JPH0340485B2 - - Google Patents

Info

Publication number
JPH0340485B2
JPH0340485B2 JP56000026A JP2681A JPH0340485B2 JP H0340485 B2 JPH0340485 B2 JP H0340485B2 JP 56000026 A JP56000026 A JP 56000026A JP 2681 A JP2681 A JP 2681A JP H0340485 B2 JPH0340485 B2 JP H0340485B2
Authority
JP
Japan
Prior art keywords
particles
particle
fine
iron oxyhydroxide
granules
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56000026A
Other languages
Japanese (ja)
Other versions
JPS57113202A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56000026A priority Critical patent/JPS57113202A/en
Publication of JPS57113202A publication Critical patent/JPS57113202A/en
Publication of JPH0340485B2 publication Critical patent/JPH0340485B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70647Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides with a skin

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、微細な粒子形状を有する強磁性金属
鉄粒子の製造方法に関する。更により詳しくは磁
気記録用強磁性金属(α−Fe)微粒子用原料と
して良好な適性を有する針状性オキシ水酸化鉄微
粒子の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing ferromagnetic metal iron particles having a fine particle shape. More specifically, the present invention relates to a method for producing acicular iron oxyhydroxide fine particles having good suitability as a raw material for ferromagnetic metal (α-Fe) fine particles for magnetic recording.

〔従来の技術〕[Conventional technology]

磁気記録用磁性素材については、高い保磁力
(Hc)を有し、飽和磁化(σs)、残留磁化(σr)
共に高く、かつ角形比(R=σr/σs)が大きい等
の磁気特性が要求される。強磁性金属鉄の場合、
微細な針状粒子形態を与える事が有利である事か
ら、針状オキシ水酸化鉄粒子や、針状酸化鉄粒子
の製造法が数多く報告されている。例えば特許
166146号(昭19.8.4)には、FeSO4・7H2Oを鉄
原料とし、NaOHによる中和反応後、空気酸化
および種づけ結晶化法を応用する針状オキシ水酸
化鉄粒子の製造法が述べられている。
Magnetic materials for magnetic recording have high coercive force (Hc), saturation magnetization (σs), and residual magnetization (σr).
Magnetic properties such as a high squareness ratio (R=σr/σs) and a high squareness ratio (R=σr/σs) are required. In the case of ferromagnetic metal iron,
Since it is advantageous to provide fine acicular particle morphology, many methods for producing acicular iron oxyhydroxide particles and acicular iron oxide particles have been reported. For example, patent
No. 166146 (August 4, 1952) describes a method for producing acicular iron oxyhydroxide particles using FeSO4.7H2O as an iron raw material, applying air oxidation and seeded crystallization after neutralization reaction with NaOH. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

これら従来の針状金属鉄粒子製造方法の欠点と
しては、微細な針状オキシ水酸化鉄粒子から、還
元性ガスによる接触反応により金属鉄粒子を形成
せしめる場合において、原料としたオキシ水酸化
鉄粒子の殆ど大部分が微細な針状形態を有してい
ても、還元性ガスによる接触反応の結果、粒子の
破損、破壊、更には焼結が不可避的に生ずること
である。
A drawback of these conventional methods for producing acicular iron metal particles is that when forming metal iron particles from fine acicular iron oxyhydroxide particles through a catalytic reaction with a reducing gas, the iron oxyhydroxide particles used as raw materials Even if most of the particles have a fine needle-like morphology, the contact reaction with the reducing gas inevitably causes particle breakage, destruction, and even sintering.

その結果、該微粒子の磁気特性の著しい劣化、
すなわち保磁力、飽和磁化、残留磁化、角形比の
低下をもたらし、磁気記録用強磁性金属鉄粒子に
要求される性状を大きく損なうことである。
As a result, significant deterioration of the magnetic properties of the fine particles,
That is, this results in a decrease in coercive force, saturation magnetization, residual magnetization, and squareness ratio, which greatly impairs the properties required of ferromagnetic metal iron particles for magnetic recording.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の目的は、このような粒子の破壊を防ぐ
ことのできる特殊なオキシ水酸化鉄微粒子を用い
て性能のよい強磁性金属鉄(α−Fe)微粒子を
製造する方法を提供することである。
The purpose of the present invention is to provide a method for producing ferromagnetic metallic iron (α-Fe) fine particles with good performance using special iron oxyhydroxide fine particles that can prevent such particle destruction. .

本発明は、金属リン酸塩化合物を、微細な針状
オキシ水酸化鉄微粒子の表層部へ被着処理して表
面を化学的に修飾する事により、極めて良好な原
料適性を示すオキシ水酸化鉄微粒子を製造し、こ
れを公知の還元反応によつて処理して粒子の形態
の破損、破壊、更には焼結等のないα−Feを得
ることを内容とするものである。
The present invention has been developed by chemically modifying the surface of fine acicular iron oxyhydroxide particles by adhering a metal phosphate compound to the surface layer of fine acicular iron oxyhydroxide particles. The purpose of this method is to produce fine particles and process them by a known reduction reaction to obtain α-Fe without damage, destruction, or even sintering of the particle shape.

