JPH0340207B2 - - Google Patents

Info

Publication number
JPH0340207B2
JPH0340207B2 JP23120182A JP23120182A JPH0340207B2 JP H0340207 B2 JPH0340207 B2 JP H0340207B2 JP 23120182 A JP23120182 A JP 23120182A JP 23120182 A JP23120182 A JP 23120182A JP H0340207 B2 JPH0340207 B2 JP H0340207B2
Authority
JP
Japan
Prior art keywords
turbine
pump
generator
solution
absorber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23120182A
Other languages
Japanese (ja)
Other versions
JPS59122784A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP23120182A priority Critical patent/JPS59122784A/en
Publication of JPS59122784A publication Critical patent/JPS59122784A/en
Publication of JPH0340207B2 publication Critical patent/JPH0340207B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/06Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids
    • F01K25/065Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using mixtures of different fluids with an absorption fluid remaining at least partly in the liquid state, e.g. water for ammonia

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】 本発明は、溶液から作動流体を発生させる発生
器と溶液に作動流体を吸収させる吸収器との間で
前記溶液を循環させる一方、発生器で発生した高
圧の作動流体を吸収器に供給するようにした濃度
差エンジンや吸収式冷凍機等において、発生器か
ら吸収器へ還流される溶液の持つエネルギーを該
溶液の循環圧送のための動力源の一部として回収
するようにした動力回収システムに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for circulating the solution between a generator that generates a working fluid from a solution and an absorber that absorbs the working fluid into the solution. In a concentration difference engine, an absorption refrigerator, etc. that supply water to an absorber, the energy of the solution returned from the generator to the absorber is recovered as part of the power source for circulating and pumping the solution. This invention relates to a power recovery system.

従来より、この種の濃度差エンジンとして、例
えば第1図に示すようなものがよく知られてい
る。すなわち該濃度エンジンは、濃溶液を加熱し
て高圧の作動流体を発生させる発生器1と、稀溶
液を冷却して該稀溶液内に作動流体を吸収させる
吸収器2と、前記発生器1で発生した高圧の作動
流体をタービン3を駆動するための駆動源として
利用したのち吸収器2に流通させる作動流体路4
と、前記作動流体を発生した後の発生器1内の高
温高圧の稀溶液(溶液全体の上層に分布する部
分)を流量制御弁5で減圧したのち吸収器2に帰
還流通させる稀溶液流路6と、前記作動流体を吸
収した後の吸収器2内の低温低圧の濃溶液(溶液
全体の下層に分布する部分)を電動モータ7で駆
動されるポンプ8により発生器1に送給流通させ
る濃溶液流路9と、前記両溶液流路6,9内を流
れる溶液間で熱交換させる熱交換器10とを備
え、ポンプ8により溶液を発生器1と吸収器2と
の間で循環させる一方、発生器1からの作動流体
の圧力によりタービン3を回して出力を得るよう
にしたものである。尚、1aは発生器1内に濃溶
液を加熱するための熱源、2aは吸収器2内の稀
溶液を冷却するための冷却水パイプ2b,2b、
…は稀溶液流路6からの稀溶液を吸収器2内にシ
ヤワー状に噴出させる噴出口である。
Conventionally, as this type of concentration difference engine, for example, the one shown in FIG. 1 is well known. That is, the concentration engine includes a generator 1 that heats a concentrated solution to generate a high-pressure working fluid, an absorber 2 that cools a dilute solution and absorbs the working fluid into the dilute solution, and the generator 1. A working fluid path 4 that uses the generated high-pressure working fluid as a drive source for driving the turbine 3 and then flows it to the absorber 2
and a dilute solution flow path in which the high temperature and high pressure dilute solution (part distributed in the upper layer of the entire solution) in the generator 1 after generating the working fluid is depressurized by the flow control valve 5 and then circulated back to the absorber 2. 6, and the low-temperature, low-pressure concentrated solution (part distributed in the lower layer of the entire solution) in the absorber 2 after absorbing the working fluid is fed and distributed to the generator 1 by a pump 8 driven by an electric motor 7. It is equipped with a concentrated solution flow path 9 and a heat exchanger 10 for exchanging heat between the solution flowing in both the solution flow paths 6 and 9, and the solution is circulated between the generator 1 and the absorber 2 by a pump 8. On the other hand, the turbine 3 is rotated by the pressure of the working fluid from the generator 1 to obtain output. Note that 1a is a heat source for heating the concentrated solution in the generator 1, 2a is a cooling water pipe 2b for cooling the dilute solution in the absorber 2,
. . . is a spout that spouts the dilute solution from the dilute solution flow path 6 into the absorber 2 in a shower shape.

