihydroquinoline polymer is 100% of ethylene vinyl acetate copolymer!
The amount is 0.1 to 20 parts by weight based on the amount of Il. If the blending amount is less than 0.1 part by weight, if an insulated wire manufactured using this watertight mixture is left at a high temperature for a long period of time and then stripped at a low temperature, the watertight mixture will be deposited on the conductor. remains. If the amount is more than 20 parts by weight, the adhesion to the conductor will be poor and the watertightness will be poor. The preferred amount is 3 to 1
It is 0 parts by weight. The melt index of the watertight mixture is 5 to 200.
It is preferable that A material having a melt index of less than 5 is undesirable because it requires excessive pressure to fill the stranded wire conductor and increases the size of manufacturing equipment. on the other hand,
Insulated wires manufactured using watertight mixtures with a melt index of over 200 not only have the risk of softening or dripping when used at high temperatures, but also have the risk of tensile strength at the conductor connections made by sleeves. This is not preferable because it lowers the temperature. In order to bring the melt index of the watertight mixture to the above-mentioned preferred value, it is mainly necessary to select an ethylene-vinyl acetate copolymer having an appropriate melt index. In addition to the above-mentioned components, the watertight mixture of the present invention may optionally contain ethylene ethyl acrylate copolymer (E
EA), anti-aging agents, processing aids, etc. may be added. [Effects of the Invention] The watertight mixture according to the present invention not only has excellent adhesive strength with insulating resins such as cross-linked polyethylene and conductive metals, but also has excellent adhesive strength with conductive metals against fluctuations in external temperature. However, it is stable for a long time. Therefore, if it is used as a watertight filler for insulated wires, the manufactured wires will have excellent watertightness regardless of whether they are initially or after bending. However, after leaving the insulated wire for a long period of time (especially in the summer), it should be
Even when used in the field, the watertight admixture is peeled off together with the jacket insulation, so the workability of electrical work is always good throughout the year. [Examples] Next, the present invention will be explained in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. Examples 1 to 5, Comparative Examples 1 to 6 Watertight mixtures having the compositions of the Examples and Comparative Examples shown in the following table were kneaded in a kneader, and the mixture was mixed in 2. 0mmφ hard copper wire 19
After filling the stranded wire conductor with a cross-sectional area of 6°1 m2, weather-resistant cross-linked polyethylene with a thickness of 2.5 ann was extruded over the stranded wire conductor to produce a water-tight cross-linked polyethylene insulated wire. The following table shows the results of measuring various properties of these watertight mixtures and insulated wires. The various properties in the table were measured and evaluated by the following methods. (1) Melt index (MI) According to the method specified in JIS K 6760 for watertight mixtures, a load of 2,160 g was applied, and 190
The flow rate was measured for 10 minutes at °C. (2) A sheet of watertight mixture (1 mra thick) and a sheet of polyethylene containing a crosslinking agent (2 mm thick) were laminated in sequence on an adhesive copper tape (1 mm thick, 25 mm wide), and 50 k
The sample is heated at 170° C. for 10 minutes under a pressure of g/clT+2 (the polyethylene sheet is partially left unattached to the watertight mixture sheet). Grip the unbonded part of the polyethylene sheet using a tensile tester,
It was pulled at a speed of 100 stops per minute. The results were evaluated according to the following criteria. Weak: Peeling occurs between the copper tape and the sheet of watertight mixture,
Suitable for those whose strength is less than 0.5 kg/25 +n width: Peeling between the copper tape and the sheet of watertight mixture,
If the strength is 0.5 kg/251111 width or more Strong: The sheet of the watertight mixture is torn off and remains on both the copper tape and the polyethylene sheet (3) Filling The watertight mixture is press-fitted into the stranded conductor. It was evaluated based on the workability when doing so. (4) Non-dripping property Strip off the outer insulation of 3cI11 at one end of a 13cm long insulated wire, hang it vertically in a constant temperature bath at 100℃ with that part facing down, and drip the watertight mixture after 24 hours have passed. The presence or absence of was investigated and the results were evaluated according to the following criteria. O: Not dripped ×: Dropped (5) Initial watertightness 0.5kg/Cl112 from one end of a 2m long insulated wire
After applying a water pressure of 24 hours and leaving it for 24 hours, the presence or absence of water leakage from the other end was checked and evaluated according to the following criteria. O: No water leakage As,
It was bent 5 times, and then the same test as the above watertightness test was conducted, and evaluation was made using the same criteria. (7) When the outer insulation layer of the early peelable insulated wire was peeled off with an electrical knife,
The amount of watertight admixture remaining on the stranded wire conductor was evaluated according to the following criteria. O: No watertight admixture remained. X: Even a small amount of watertight admixture remained. The sample was left in the sun, cooled to -10°C, and subjected to the same test as the peelability test described above, and evaluated using the same criteria. As is clear from the table, the watertight mixtures of Examples 1 to 5 and the insulated wires manufactured using them all had excellent properties. In Example 5, the melt index of the watertight mixture was adjusted by blending an ethylene ethyl acrylate copolymer. On the other hand, in the watertight mixture of Comparative Example 1, the melt index was too large, so the non-dripability was poor. vice versa,
In the watertight mixture of Comparative Example 2, the melt index was too small, resulting in poor filling properties. The watertight mixture of Comparative Example 3 was 2.2.4-)samethyl-
Since the blended amount of the 1,2-dihydroquinoline polymer was small, the insulated wire manufactured using the same had poor peelability after heating. On the contrary, the watertight mixture of Comparative Example 4 has 2
.. Since the blended amount of the 2,4-trimethyl-1,2-dihydroquinoline polymer was large, the watertightness of the insulated wire was poor. Since the watertight mixture of Comparative Example 5 contained a large amount of the modified polyolefin adhesive, the insulated wire manufactured using the watertight mixture had poor peelability both initially and after heating. On the other hand, in the watertight mixture of Comparative Example 6, the amount of the modified polyolefin adhesive was small, so the watertightness of the insulated wire was poor. Patent applicant: TAC Electric Cable Co., Ltd., agent: Patent attorney Tsuta 1) Shoko and 1 other person