本発明の方法における金属リン酸塩化合物の被
着量は、PとFeとの原子重量比で0.05/100〜
5/100であることが必要であり、好ましくは
0.1/100〜3/100、より好ましくは0.5/100〜
1/100の範囲内である。これより少ない被着量
では、金属リン酸塩化合物の被着の効果が顕著に
見られず、またこれよりも多い場合は、引き続き
行われる還元反応において、金属鉄粒子表面部よ
りの剥離化が生じ易くなり、本発明の主目的とす
る金属鉄粒子表面層の化学的修飾が顕著とならな
い。
The amount of metal phosphate compound deposited in the method of the present invention is 0.05/100 to 0.05/100 in atomic weight ratio of P to Fe.
Must be 5/100, preferably
0.1/100~3/100, more preferably 0.5/100~
It is within the range of 1/100. If the deposition amount is less than this, the effect of deposition of the metal phosphate compound will not be noticeable, and if the amount is more than this, peeling from the surface of the metal iron particles will occur in the subsequent reduction reaction. The chemical modification of the surface layer of metal iron particles, which is the main objective of the present invention, does not become noticeable.

本発明において用いられる金属リン酸塩化合物
としては、K3PO4、K2HPO4KH2PO4等のカリウ
ム塩とCrPO4・6H2O等のリン酸クロム塩および
Co3(PO42のリン酸コバルト塩が好適に利用でき
る。しかして、それらの化合物形態に制限をうけ
ることはない。
The metal phosphate compounds used in the present invention include potassium salts such as K 3 PO 4 , K 2 HPO 4 KH 2 PO 4 , chromium phosphate salts such as CrPO 4 .6H 2 O, and
Cobalt phosphate salt of Co 3 (PO 4 ) 2 can be suitably used. However, there are no restrictions on the form of these compounds.

一般にアルカリ金属塩は水可溶性であるが、お
どろくべき事には湿式中和、酸化反応による微細
な針状性オキシ水酸化鉄粒子の変性において水に
殆ど不溶な金属リン酸塩化合物を使用しても際立
つた本発明の効果が認められるものである。
Generally, alkali metal salts are water-soluble, but surprisingly, metal phosphate compounds that are almost insoluble in water are used in wet neutralization and modification of fine acicular iron oxyhydroxide particles through oxidation reactions. The remarkable effects of the present invention can also be recognized.

本発明の方法において、オキシ水酸化鉄微粒子
の表層部に金属リン酸塩化合物を被着させる時期
としては、 原料鉄塩水溶液とアルカリ剤との中和反応完
了時点、もしくは、 空気等の酸化性ガス吹き込みによる酸化反応
完了時点、もしくは、 水洗・濾過後に得られるペースト状物に、も
しくは、 該ペースト状物の乾燥化物に、もしくは、 該乾燥物を仮焼したものに、 のうち、いづれに於いても適用できる。
In the method of the present invention, the time when the metal phosphate compound is deposited on the surface layer of the iron oxyhydroxide fine particles is at the time when the neutralization reaction between the raw material iron salt aqueous solution and the alkaline agent is completed, or when the oxidation of air etc. At the time of completion of the oxidation reaction by gas blowing, or on the paste obtained after washing and filtration, or on the dried product of the paste, or on the calcined product of the dried product, whichever of the following: It can be applied even if

具体的な被着方法としては、特別な制限はない
が、公知の方法、例えば撹拌混合による水溶液
系での固形物粒子表層部への被着処理法、また
乳鉢、らいかい釜、ボール・ミル、ニーダー等を
利用した固・固混合練り込み法等で被着すること
ができる。特に水に不溶な化合物を使用して表層
被着を行う場合には、既述の方法を充分に行う
事が好ましい。
There are no particular restrictions on the specific method of adhesion, but known methods such as adhesion treatment to the surface layer of solid particles in an aqueous solution system using stirring and mixing, a mortar, a rice cooker, a ball mill, etc. It can be deposited by a solid-solid mixing method using a kneader or the like. Particularly when a water-insoluble compound is used for surface coating, it is preferable to carry out the above-mentioned method sufficiently.

この方法によつて、少なくともPとFeとの原
子重量比0.01/100を被着することができ、
0.05/100以上では顕著に本発明の効果が発現す
る。単に含有させるのではなく、表層部に被着さ
せることによつて、還元反応にたいする適性を製
造技術上の利点が発現する。
By this method, it is possible to deposit at least an atomic weight ratio of P and Fe of 0.01/100,
When the ratio is 0.05/100 or more, the effects of the present invention are significantly exhibited. By depositing it on the surface layer rather than simply containing it, an advantage in terms of manufacturing technology is expressed in its suitability for reduction reactions.

前記した原料鉄塩水溶液とアルカリ剤との中和
反応に使用される第1鉄塩は、硫酸塩、塩化物あ
るいは種々の鉱酸塩類であり、単独もしくは2種
以上の併用が可能である。なかでも硫酸塩が多用
される。更に第2鉄塩は、硫酸塩、硝酸塩、炭酸
塩、塩化物や種々の鉱酸塩類である。第1鉄塩と
して硫酸塩を使用する場合は、併用する第2鉄塩
としては硫酸塩および/または硝酸塩が好ましい
が、これに必ずしも限定されるものではない。
The ferrous salt used in the neutralization reaction between the raw material iron salt aqueous solution and the alkaline agent is a sulfate, a chloride, or various mineral acid salts, and they can be used alone or in combination of two or more. Among them, sulfates are often used. Further ferric salts include sulfates, nitrates, carbonates, chlorides and various mineral acid salts. When a sulfate is used as the ferrous salt, the ferric salt used in combination is preferably a sulfate and/or a nitrate, but is not necessarily limited thereto.

一方、アルカリとしては、KOHやNaOH等の
水酸化アルカリ、K2CO3やNa2CO3等の炭酸アル
カリ、またNH3の水溶液、更に尿素などの様に
水溶液状態での加熱により熱分解を起こして実質
的にNH3と同じ作用を有する物質を指す。これ
らのどれを選択しても本発明の実施が本質的に可
能である。
On the other hand, alkalis include alkali hydroxides such as KOH and NaOH, alkali carbonates such as K 2 CO 3 and Na 2 CO 3 , aqueous solutions of NH 3 , and even urea, which can be thermally decomposed by heating in an aqueous solution state. refers to a substance that has substantially the same effect as NH3 . It is essentially possible to implement the present invention by selecting any of these.

本発明の方法において表層被着に使用されるオ
キシ水酸化鉄粒子は、好ましくは針状性オキシ水
酸化鉄粒子であり、これらは公知の方法に準じて
製造することができる。すなわち、第1鉄塩ある
いは第1鉄塩と第2鉄塩との混合物を水溶液と
し、次いでアルカリ水溶液を投入して中和反応を
行わせて不溶性物質を形成させ、次に空気により
酸化反応を続けると微細な針状オキシ水酸化鉄が
形成される。
The iron oxyhydroxide particles used for surface coating in the method of the present invention are preferably acicular iron oxyhydroxide particles, and these can be produced according to known methods. That is, a ferrous salt or a mixture of a ferrous salt and a ferric salt is made into an aqueous solution, then an alkaline aqueous solution is added to perform a neutralization reaction to form an insoluble substance, and then an oxidation reaction is performed with air. If this continues, fine acicular iron oxyhydroxide is formed.

この湿式中和、酸化反応においては、鉄塩の種
類・量・水溶液濃度、またアルカリ物質の種類・
量・水溶液濃度、更に中和反応段階での温度およ
び維持時間や酸化反応を進めるための温度および
空気供給量、速度、時間等の多くの操作因子があ
り、最終生成物であるオキシ水酸化鉄粒子の形態
に微妙な影響を与える。
In this wet neutralization and oxidation reaction, the type, amount, and aqueous solution concentration of the iron salt, as well as the type and amount of the alkaline substance,
There are many operating factors such as the amount and concentration of the aqueous solution, as well as the temperature and maintenance time in the neutralization reaction stage, the temperature and air supply amount, rate, and time for proceeding with the oxidation reaction. Subtly affects particle morphology.

しかし、リン酸塩化合物を副成分として粒子表
面処理の様式で被着する事によつて生じる粒子形
態面での影響は殆ど見られる事はない。
However, almost no effect on particle morphology is observed when a phosphate compound is applied as a subcomponent in the manner of particle surface treatment.

この湿式中和、酸化反応によつて形成された更
に場合により粒子の表層部に被着処理を施された
針状オキシ水酸化鉄粒子は、水洗、濾過操作を経
た後、通常100〜150℃で空気浴中で乾燥し、必要
に応じて微粉化あるいは顆粒化して乾燥オキシ水
酸化鉄粒子粉末を得る。
The acicular iron oxyhydroxide particles formed by this wet neutralization and oxidation reaction and optionally subjected to adhesion treatment on the surface layer of the particles are washed with water and filtered, and then heated to a temperature of usually 100 to 150°C. The powder is dried in an air bath and, if necessary, pulverized or granulated to obtain dry iron oxyhydroxide particles.

場合によつては更に250〜300℃での仮焼を行い
仮焼オキシ水酸化鉄粒子粉末としてもよい。
In some cases, it may be further calcined at 250 to 300°C to obtain calcined iron oxyhydroxide particles.

金属リン酸塩化合物の被着は既述の方法によつ
て成されるが、かくして得られた乾燥乃至は仮焼
したオキシ水酸化鉄粒子粉末を原料として、強磁
性金属鉄粒子を製造するには、公知の方法に準じ
て行うことができる。
The metal phosphate compound is deposited by the method described above, but in order to produce ferromagnetic metal iron particles using the thus obtained dried or calcined iron oxyhydroxide particle powder as a raw material. This can be carried out according to a known method.

即ち、例えば反応用原料ガスの予熱器を備え、
また、外部より温度規制可能な鋼管製反応器に乾
燥あるいは仮焼したオキシ水酸化鉄微粒子粉末を
充填し、200〜500℃で還元性ガスによる接触還元
反応を行うことにより強磁性金属鉄粒子粉末を製
造することができる。還元反応の反応器は、固定
床、移動床のいずれの形式でもよく、また常圧反
応である必要はなく加圧下でもよい。
That is, for example, it is equipped with a preheater for the raw material gas for reaction,
In addition, ferromagnetic metallic iron particles can be produced by filling dried or calcined iron oxyhydroxide fine particles into a steel pipe reactor whose temperature can be regulated from the outside and carrying out a catalytic reduction reaction with a reducing gas at 200 to 500°C. can be manufactured. The reactor for the reduction reaction may be of either fixed bed or moving bed type, and does not need to be a normal pressure reaction, but may be under pressure.

本発明では、反応用原料ガスの供給量、供給速
度には原則的には大きな制限は必要ないが、気体
空間速度(GHSV)で表示すれば、0.1〜
100Nl/gr−Fe/hr、好ましくは2〜50Nl/gr
−Fe/hrの範囲が適当である。この範囲より少
ない量では、反応の進行が遅く現実的ではなく、
またこれより多い量では反応器内の圧力損失が増
大するので反応操作上必ずしも適切とは言えな
い。
In the present invention, there is no need in principle to impose large restrictions on the supply amount and supply rate of raw material gas for reaction, but if expressed in gas hourly space velocity (GHSV),
100Nl/gr-Fe/hr, preferably 2-50Nl/gr
-Fe/hr range is appropriate. If the amount is less than this range, the reaction progresses slowly and is not practical.
Moreover, if the amount is larger than this, the pressure loss within the reactor increases, so it is not necessarily suitable for reaction operation.

更に反応温度範囲についても上記範囲からはず
れると、低温では反応進行速度が遅く、反応の完
結に長時間を要して現実的ではなくなり、高温側
では反応速度が早すぎるため不必要な粒子破損、
破壊、更には焼結を招きやすくなる傾向がある。
Furthermore, if the reaction temperature range deviates from the above range, at low temperatures the reaction progresses slowly and takes a long time to complete, making it unrealistic, while at high temperatures the reaction rate is too fast, resulting in unnecessary particle breakage and
This tends to lead to destruction and even sintering.

本発明の方法により、金属リン酸塩化合物を副
成分として被着させた針状オキシ水酸化鉄粒子を
原料として、気固接触還元反応によつて得た強磁
性金属鉄粒子の形態は、高倍率の電子顕微鏡観察
によれば、原料とした針状オキシ水酸化鉄微粒子
の形態を殆ど完全に保持しており、粒子の破損、
破壊、更には粒子間架橋すなわち焼結の様な現象
は殆ど見られない。
According to the method of the present invention, ferromagnetic metal iron particles obtained by gas-solid catalytic reduction reaction using acicular iron oxyhydroxide particles coated with a metal phosphate compound as a subcomponent as a raw material have a high morphology. According to high-magnification electron microscopy, the morphology of the acicular iron oxyhydroxide fine particles used as the raw material was almost completely maintained, and the particles were not damaged.
Phenomena such as destruction and interparticle crosslinking, that is, sintering, are hardly observed.

更に、本発明の方法により製造した強磁性金属
鉄粒子の磁気特性も、例えば保磁力(Hc)で見
ると、粒子の大きさや針状比によつても変わる
が、Hc=1000〜1500Oeと極めて高い値を有し、
磁気記録用強磁性金属鉄粒子に要求される性状を
よく満足させるものであり実用的価値が高い。
Furthermore, the magnetic properties of the ferromagnetic metal iron particles produced by the method of the present invention, for example, in terms of coercive force (Hc), vary depending on the particle size and acicularity ratio, but Hc = 1000 to 1500 Oe, which is extremely high. has a high value,
It satisfies the properties required for ferromagnetic metallic iron particles for magnetic recording and has high practical value.

以下、実施例および比較例により本発明を詳細
に説明する。
Hereinafter, the present invention will be explained in detail with reference to Examples and Comparative Examples.

〔実施例〕〔Example〕

実施例 1 A 粒子表層部にリン酸カリを被着したオキシ水
酸化鉄の製造及び評価。
Example 1 A Production and evaluation of iron oxyhydroxide with potassium phosphate coated on the particle surface layer.

FeSO4・7H2O1000grを、45℃に保温した水
20中に投入して水溶液とし、これと別途用意
したNaOH500grを水1000ml中に溶解させた45
℃水溶液とを50分間撹拌混合を続けて中和反応
を完結させた。
FeSO 4・7H 2 O1000gr water kept at 45℃
20 to make an aqueous solution, and this and separately prepared NaOH500gr were dissolved in 1000ml of water.45
℃ aqueous solution was continued to be stirred and mixed for 50 minutes to complete the neutralization reaction.

この時点で、リン酸カリウムKPO41.50grを
水200ml中に溶解させた45℃水溶液を加えて、
撹拌混合を10分間続けた後、全系を60℃に昇温
加熱して、100Nl/min.の供給速度で空気を吹
き込み、酸化反応を開始し、6時間続けて、黄
色状のオキシ水酸化鉄を不溶性の沈澱粒子とし
て得た。
At this point, add a 45°C aqueous solution of 1.50 gr of potassium phosphate KPO 4 dissolved in 200 ml of water.
After stirring and mixing for 10 minutes, the entire system was heated to 60℃ and air was blown at a feed rate of 100Nl/min to start the oxidation reaction, which continued for 6 hours to produce yellow oxyhydroxide. Iron was obtained as insoluble precipitated particles.

系を室温に冷却し、以後水洗、吸引濾過によ
り該K−P−変性オキシ水酸化鉄粒子のペース
ト状物を得た。110℃で一夜乾燥して、K−P
−変性乾燥オキシ水酸化鉄粒子固形物を得た。
The system was cooled to room temperature, and then washed with water and filtered under suction to obtain a paste of the K--P-modified iron oxyhydroxide particles. Dry overnight at 110°C, K-P
- A modified dry iron oxyhydroxide particle solid was obtained.

このものを木ハンマーを用いて6〜12メツシ
ユの顆粒状物に調節して、K−P−変性乾燥オ
キシ水酸化鉄粒子流状体を調整した。
This material was adjusted to 6 to 12 mesh granules using a wooden hammer to prepare a KP-modified dry iron oxyhydroxide particle fluid.

この顆粒体を常法により50000倍の倍率で電
子顕微鏡観察に供した所、形状のよく揃つた針
状性微粒子が最小単位であり、大きさは主とし
て長軸0.5〜0.6μm、短軸0.02〜0.03μmであつ
た。
When this granule was subjected to electron microscopy at a magnification of 50,000 times using a conventional method, the smallest unit was a well-shaped needle-like fine particle, and the size was mainly 0.5 to 0.6 μm on the long axis and 0.02 to 0.02 μm on the short axis. It was 0.03 μm.

更に、該顆粒体を原子吸光法による元素分析
に供した所、Fe原子とKおよびPの重量比は
K/Fe=0.17/100およびP/Fe=0.14/100で
あつた。
Furthermore, when the granules were subjected to elemental analysis by atomic absorption spectroscopy, the weight ratios of Fe atoms to K and P were K/Fe=0.17/100 and P/Fe=0.14/100.

B K−P−変性α−Fe粒子の製造及び評価。B Production and evaluation of KP-modified α-Fe particles.

上記のK−P変性針状オキシ水酸化鉄微粒子
顆粒体100grを、反応ガス用予熱器を持ちまた
SiC粒子等からなる流動浴により、長軸方向へ
の均一な加熱規制可能な内径1.5インチの鋼管
製反応器へ充填し、H2ガスをGHSV=35Nl−
H2/gr−Fe/hrの供給速度で流通させて、
375℃で8時間の還元反応を行つた。
100g of the above K-P modified acicular iron oxyhydroxide fine particle granules were heated using a preheater for the reaction gas.
A fluidized bath made of SiC particles, etc. is used to fill a steel pipe reactor with an inner diameter of 1.5 inches, which allows for uniform heating control in the long axis direction, and H2 gas is GHSV = 35Nl-
Distributed at a supply rate of H2/gr-Fe/hr,
The reduction reaction was carried out at 375°C for 8 hours.

反応終了後、室温へ降温させて、N2ガス雰
囲気下で還元粒子顆粒体を採取、X−線回折像
の測定に供した所、95%以上が高結晶性のα−
Fe結晶体を示した。該α−Fe粒子顆粒体を電
子顕微鏡による粒子形態を観察と磁気特性を調
べた所、粒子形態は、原料粒子形態をよく継承
しており破損、破壊、更には焼結等は殆ど見ら
れず、更に、Hc=1210Oe、σs=175.0emu/
gr.、およびR=0.53であつた。
After the reaction was completed, the temperature was lowered to room temperature, the reduced particle granules were collected under an N2 gas atmosphere, and the X-ray diffraction image was measured.
Fe crystals were shown. When the particle morphology of the α-Fe particle granules was observed using an electron microscope and the magnetic properties were investigated, the particle morphology closely inherited the raw material particle morphology, with almost no breakage, destruction, or even sintering observed. , Furthermore, Hc=1210Oe, σs=175.0emu/
gr., and R=0.53.

実施例 2 A 粒子表層にリン酸クロムを被着したオキシ水
酸化鉄の製造。
Example 2 A Production of iron oxyhydroxide with chromium phosphate coated on the particle surface layer.

K3PO4を用いない事以外は実施例1に記載
の方法と全く同様にしてFeSO4・7H2Oと
NaOHとの中和反応、並びに引き続いて空気
酸化反応を行つて、黄色状のオキシ水酸化鉄を
不溶性沈澱物質として得た。次に、CrPO4
6H2OをP/Fe=0.50/100重量比換算で加え、
30分間撹拌を続け、以降全系を室温にもどし水
洗・濾別後、110℃で一夜乾燥して、Cr−P−
塩被着化乾燥オキシ水酸化鉄微粒子固形物を
得、次いで実施例1と同様にして顆粒体とし
た。
FeSO 4 .7H 2 O and
Neutralization reaction with NaOH followed by air oxidation reaction yielded yellow iron oxyhydroxide as an insoluble precipitated material. Next, CrPO4
Add 6H 2 O at P/Fe=0.50/100 weight ratio,
Stirring was continued for 30 minutes, after which the entire system was returned to room temperature, washed with water, filtered, and dried overnight at 110°C to obtain Cr-P-
A salt-coated dry iron oxyhydroxide fine particle solid was obtained, and then granules were obtained in the same manner as in Example 1.

該顆粒体は、電子顕微鏡による観察によれ
ば、針状形微粒子を最小単位として持ち、その
主たる長軸系0.5〜0.6μm、短軸系0.02〜0.03μ
mであつた。また原子吸光法による定量分析の
結果、P/Fe=0.47/100重量比の割合でP原
子を含むものであつた。
According to observation using an electron microscope, the granules have needle-shaped fine particles as the smallest unit, and the major axis is 0.5 to 0.6 μm and the short axis is 0.02 to 0.03 μm.
It was m. Further, as a result of quantitative analysis by atomic absorption spectrometry, it was found that it contained P atoms at a weight ratio of P/Fe=0.47/100.

B α−Fe微粒子の製造。B Production of α-Fe fine particles.

このリン酸クロム被着化乾燥オキシ水酸化鉄
微粒子顆粒を原料として、実施例1と全く同一
の条件で還元反応を行いα−Fe微粒子顆粒体
を得た。
Using the dried iron oxyhydroxide fine particle granules coated with chromium phosphate as a raw material, a reduction reaction was carried out under exactly the same conditions as in Example 1 to obtain α-Fe fine particle granules.

該α−Fe微粒子顆粒体は、電子顕微鏡観察
によれば、針状形微粒子を最小粒子単位として
持ち、その大きさは、主たる長軸径0.5〜0.6μ
m、短軸径0.02〜0.04μmで、粒子の破損・破
壊更に焼結等は殆ど認められなかつた。また該
顆粒体の磁気特性は、Hc=1270Oe、σs=
175.0emu/gr、R=0.53であつた。
According to electron microscopic observation, the α-Fe fine particle granules have needle-shaped fine particles as the smallest particle unit, and the size thereof is 0.5 to 0.6μ in the main long axis diameter.
m, the minor axis diameter was 0.02 to 0.04 μm, and almost no particle breakage, destruction, or sintering was observed. In addition, the magnetic properties of the granules are: Hc=1270Oe, σs=
It was 175.0emu/gr, R=0.53.

実施例 3〜9 A 粒子表面にリン酸アルミニウムおよびリン酸
コバルトを被着したオキシ水酸化鉄の製造。
Examples 3-9 A Production of iron oxyhydroxide with aluminum phosphate and cobalt phosphate deposited on the particle surface.

K3PO4を使用しない事以外は実施例1と全
く同様な方法で乾燥オキシ水酸化鉄微粒子固形
物を得た。次いで該固形物とAlPO4およびCo3
(PO42更に水を適量加えてらいかい器により
混合処理して、110℃で3時間乾燥、次に6〜
12メツシユに調節して、Al−Co−P−被着乾
燥オキシ水酸化鉄微粒子顆粒体を得た。
A dry solid iron oxyhydroxide fine particle was obtained in exactly the same manner as in Example 1 except that K 3 PO 4 was not used. Then the solids and AlPO 4 and Co 3
(PO 4 ) 2 Add an appropriate amount of water, mix with a sieve, dry at 110°C for 3 hours, and then dry for 6 to 30 minutes.
The mesh size was adjusted to 12 to obtain Al--Co--P-coated dry iron oxyhydroxide fine particle granules.

尚、既述AlPO4およびCo3(PO42の添加量
は、Al、CoおよびPと鉄との原子重量比で、
Al/Fe=0.5/100、Co/Fe=2.0/100および
P/Fe=1.26/100とした。
The amounts of AlPO 4 and Co 3 (PO 4 ) 2 mentioned above are the atomic weight ratio of Al, Co and P to iron,
Al/Fe=0.5/100, Co/Fe=2.0/100 and P/Fe=1.26/100.

該顆粒体は、微細な針状径微粒子を最小粒子
単位として持つ事が、電子顕微鏡観察の結果認
められた。該針状形微粒子は、主とした長軸形
0.5〜0.6μm、短軸形0.02〜0.03μmの大きさを
示した。
As a result of electron microscopy observation, it was found that the granules had fine acicular diameter particles as the smallest particle unit. The needle-shaped fine particles are mainly long-axis shaped.
The size was 0.5 to 0.6 μm, and the short axis was 0.02 to 0.03 μm.

B Al−Co−P−変性α−Fe微粒子の製造及び
評価。
B Production and evaluation of Al-Co-P-modified α-Fe fine particles.

次に該顆粒体を実施例1と同一条件で還元反
応を供してAl−Co−P−変性α−Fe微粒子顆
粒体とした。
Next, the granules were subjected to a reduction reaction under the same conditions as in Example 1 to obtain Al-Co-P-modified α-Fe fine particle granules.

電子顕微鏡観察によれば該顆粒体は、微細な
針状形微粒子を基本単位として持ち、その大き
さは、長軸径0.5〜0.6μm、短軸径0.02〜0.03μ
mで原料の形態を良く継承しており、粒子の破
損・破壊更には焼結等は、殆ど認められなかつ
た。
According to electron microscopic observation, the granules have fine needle-shaped particles as basic units, and the size of the granules is 0.5 to 0.6 μm in major axis diameter and 0.02 to 0.03 μm in minor axis diameter.
The shape of the raw material was well preserved in M, and there was almost no particle damage, destruction, or sintering.

磁気特性の評価を行つた所、Hc=1250Oe、
σs=185.2、R=0.53であつた。
When we evaluated the magnetic properties, Hc=1250Oe,
σs=185.2 and R=0.53.

比較例 1 金属リン酸塩を被着させない事以外は実施例1
と全く同様な方法で、主たる長軸径0.5〜0.6μm
短軸径0.02〜0.03μmの針状性微粒子を最小単位
として持つ乾燥オキシ水酸化鉄微粒子顆粒体を製
造し、実施例1と同一条件で還元反応に供して、
α−Fe微粒子顆粒体とした。
Comparative Example 1 Example 1 except that metal phosphate is not deposited
The main major axis diameter is 0.5 to 0.6 μm using exactly the same method as
Dry iron oxyhydroxide fine particle granules having acicular fine particles with a minor axis diameter of 0.02 to 0.03 μm as the minimum unit were produced, and subjected to a reduction reaction under the same conditions as in Example 1.
α-Fe fine particle granules were obtained.

該顆粒体の電子顕微鏡観察によれば、大部分が
0.4〜0.5μm程度の球状微粒子に変化しており、
更に焼結化を起こしていた事が見受けられた。更
に磁気特性を評価した所、Hc=704Oe、σs=
141.0、R=0.37であつた。粒子形態と磁気特性
ともに満足のゆくものではなかつた。
According to electron microscopic observation of the granules, most of them were
It has changed into spherical fine particles of about 0.4 to 0.5 μm,
Furthermore, it was observed that sintering had occurred. Furthermore, when the magnetic properties were evaluated, Hc=704Oe, σs=
141.0, R=0.37. Both particle morphology and magnetic properties were unsatisfactory.

比較例 2 比較例1に記載した実質的にFe以外の金属元
素を含む事ない微細な針状の乾燥オキシ水酸化鉄
微粒子顆粒体とZn(PO42・8H2Oとを、適当量の
水を適宜加えながら、らいかい混合し、次いで乾
燥・調節して、P/Fe=9.5/100重量比なる割合
で、Zn−リン酸塩を粒子表層部に混在させた乾
燥変性オキシ水酸化微粒子顆粒体を製造した。該
顆粒体を実施例1と同一の条件で還元反応させ
て、Zn−P−変性α−Fe微粒子顆粒体とした。
Comparative Example 2 An appropriate amount of the fine acicular dry iron oxyhydroxide fine particle granules described in Comparative Example 1, which do not substantially contain metal elements other than Fe, and Zn(PO 4 ) 2.8H 2 O While adding water as appropriate, the mixture is mixed with a sieve, and then dried and adjusted to produce a dry modified oxyhydroxide with Zn-phosphate mixed on the surface layer of the particles at a weight ratio of P/Fe=9.5/100. Fine particle granules were produced. The granules were subjected to a reduction reaction under the same conditions as in Example 1 to obtain Zn-P-modified α-Fe fine particle granules.

電子顕微鏡による該顆粒体を観察を行つた所、
粒子形態は原料とした針状オキシ水酸化鉄粒子顆
粒体の最小粒子単位の形態を比較的良く継承して
いたが、Zn3(PO42粒子と推定される0.1μm程度
の小粒子が混在していた。磁気特性の評価は、
Hc=710Oe、σs=105.0emu/gr、R=0.49であ
り満足のゆくものではなかつた。
When the granules were observed using an electron microscope,
The particle morphology inherited the morphology of the smallest particle unit of the acicular iron oxyhydroxide particle granules used as the raw material, but small particles of about 0.1 μm, estimated to be Zn 3 (PO 4 ) 2 particles, It was mixed. Evaluation of magnetic properties is
Hc=710Oe, σs=105.0emu/gr, R=0.49, which were not satisfactory.

比較例 3 実施例1に於いて、リン酸カリウムの代わりに
リン酸を用い、他は全く同様にしてP−変性オキ
シ水酸化鉄粒子の乾燥粉体を製造した。該微粒子
の形状は、実施例1記載のものと良く類似してい
た。元素分析の結果、P/Fe=0.10/100重量比
であつた。次いで実施例1と同様にして、P−変
性α−Fe微粒子顆粒体を製造した。該α−Fe微
粒子顆粒体の形態の観察を行つた所、最小粒子単
位の形態は針状であるものの、粒子同士の焼結が
多く観察された。また磁気特性の評価は、Hc=
1185Oe、σs=173.0emu/gr、R=0.49であり、
実施例1に比較して劣るものであつた。
Comparative Example 3 A dry powder of P-modified iron oxyhydroxide particles was produced in exactly the same manner as in Example 1 except that phosphoric acid was used instead of potassium phosphate. The shape of the microparticles was very similar to that described in Example 1. As a result of elemental analysis, the weight ratio of P/Fe was 0.10/100. Next, in the same manner as in Example 1, P-modified α-Fe fine particle granules were produced. When the morphology of the α-Fe fine particle granules was observed, it was found that although the morphology of the smallest particle unit was acicular, many particles were observed to be sintered with each other. In addition, the evaluation of magnetic properties is as follows: Hc=
1185Oe, σs=173.0emu/gr, R=0.49,
It was inferior to Example 1.