ところで、このような従来の濃度差エンジンに
おいて、前記如く発生器1から吸収器2に還流さ
れる高圧の稀溶液をその途中で流量制御弁5によ
る減圧して、該稀溶液の持つエネルギーを無駄に
捨てることはエネルギーの有効利用の点で大きな
損失である。
By the way, in such a conventional concentration difference engine, the high-pressure dilute solution that is returned from the generator 1 to the absorber 2 is depressurized by the flow control valve 5 midway through the flow, as described above, to waste the energy of the dilute solution. This is a big loss in terms of effective energy use.

そこで、前記の減圧用流量制御弁5に代えて液
タービンを設け、該液タービンを前記のポンプ8
と同軸に直結して小型で簡単な構造のタービンポ
ンプを構成することにより、高圧の稀溶液でター
ビンポンプの液タービンを回してポンプ8の動力
を軽減させるようにすることが考えられる。
Therefore, a liquid turbine is provided in place of the pressure reducing flow control valve 5, and the liquid turbine is connected to the pump 8.
It is conceivable that the power of the pump 8 can be reduced by configuring a small and simple-structured turbine pump that is directly connected coaxially with the pump 8, thereby rotating the liquid turbine of the turbine pump with a high-pressure diluted solution.

しかし、その場合、液タービンとポンプ8との
流量比Gt/Gp、すわわち液タービンおよびポン
プ8の一定回転数当りの各々を流れる溶液量の比
が一定であるために、エンジンの運転条件が単一
に限定されてしまう問題がある。すなわち、この
ことを詳述するに、飽和溶液中の作動流体重量濃
度ξはその温度と圧力とによつて定まる。そこ
で、今、濃溶液および稀溶液の各濃度をそれぞれ
ξs、ξwとすると、作動流体を例えば1Kg発生させ
るために必要な濃溶液流量(重量流量)Gsは、 Gs=1−ξw/ξs−ξw となる。一方、同様に稀溶液流量Gwは前記濃溶
液量Gsから作動流体発生量(=1Kg)を減じた
値になるので、 Gw=Gs−1 である。よつて稀・濃溶液流量比Gw/Gsは、 Gw/Gs=1−1/Gs=1−ξs/1−ξw となり(0<Gw/Gs<1)、その値は溶液の濃
度ξs、ξwによつて変動し、換言すれば発生器1お
よび吸収器2における温度および圧力によつて変
動することになる。このことを示せば第4図およ
び第5図の通りである。したがつて、エンジンの
運転状態の変動により、前記稀・濃溶液流量比
Gw/Gsが前記したタービン・ポンプ流量比Gt/
Gp(一定値)より小さくなると、稀溶液が発生器
1から吸収器2へ必要以上に流れるため、発生器
1の内部液面高さが低下していわゆる空炊き状態
となるとともに、稀溶液の流出によつて作動流体
の圧力が低下してタービン3への駆動力すなわち
エンジン出力が不足してしまう。すなわち液ター
ビンがポンプ作用することになる。一方、稀・濃
溶液流量比GW/Gsがタービン・ポンプ流量比
Gt/Gpより大きくなると、発生器1の内部液面
高さおよび内部圧力が共に上昇して、液タービン
が過大抵抗を持つことになり、よつていずれの場
合にもエンジンを安定運転を行い得ない。
However, in that case, since the flow rate ratio Gt/Gp between the liquid turbine and the pump 8, that is, the ratio of the amount of solution flowing through each of the liquid turbine and the pump 8 per constant rotation speed, is constant, the operating conditions of the engine are There is a problem that the number is limited to a single number. That is, to explain this in detail, the working fluid weight concentration ξ in a saturated solution is determined by its temperature and pressure. Therefore, if the concentrations of the concentrated solution and dilute solution are respectively ξ s and ξ w , then the concentrated solution flow rate (weight flow rate) Gs required to generate, for example, 1 kg of working fluid is: Gs = 1 - ξ w / ξ s −ξ w . On the other hand, similarly, the dilute solution flow rate Gw is the value obtained by subtracting the working fluid generation amount (=1 kg) from the concentrated solution amount Gs, so Gw=Gs-1. Therefore, the rare/concentrated solution flow rate ratio Gw/Gs is Gw/Gs=1-1/Gs=1-ξ s /1-ξ w (0<Gw/Gs<1), and its value is the concentration of the solution ξ s and ξ w , in other words, the temperature and pressure in the generator 1 and absorber 2. This is illustrated in FIGS. 4 and 5. Therefore, due to fluctuations in engine operating conditions, the rare/concentrated solution flow rate ratio may change.
Gw/Gs is the turbine/pump flow rate ratio Gt/
When the value becomes smaller than Gp (a certain value), the dilute solution flows from the generator 1 to the absorber 2 more than necessary, and the internal liquid level of the generator 1 decreases, resulting in a so-called empty cooking state. The pressure of the working fluid decreases due to the outflow, and the driving force to the turbine 3, that is, the engine output becomes insufficient. In other words, the liquid turbine acts as a pump. On the other hand, the dilute/concentrated solution flow rate ratio GW/Gs is the turbine/pump flow rate ratio.
If it becomes larger than Gt/Gp, both the internal liquid level height and internal pressure of the generator 1 will rise, and the liquid turbine will have excessive resistance. Therefore, in either case, the engine cannot be operated stably. do not have.