Claims (1)

【特許請求の範囲】 1、エチレン酢酸ビニル共重合体100重量部に対して
、変性ポリオレフィン系接着剤1〜20重量部と、2,
2,4−トリメチル−1,2−ジヒドロキノリン重合物
0.1〜20重量部とを、配合してなる水密性混和物。 2、前記変性ポリオレフィン系接着剤が、分子鎖中に、
水酸基、アセトキシル基、カルボキシル基のうちの少な
くとも2種以上の極性基を有する変性エチレン酢酸ビニ
ル共重合体から成ることを特徴とする特許請求の範囲第
1項記載の水密性混和物。 3、メルトインデックスが5〜200であることを特徴
とする特許請求の範囲第1項又は第2項記載の水密性混
和物。
[Claims] 1. 1 to 20 parts by weight of a modified polyolefin adhesive based on 100 parts by weight of ethylene vinyl acetate copolymer; 2.
A watertight mixture comprising 0.1 to 20 parts by weight of a 2,4-trimethyl-1,2-dihydroquinoline polymer. 2. The modified polyolefin adhesive has in its molecular chain,
The watertight mixture according to claim 1, characterized in that it is made of a modified ethylene-vinyl acetate copolymer having at least two polar groups selected from hydroxyl, acetoxyl, and carboxyl groups. 3. The watertight mixture according to claim 1 or 2, which has a melt index of 5 to 200.
JP32809687A 1987-12-23 1987-12-23 Watertight admixture Expired - Fee Related JPH0692510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32809687A JPH0692510B2 (en) 1987-12-23 1987-12-23 Watertight admixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32809687A JPH0692510B2 (en) 1987-12-23 1987-12-23 Watertight admixture

Publications (2)

Publication Number Publication Date
JPH01167350A true JPH01167350A (en) 1989-07-03
JPH0692510B2 JPH0692510B2 (en) 1994-11-16

Family

ID=18206466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32809687A Expired - Fee Related JPH0692510B2 (en) 1987-12-23 1987-12-23 Watertight admixture

Country Status (1)

Country Link
JP (1) JPH0692510B2 (en)

Also Published As

Publication number Publication date
JPH0692510B2 (en) 1994-11-16

Similar Documents

Publication Publication Date Title
US4286023A (en) Article of manufacture, the cross-linked product of a semi-conductive composition bonded to a crosslinked polyolefin substrate
US4150193A (en) Insulated electrical conductors
EP0334992B1 (en) Easily peelable semiconductive resin composition
US4246142A (en) Vulcanizable semi-conductive compositions
EP0040926B1 (en) Polyamide adhesive compositions and methods for their production, uses of such compositions, and joints and articles including such compositions
JP2003510394A (en) Extrudable thermoplastic materials and fiber micromodules made from such materials
KR100949633B1 (en) Semiconductive peelable closslinked resin composition and manufactured insulating cable using the same
JPH01167350A (en) Water-tight blend
JP5051360B2 (en) Insulated wires and cables
JPH01182337A (en) Watertight blend
JPH0195148A (en) Watertight mixture
GB2075991A (en) Hot Melt Adhesive Compositions Containing Polyamides
JPH0777090B2 (en) Outdoor PVC insulated wire
JPH0695444B2 (en) Heat resistant oil resistant insulated wire
JPS62157615A (en) Water-tight insulated wire
JPH09180549A (en) Water-tight admixture and water-tight electric wire using the water-tight admixture
JP2005048080A (en) Watertight resin composition and watertight insulated cable
JPS59175506A (en) Crosslinked polyethylene insulated high voltage cable
JP2588888B2 (en) Watertight OW electric wire
JPS61227305A (en) Water tight insulation wire
JPS629629B2 (en)
JP2657507B2 (en) Watertight conductor
JPS598742A (en) Composition for conductive material having watertightness
JPH0547238A (en) Semiconductor composition and power cable
JPS60193209A (en) Watertight insulated wire

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees