JPH0340380A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH0340380A
JPH0340380A JP1174694A JP17469489A JPH0340380A JP H0340380 A JPH0340380 A JP H0340380A JP 1174694 A JP1174694 A JP 1174694A JP 17469489 A JP17469489 A JP 17469489A JP H0340380 A JPH0340380 A JP H0340380A
Authority
JP
Japan
Prior art keywords
dme
lithium
electrolyte
charging
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1174694A
Other languages
Japanese (ja)
Inventor
Kazuya Kuriyama
和哉 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Battery Corp filed Critical Yuasa Battery Corp
Priority to JP1174694A priority Critical patent/JPH0340380A/en
Publication of JPH0340380A publication Critical patent/JPH0340380A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the charging/discharging characteristics as well as the strong load characteristic at low temps. by using a mixture liquid of specific compounds as organic solvent for electrolyte. CONSTITUTION:As organic solvent for electrolyte, a mixture liquid is used consisting of propylene carbonate(PC), ethylene carbonate(EC), dimetoxyethane(CME), and 2-methyltetrahydrofuran. Generally a solvent with higher dielectric factor provides a higher degree of ion dissolution for the solute, which heightens the electroconductivity of the electrolytic solution. If attention is paid to only this point, it is considered that the EC/DME type using EC with a high dielectric factor is more favorable than the PC/DME type. However, the EC/DME type is not serviceable at a low temp. because the EC solidifies. Thus PC, EC, and DME are added to provide serviceability even at low temp. Further, adding of 2ME-THF enhances the charging/discharging efficiency.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、リチウム二次電池に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a lithium secondary battery.

従来技術とその問題点 従来、リチウム二次電池は、正極活物質として二硫化モ
リブデン(MoS2)〜二酸化モリブデン(Mo03)
、二酸化マンガン(Mn02 )や五酸化バナジウム(
V2O3)等の無機物質、負極として金属リチウムやリ
チウムイオンな吸蔵、放出する合金、さらに電解液とし
て、過塩素酸リチウム、ホウフッ化すチウム、六フフ化
ヒ酸リチウム等のリチウム塩を溶かしたプロピレンカー
ボネートとジメトキシエタンの混合溶液等が知られてい
る。
Conventional technology and its problems Conventionally, lithium secondary batteries use molybdenum disulfide (MoS2) to molybdenum dioxide (Mo03) as positive electrode active materials.
, manganese dioxide (Mn02) and vanadium pentoxide (
Inorganic substances such as V2O3), metal lithium and alloys that absorb and release lithium ions as negative electrodes, and propylene carbonate in which lithium salts such as lithium perchlorate, lithium borofluoride, and lithium arsenate hexafluoride are dissolved as electrolytes. Mixed solutions of dimethoxyethane and dimethoxyethane are known.

これらの正、負極及び電解液の組み合わせにより、非常
にたくさんの構成が考えられるが、電池のエネ〃ギー密
度を考慮した場合、金属リチウムを負極&用いた系が最
も有利と考えられるO しかし、金属リチウムを負極に〜過塩素酸リチウムを溶
解したプロピレンカーボネートとジメトキシエタンの混
合溶液を電解液として用いた電池は、充放電をすると早
期にリチウムデンドライトが原因と考えられる充放電効
率の低下により、電池容量が減少するという問題が発生
した。
A large number of configurations are possible depending on the combination of these positive and negative electrodes and electrolytes, but when considering the energy density of the battery, a system using metallic lithium as the negative electrode is considered to be the most advantageous. Batteries that use metallic lithium as the negative electrode - a mixed solution of propylene carbonate and dimethoxyethane in which lithium perchlorate is dissolved, as the electrolyte, quickly decrease in charging and discharging efficiency, which is thought to be caused by lithium dendrites, when charging and discharging. A problem occurred in which the battery capacity decreased.

また、上記の電解液を用いた電池は、低温での強負荷特
性が不十分であった。
In addition, batteries using the above electrolyte had insufficient strong load characteristics at low temperatures.

発明の目的 本発明は、上記の間Q点Ic#iみ、充放電特性及び低
温における強負荷特性を改良したリチウム二次電池を提
供することを目的とする。
OBJECTS OF THE INVENTION The object of the present invention is to provide a lithium secondary battery with improved Q point Ic#i, charge/discharge characteristics, and heavy load characteristics at low temperatures.

発明の構造 本発明は、上記目的を遺戒するぺ<、リチウムを活物質
とする負極と、正極と、リチウム塩を溶解した電解液の
有機溶媒が、プロピレンカーボネート(以下、PCと記
す。)、エチレンカーボネート(以下、ECと記す。)
、ジメトキシエタン(以下、DMEと記す。)、及び2
−メチルテトラヒドロフラン(以下、2Me−THFと
記す。)よりなる混合液の有I!溶媒からなる電解液を
用いたリチウム二次電池である。
Structure of the Invention The present invention has a negative electrode containing lithium as an active material, a positive electrode, and an organic solvent of an electrolyte in which a lithium salt is dissolved in propylene carbonate (hereinafter referred to as PC). , ethylene carbonate (hereinafter referred to as EC)
, dimethoxyethane (hereinafter referred to as DME), and 2
-Presence of a mixed liquid consisting of methyltetrahydrofuran (hereinafter referred to as 2Me-THF)! This is a lithium secondary battery that uses an electrolyte consisting of a solvent.