本発明はかかる諸点に鑑みてなされたもので、
その目的の1つは、前記の如く、液タービンとポ
ンプとを直結してなるタービンポンプのタービ
ン・ポンプ流量比を一定とした場合において、該
タービン・ポンプ流量比を濃度差エンジン等の運
転条件範囲内で予測し得る稀・濃溶液流量比の最
小値に合せておき、運転条件の変化に伴う稀溶液
または濃溶液の余剰流量をタービンポンプのター
ビンまたはポンプをバイパスさせて流通させるよ
うにすることにより、システム全体の平衡を保つ
て液タービンに本来のタービン作用を行わせるよ
うにし、よつて濃度差エンジン等の広範囲の運転
条件に対するポンプ駆動用動力の安定回収を図ら
んとすることにある。
The present invention has been made in view of these points,
One of the purposes is that when the turbine-pump flow rate ratio of a turbine pump in which a liquid turbine and a pump are directly connected is constant as described above, the turbine-pump flow rate ratio can be adjusted to the operating conditions of a concentration difference engine, etc. Set the flow rate ratio of dilute solution to concentrated solution to the minimum value that can be predicted within the range, and allow the surplus flow rate of dilute solution or concentrated solution due to changes in operating conditions to bypass the turbine of the turbine pump or the pump. By doing so, the aim is to maintain the balance of the entire system and allow the liquid turbine to perform its original turbine action, thereby achieving stable recovery of power for driving the pump over a wide range of operating conditions such as a concentration difference engine. .