〔効果〕〔effect〕

以上の実施例、比較例から明らかな様に、単な
るリン酸塩と比較しても、α−Fe微粒子の製造
の原料製造方法として、本発明の効果がとりわけ
顕著であることは明らかである。
As is clear from the above Examples and Comparative Examples, it is clear that the effects of the present invention are particularly remarkable as a raw material production method for producing α-Fe fine particles, even when compared with simple phosphates.

Claims (1)

【特許請求の範囲】[Claims] 1 針状性オキシ水酸化鉄粒子に、金属成分が、
K、Crである金属リン酸塩化合物又はCoのリン
酸塩化合物とAlのリン酸塩化合物を、PとFeと
の比で、0.05/100〜5/100の範囲で被着させ、
加熱・還元することを特徴とする磁気記録用強磁
性α−Fe微粒子の製造方法。
1 Acicular iron oxyhydroxide particles contain metal components,
A metal phosphate compound of K, Cr or a phosphate compound of Co and a phosphate compound of Al are deposited in a ratio of P to Fe in the range of 0.05/100 to 5/100,
A method for producing ferromagnetic α-Fe fine particles for magnetic recording, characterized by heating and reduction.
JP56000026A 1981-01-05 1981-01-05 Manufacture of acicular ultrafine particle of iron oxyhydroxide Granted JPS57113202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56000026A JPS57113202A (en) 1981-01-05 1981-01-05 Manufacture of acicular ultrafine particle of iron oxyhydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56000026A JPS57113202A (en) 1981-01-05 1981-01-05 Manufacture of acicular ultrafine particle of iron oxyhydroxide

Publications (2)

Publication Number Publication Date
JPS57113202A JPS57113202A (en) 1982-07-14
JPH0340485B2 true JPH0340485B2 (en) 1991-06-19

Family

ID=11462867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56000026A Granted JPS57113202A (en) 1981-01-05 1981-01-05 Manufacture of acicular ultrafine particle of iron oxyhydroxide

Country Status (1)

Country Link
JP (1) JPS57113202A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926800A (en) * 1972-07-05 1974-03-09
JPS52135897A (en) * 1976-05-09 1977-11-14 Toda Kogyo Corp Process for preparing cobaltt modified acicular crystal magnetic ironoxide particle
JPS53114799A (en) * 1977-03-07 1978-10-06 Toda Kogyo Corp Method of making magnetic iron oxide powder for use in magnetic recording material
JPS5613409A (en) * 1979-07-06 1981-02-09 Sony Corp Manufacture of ferromagnetic alloy powder
JPS5754206A (en) * 1980-07-31 1982-03-31 Hercules Inc

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4926800A (en) * 1972-07-05 1974-03-09
JPS52135897A (en) * 1976-05-09 1977-11-14 Toda Kogyo Corp Process for preparing cobaltt modified acicular crystal magnetic ironoxide particle
JPS53114799A (en) * 1977-03-07 1978-10-06 Toda Kogyo Corp Method of making magnetic iron oxide powder for use in magnetic recording material
JPS5613409A (en) * 1979-07-06 1981-02-09 Sony Corp Manufacture of ferromagnetic alloy powder
JPS5754206A (en) * 1980-07-31 1982-03-31 Hercules Inc

Also Published As

Publication number Publication date
JPS57113202A (en) 1982-07-14

Similar Documents

Publication Publication Date Title
JPH02167810A (en) Superfine magnetic particles of epsilon' iron carbide and its production
JPH0340485B2 (en)
JPH0230626A (en) Iron carbide fine granule and production thereof
US5078984A (en) Process for producing microcrystalline barium ferrite platelets
JPS6021307A (en) Production of ferromagnetic metallic powder
JPH10226520A (en) Hydrate iron oxide and production of ferromagnetic iron oxide
JPS6313934B2 (en)
JPS6353133B2 (en)
JPS6122604A (en) Magnetic metal powder and manufacture thereof
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JPS6313940B2 (en)
JPS5888122A (en) Production of cobalt-containing ferromagnetic iron oxide
JPS59143004A (en) Production of magnetic alloy powder
JPH0434902A (en) Preparation of needle alloy magnetic powder
JPS5919162B2 (en) Method for producing iron-cobalt alloy ferromagnetic powder
JPS61141627A (en) Production of alpha-feooh needles
JPH0314782B2 (en)
JPS61124507A (en) Production of magnetic metallic powder
JPS649246B2 (en)
JP2651795B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPS58167432A (en) Production of needle-like crystalline iron oxide particle powder
JPS595603A (en) Manufacture of magnetic metal powder
JPH0459613A (en) Production of fine iron carbide particle
JPS58151333A (en) Manufacture of needlelike iron oxide particle
JPS61130407A (en) Production of metallic magnetic powder