作用 各種溶媒の特性を第1表に示す。action Table 1 shows the properties of various solvents.

一般的に、誘電率の高い溶媒はど、溶質のイオン解離度
が高いため、電解液の電導度も高くなるという特長があ
る。この点だけに着目すれば、PC/DI!系より誘電
率の高いEOを使用する、KO/DIE系の方が有利と
考えられる。
Generally, a solvent with a high dielectric constant has a high degree of ionic dissociation of the solute, and therefore has the advantage that the conductivity of the electrolytic solution is also high. If you focus only on this point, PC/DI! The KO/DIE system, which uses EO having a higher dielectric constant than the KO/DIE system, is considered to be more advantageous.

ただし、]eO/DIE系は、低温でEOが凝固し用い
ることができない。そこで、PO,EC。
However, the eO/DIE system cannot be used because EO solidifies at low temperatures. Therefore, PO, EC.

さらにDMEを混合することにより低温でも液状を保持
することをrIm詔し、電解液用溶媒として検討したと
ころ、PO/DIE系よりは電導度がさらに高くなり、
強負荷特性が向上することが判った。
Furthermore, by mixing DME, it was proposed that it would maintain its liquid state even at low temperatures, and when it was investigated as a solvent for electrolyte solutions, it was found that the conductivity was even higher than that of the PO/DIE system.
It was found that the heavy load characteristics were improved.

さらに、POlICO及びDIEの混合溶媒に2Me−
THFを加え4種湯合とすると充放電効率が大きく向上
し、PO/DIE系に比べ、充放電による容量低下が抑
制されることが判った。
Furthermore, 2Me-
It was found that when THF was added to form a four-type mixture, the charging and discharging efficiency was greatly improved, and the decrease in capacity due to charging and discharging was suppressed compared to the PO/DIE system.

実施例 以下、本発明の詳細について、実施例により説明する。Example Hereinafter, the details of the present invention will be explained with reference to Examples.

第1図は1正極に二酸化マンガン、負極に金属リチウム
、及び非水溶媒からなる電解液を用いたリチウム二次電
池の断面図を示す。1は正極端子を兼ねたケース、2は
負w1端子をなす封目板、3はケースと封口板を絶縁す
るポリプロピレン製ガスケット、4は正極であり、これ
は二酸化マンガン85重量部、導電材であるアセチレン
プフフク10!1量部、及び結着剤であるポリテトヲフ
〃オロエチレン5重量部を混練し、厚さ0.711mの
シート状に成形した後、直径15.0情に打ち抜いた。
FIG. 1 shows a cross-sectional view of a lithium secondary battery using manganese dioxide as a positive electrode, metallic lithium as a negative electrode, and an electrolytic solution consisting of a nonaqueous solvent. 1 is a case that also serves as a positive electrode terminal, 2 is a sealing plate that forms a negative w1 terminal, 3 is a polypropylene gasket that insulates the case and the sealing plate, and 4 is a positive electrode, which is made of 85 parts by weight of manganese dioxide and a conductive material. 10.1 parts by weight of a certain acetylene powder and 5 parts by weight of polytethofluoroethylene as a binder were kneaded and formed into a sheet with a thickness of 0.711 m, which was then punched out to a diameter of 15.0 m.

その後、高温真空乾燥し、あらかじめケース1に溶接し
ておいた正極集電体5tC圧着した。6は金属リチウム
であり、厚さ0.4鵠、直径16mで負極集電体7に圧
着した。
Thereafter, it was vacuum dried at high temperature, and the positive electrode current collector 5tC, which had been welded to case 1 in advance, was crimped. Reference numeral 6 denotes metallic lithium, which was crimped onto the negative electrode current collector 7 with a thickness of 0.4 m and a diameter of 16 m.

8はポリプロピレン製微孔膜からなるセパレータである
8 is a separator made of a microporous membrane made of polypropylene.

電解液は、PC%EC,DIE、及び2Me−THFの
4種混合液とし、混合比率を1 +2:172とした。
The electrolytic solution was a mixture of four types: PC%EC, DIE, and 2Me-THF, and the mixing ratio was 1 + 2:172.

これらに、溶質として過地素酸リチウム(LiO104
)を% 1モ/L//1溶解したものを用いた。
These contain lithium peroxide (LiO104) as a solute.
) was dissolved at % 1 mo/L//1.

この様にして作製した電池ムについて、次の2m類の試
験を実施した。
The following 2m type test was conducted on the battery thus produced.