この目的の達成のため、本願の第1の発明の構
成は、溶液を加熱して作動流体を発生させる発生
器と、溶液を冷却して該溶液内に作動流体を吸収
させる吸収器と、前記発生器で発生した作動流体
を吸収器に流通させる作動流体流路と作動流体を
発生した後の発生器内の稀溶液を吸収器に流通さ
せる稀溶液流路と、作動流体を吸収した後の吸収
器内の濃溶液を発生器内に流通させる濃溶液流路
と、前記稀溶液流路に介設したタービンと濃溶液
流路に介設したポンプとが同軸に直結されてなる
タービンポンプと、該タービンポンプを駆動する
電動モーターとからなる濃度差エンジンや吸収式
冷凍機等において、前記タービンポンプとして運
転条件範囲内での最小の稀・濃溶液流量比と略等
しいタービン・ポンプ流量比を持つ同軸直結型の
タービンポンプを用い、かつタービンまたはポン
プのいずれか一方にバイパス流路を備えているも
のである。このことにより、濃度差エンジン等の
運転条件の変動に対応して変化する稀・濃溶液流
量比と一定のタービンポンプ流量比とのずれを補
償して、タービンポンプのタービンに正常なター
ビン作用を行わせるようにしたものである。
To achieve this objective, the first invention of the present application includes a generator that heats a solution to generate a working fluid, an absorber that cools the solution and absorbs the working fluid into the solution, and A working fluid flow path that flows the working fluid generated in the generator to the absorber, a dilute solution flow path that flows the dilute solution in the generator after generating the working fluid to the absorber, and a A turbine pump in which a concentrated solution flow path through which the concentrated solution in the absorber flows into the generator, a turbine interposed in the dilute solution flow path, and a pump interposed in the concentrated solution flow path are directly connected coaxially. In a concentration differential engine, an absorption refrigerator, etc., which comprises an electric motor that drives the turbine pump, the turbine pump has a flow rate ratio of the turbine pump that is approximately equal to the minimum dilute/concentrated solution flow rate ratio within the range of operating conditions. This system uses a coaxial direct-coupled turbine pump, and has a bypass flow path in either the turbine or the pump. This compensates for the discrepancy between the dilute/concentrated solution flow rate ratio, which changes in response to fluctuations in the operating conditions of the concentration difference engine, and the constant turbine pump flow rate ratio, allowing the turbine of the turbine pump to function normally. It was made to be done.

本発明のいま1つの目的は、前記したタービン
ポンプのタービンまたはポンプをバイパスする溶
液流量を発生器または吸収器の内部溶液量に応じ
て増減制御するようにすることにより、運転条件
が変化して稀・濃溶液流量比が変化してもその変
化分を前記バイパスする溶液流量の変更によつて
補償して常に安定して液タービンに本来のタービ
ン作用を行わせるようにし、よつて濃度差エンジ
ン等の広範囲の運転条件に対するポンプ駆動用動
力のより一層確実な安定回収を図らんとするもの
である。
Another object of the present invention is to increase or decrease the flow rate of the solution bypassing the turbine or pump of the turbine pump described above in accordance with the internal solution amount of the generator or absorber, so that the operating conditions can be changed. Even if the rare/concentrated solution flow rate ratio changes, the change is compensated for by changing the bypass solution flow rate, so that the liquid turbine always stably performs its original turbine action. The aim is to more reliably and stably recover power for driving the pump under a wide range of operating conditions such as the above.

この第2の目的の達成のため、本願の第2の発
明の構成は、前記の如く、稀溶液流路に介設した
タービンと濃溶液流路に介設したポンプとが同軸
に直結されてなるタービンポンプを備えた濃度差
エンジンや吸収式冷凍機等において、前記タービ
ンポンプとして運転条件範囲内での最小の稀・濃
溶液流量比と略等しいタービン・ポンプ流量比を
持つタービンポンプを用い、さらに、タービンポ
ンプのタービンまたはポンプのいぜれか一方をバ
イパスし、かつ流量制御弁を有するバイパス流路
と、前記発生器または吸収器の内部液面高さを検
出する液面検出器と、該液面検出器の出力を受け
て、発生器または吸収器の内部液面高さを一定な
いし所定範囲に保つよう前記バイパス流路の流量
制御弁を開閉制御する制御装置とを設けたもので
ある。このことにより、濃度差エンジン等の運転
条件の変動に対応して変化する稀・濃溶液流量比
と一定のタービン・ポンプ流量比とのずれを自動
的に補償制御して、タービンポンプのタービンに
正常なタービン作用をより一層確実に行わせるよ
うにしたものである。
In order to achieve this second object, the configuration of the second invention of the present application is such that the turbine provided in the dilute solution flow path and the pump provided in the concentrated solution flow path are coaxially and directly connected, as described above. In a concentration differential engine, an absorption refrigerator, etc. equipped with a turbine pump, a turbine pump having a turbine-pump flow rate approximately equal to the minimum dilute/concentrated solution flow rate ratio within the operating condition range is used as the turbine pump, Furthermore, a bypass flow path that bypasses either the turbine or the pump of the turbine pump and has a flow rate control valve, and a liquid level detector that detects the internal liquid level height of the generator or absorber; A control device is provided that receives the output of the liquid level detector and controls the opening and closing of the flow control valve of the bypass flow path so as to maintain the internal liquid level height of the generator or absorber within a constant or predetermined range. be. As a result, the difference between the dilute/concentrated solution flow rate ratio, which changes in response to fluctuations in the operating conditions of the concentration difference engine, etc., and the constant turbine/pump flow rate ratio can be automatically compensated for, and the turbine of the turbine pump This ensures that the turbine operates normally.

以下、本発明を濃度差エンジンに適用した2つ
の実施例についてそれぞれ第2図および第3図に
基づいて詳細に説明する。尚、濃度差エンジンの
基本構成については第1図により説明したので第
1図と同じ部分は同じ符号を付しくその詳細な説
明は省略する。
Hereinafter, two embodiments in which the present invention is applied to a concentration difference engine will be described in detail with reference to FIGS. 2 and 3, respectively. The basic configuration of the concentration difference engine has been explained with reference to FIG. 1, so the same parts as in FIG. 1 are given the same reference numerals and detailed explanation thereof will be omitted.

第2図は第1実施例を示し、1は熱源1aを備
えた発生器、2は冷却水パイプ2aを備えた吸収
器で、該発生器1と吸収器2とは、作動流体流路
4と稀溶液流路6と濃溶液流路9との3つの流路
で接続され、前記作動流体流路4の途中にはター
ビン3が介設されており、該タービン3を作動流
体の圧力で回転駆動することにより濃度差エンジ
ンの出力を得る。また、前記各溶液流路6,9の
一部は互いに重合されて熱交換器10を構成して
いる。
FIG. 2 shows a first embodiment, in which 1 is a generator equipped with a heat source 1a, 2 is an absorber equipped with a cooling water pipe 2a, and the generator 1 and absorber 2 are connected to a working fluid flow path 4. A turbine 3 is interposed in the middle of the working fluid passage 4, and the turbine 3 is operated by the pressure of the working fluid. The output of the concentration difference engine is obtained by driving the rotation. Furthermore, a portion of each of the solution flow paths 6 and 9 is polymerized with each other to constitute a heat exchanger 10.

さらに、11は液タービン12とポンプ13と
を同軸に一体的に直結してなるタービンポンプで
あつて、前記液タービン12は前記熱交換器10
より下流側(吸収器2側)の稀溶液流路6に、ま
たポンプ13は熱交換器10より上流側(同じく
吸収器2側)の濃溶液流路9にそれぞれ介設され
ている。また、タービンポンプ11はそのポンプ
13にて電動モータ7に連結されており、該モー
タ7によりポンプ13を作動させて吸収器2内の
濃溶液を発生器1に圧送する一方、該発生器1内
の稀溶液の液圧により液タービン12を回転駆動
して該液タービン12と一体のポンプ13(電動
モータ7)の回転力を補助するように構成されて
いる。そして、前記タービンポンプ11における
タービン・ポンプ流量比Gt/Gp、すなわち液タ
ービン12およびポンプ13の一定回転数当りの
各々を流れる稀・濃溶液の流量比は、濃度差エン
ジンの運転条件範囲内での稀・濃溶液流量比
Gw/Gsの最小値、すなわちエンジンの運転条件
が種々に変化した場合における稀および濃溶液流
路6,9をそれぞれ流れる稀・濃溶液の流量比の
最小値と略等しい値に設定されている。
Further, reference numeral 11 denotes a turbine pump in which a liquid turbine 12 and a pump 13 are coaxially and integrally directly connected, and the liquid turbine 12 is connected to the heat exchanger 10.
A pump 13 is provided in the dilute solution channel 6 on the more downstream side (absorber 2 side), and a pump 13 is provided in the concentrated solution channel 9 on the upstream side than the heat exchanger 10 (also on the absorber 2 side). Further, the turbine pump 11 is connected to an electric motor 7 through its pump 13, and the motor 7 operates the pump 13 to pump the concentrated solution in the absorber 2 to the generator 1. The liquid turbine 12 is rotationally driven by the hydraulic pressure of the dilute solution contained therein, thereby assisting the rotational force of a pump 13 (electric motor 7) which is integrated with the liquid turbine 12. The turbine-pump flow rate ratio Gt/Gp in the turbine pump 11, that is, the flow rate ratio of the dilute and concentrated solutions flowing through each of the liquid turbine 12 and the pump 13 per constant rotation speed, is within the operating condition range of the concentration difference engine. Rare/concentrated solution flow rate ratio
It is set to a value that is approximately equal to the minimum value of Gw/Gs, that is, the minimum value of the flow rate ratio of the rare and concentrated solutions flowing through the rare and concentrated solution flow paths 6 and 9, respectively, when the engine operating conditions change variously. .