サイクル試験 試験温度:25℃ 充電=定電流 0.5*ム、終止電圧 3.5v放電:
定電流 1.0*ム、終止電圧 2.4v低温放電試験 試験温度:0℃ 放t:定電流 10.0*ム 比較例 電解液の溶媒をPC,及びDIE、混合比率を1=1と
した以外は、すべて実施例と同様の電池Bを作製し、同
様の方法で試験を実施した。
Cycle test Test temperature: 25°C Charging = constant current 0.5*mm, final voltage 3.5v Discharging:
Constant current 1.0*mm, final voltage 2.4v Low temperature discharge test Test temperature: 0°C Release t: Constant current 10.0*mu Comparative example The solvent of the electrolyte was PC and DIE, and the mixing ratio was 1=1. Battery B was manufactured in the same manner as in Example except for the above, and the test was conducted in the same manner.

第2図に、サイクル試験の結果を示す。図から明らかな
ように、電池ムは電池Bに比べ容量の低下が少なく本発
明の効果が発揮されているのがわかる。
Figure 2 shows the results of the cycle test. As is clear from the figure, it can be seen that the effect of the present invention is exerted in Battery M with less decrease in capacity than Battery B.

第5図は、ot:tcおける電池ム及びBの放電時の電
圧降下を調査したものである。電池ムは、電池Bに比べ
低温での電圧降下が小さい。これは、本発明が低温にお
ける強負荷心強いことを示すものである。
FIG. 5 shows an investigation of the voltage drop during discharge of battery M and B in ot:tc. Battery M has a smaller voltage drop than Battery B at low temperatures. This shows that the present invention is reliable under heavy loads at low temperatures.

発明の効果 上述した如く、本発明は充放電特性及び低温における強
負荷特性を改良したリチウム二次電池を提供することが
出来るので、その工業的価値は極めて大である。
Effects of the Invention As described above, the present invention can provide a lithium secondary battery with improved charge/discharge characteristics and heavy load characteristics at low temperatures, and therefore has extremely great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は゛、本発明の実施例におけるリチウム二次電池
の縦断面図、第2図、第5図は、本発明及び従来の電池
の特性比較図である。 1・・・ケー7−2・・・封口板 3・・・ガスケット  4・・・正極 5・・・正極集電体  6・・・負極
FIG. 1 is a longitudinal cross-sectional view of a lithium secondary battery according to an embodiment of the present invention, and FIGS. 2 and 5 are characteristic comparison diagrams of a battery of the present invention and a conventional battery. 1... Case 7-2... Sealing plate 3... Gasket 4... Positive electrode 5... Positive electrode current collector 6... Negative electrode

Claims (1)

【特許請求の範囲】[Claims] リチウムを活物質とする負極と、正極と、リチウム塩を
溶解した有機溶媒からなる電解液とを備え、電解液の有
機溶媒がプロピレンカーボネート、エチレンカーボネー
ト、ジメトキシエタン、及び2−メチルテトラヒドロフ
ランよりなる混合液を用いたことを特徴とするリチウム
二次電池。
A mixture comprising a negative electrode containing lithium as an active material, a positive electrode, and an electrolytic solution consisting of an organic solvent in which a lithium salt is dissolved, and the organic solvent of the electrolytic solution is composed of propylene carbonate, ethylene carbonate, dimethoxyethane, and 2-methyltetrahydrofuran. A lithium secondary battery characterized by using a liquid.
JP1174694A 1989-07-06 1989-07-06 Lithium secondary battery Pending JPH0340380A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1174694A JPH0340380A (en) 1989-07-06 1989-07-06 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1174694A JPH0340380A (en) 1989-07-06 1989-07-06 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH0340380A true JPH0340380A (en) 1991-02-21

Family

ID=15983043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1174694A Pending JPH0340380A (en) 1989-07-06 1989-07-06 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH0340380A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983413A (en) * 1994-12-28 1999-11-16 Toto Ltd. High performance flush toilet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983413A (en) * 1994-12-28 1999-11-16 Toto Ltd. High performance flush toilet

Similar Documents

Publication Publication Date Title
JPH0973918A (en) Nonaqueous electrolyte for battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JPH1092467A (en) Nonaqueous electrolyte secondary battery
JPH07230824A (en) Nonaqueous electrolyte battery
JPH07230825A (en) Nonaqueous electrolyte battery
JPH0355770A (en) Lithium secondary battery
JPH0340380A (en) Lithium secondary battery
JPH0359963A (en) Lithium secondary battery
JPH04351860A (en) Non-aqueous electrolyte battery
JP2000090970A (en) Lithium secondary battery
JP3831547B2 (en) Non-aqueous electrolyte secondary battery
JPH06310173A (en) Electrochemical device and secondary battery
JPH0357168A (en) Lithium secondary battery
JPS63307663A (en) Nonaqueous electrolyte secondary battery
JPH05326017A (en) Nonaqueous solvent type lithium secondary battery
JPH0554911A (en) Nonaqueous electrolytic lithium secondary battery
JPH0349166A (en) Lithium secondary battery
JPH0357169A (en) Lithium secondary battery
JPH03167761A (en) Lithium secondary battery
JP6895640B2 (en) battery
JPH0558224B2 (en)
JPH02239572A (en) Polyaniline battery
JPH0355769A (en) Lithium secondary battery
JP2698180B2 (en) Non-aqueous secondary battery
JPH03133067A (en) Lithium secondary battery