また、前記タービンポンプ11の液タービン1
2上下流側の稀溶液流路6間は該液タービン12
をバイパスするバイパス流路14で連通され、該
バイパス流路14にはバイパス流路14を流れる
稀溶液流量を増減制御するように開閉する電動式
流量制御弁15が介設されている。
Further, the liquid turbine 1 of the turbine pump 11
2. The liquid turbine 12 is connected between the dilute solution flow path 6 on the upstream and downstream sides.
The bypass flow path 14 is provided with an electrically operated flow control valve 15 that opens and closes so as to increase or decrease the flow rate of the dilute solution flowing through the bypass flow path 14.

一方、前記発生器1にはその内部液面高さを検
出する差圧検出器、電気伝導度検出器、浮子式2
点検出等からなる液面検出器16が取り付けら
れ、該液面検出器16の出力は前記バイパス流旅
14の流量制御弁15を作動制御する制御装置1
7に入力接続されている。すなわち、該制御装置
17は液面検出器16からの出力信号を受けて流
量制御弁15を開閉制御し、発生器1の内部液面
高さが所定値より低いときには流量制御弁15の
開度を小さくしてバイパス流路14を流れる稀溶
液流量を減少させる一方、所定値より高いときに
は流量制御弁15の開度を大きくして稀溶液流量
を増加させることにより、発生器1の内部液面高
さを一定ないし所定範囲に保つように作動するも
のである。尚、この制御装置17の作動について
は、液面検出器16の出力を連続的電気信号と
し、該信号に基づいて比例、微分、積分等の制御
を行つて発生器1の内部液面高さを一定に保つよ
うにするのが理想的であるが、他の支障がなけれ
ば所定の幅をもつON−OFF制御を行つて液面高
さを所定範囲に保つようにしてもよい。
On the other hand, the generator 1 includes a differential pressure detector for detecting the internal liquid level height, an electrical conductivity detector, and a float type 2
A liquid level detector 16 consisting of point detection or the like is attached, and the output of the liquid level detector 16 is sent to the control device 1 which controls the operation of the flow rate control valve 15 of the bypass flow passage 14.
7 is input connected. That is, the control device 17 controls the opening and closing of the flow rate control valve 15 in response to the output signal from the liquid level detector 16, and when the internal liquid level height of the generator 1 is lower than a predetermined value, the opening degree of the flow rate control valve 15 is changed. The internal liquid level of the generator 1 is reduced by reducing the flow rate of the dilute solution flowing through the bypass flow path 14, while increasing the opening degree of the flow rate control valve 15 to increase the flow rate of the dilute solution when the flow rate is higher than a predetermined value. It operates to keep the height constant or within a predetermined range. Regarding the operation of this control device 17, the output of the liquid level detector 16 is used as a continuous electric signal, and proportional, differential, integral, etc. control is performed based on this signal to adjust the internal liquid level height of the generator 1. Ideally, the liquid level should be kept constant, but if there are no other problems, ON-OFF control with a predetermined width may be performed to maintain the liquid level within a predetermined range.

次に、前記実施例の作動について説明するに、
発生器1の熱源1aを作動させ、かつ吸収器2の
冷却水パイプ2aに冷却水を流通させた状態でモ
ータ7によりタービンポンプ11を作動させる
と、吸収器2内の低圧濃溶液が濃溶液流路9を通
つて発生器1に圧送されて該発生器1で熱源1a
により加熱され、この加熱によつて該濃溶液から
高温高圧のガス状の作動流体が発生する。この作
動流体は作動流体流路4を通つて吸収器2に戻
り、その途中でタービン3を回転駆動し、このこ
とにより濃度差エンジンの出力が発生する。
Next, to explain the operation of the above embodiment,
When the turbine pump 11 is operated by the motor 7 while the heat source 1a of the generator 1 is operated and cooling water is flowing through the cooling water pipe 2a of the absorber 2, the low-pressure concentrated solution in the absorber 2 becomes a concentrated solution. The heat source 1a is pumped through the flow path 9 to the generator 1.
This heating generates a high-temperature, high-pressure gaseous working fluid from the concentrated solution. This working fluid returns to the absorber 2 through the working fluid flow path 4 and along the way drives the turbine 3 to rotate, thereby generating the power of the concentration difference engine.

一方、この作動流体が発生した後の前記発生器
1内の高温高圧の稀溶液はその圧力により稀溶液
流路6を通つて吸収器2内に還流され、該吸収器
2内で冷却水パイプ2aにより冷却されて前記作
動流体流路4からの作動流体を吸収し濃溶液とな
る。このように発生器1から吸収器2へ還流され
る途中、稀溶液は熱交換器10にて前記濃溶液流
路9内の低温の濃溶液と熱交換して低温となり、
その後タービンポンプ11の液タービン12を回
転駆動して減圧される。この液タービン12を駆
動することにより、ポンプ13すなわちモータ7
の駆動力を軽減することができる。
On the other hand, after this working fluid is generated, the high temperature and high pressure dilute solution in the generator 1 is refluxed into the absorber 2 through the dilute solution flow path 6 due to the pressure, and inside the absorber 2, the cooling water pipe 2a, it absorbs the working fluid from the working fluid flow path 4 and becomes a concentrated solution. While being refluxed from the generator 1 to the absorber 2 in this way, the dilute solution exchanges heat with the low-temperature concentrated solution in the concentrated solution flow path 9 in the heat exchanger 10 and becomes low temperature.
Thereafter, the liquid turbine 12 of the turbine pump 11 is driven to rotate to reduce the pressure. By driving this liquid turbine 12, the pump 13, that is, the motor 7
The driving force can be reduced.

この場合、前記タービンポンプ11におけるタ
ービン・ポンプ流量比Gt/Gpがエンジンの運転
条件範囲内での稀・濃溶液流量比Gw/Gsの最小
値と略等しいに設定されているため(Gt/Gp≦
Gw/Gs)、前記の如きエンジンの運転に伴つて
発生器1の内部液面高さが上昇しようとする。し
かし、この液面高さを液面検出器16が検出して
液面高さ信号を制御装置17に出力し、この液面
高さ信号を受けた制御装置17は該信号に応じて
バイパス流路14の流量制御弁15を所定開度開
き稀溶液の一部を該バイパス流路14に流す。こ
のことにより稀溶液全体の流量がそのときの稀・
濃溶液流量比Gw/Gsに対応するように増加し、
よつて前記発生器1の内部液面高さの上昇が制御
されて平衡状態となる。
In this case, since the turbine pump flow rate ratio Gt/Gp in the turbine pump 11 is set to be approximately equal to the minimum value of the rare/concentrated solution flow rate ratio Gw/Gs within the range of engine operating conditions (Gt/Gp ≦
Gw/Gs), the internal liquid level of the generator 1 tends to rise as the engine operates as described above. However, the liquid level detector 16 detects this liquid level height and outputs a liquid level height signal to the control device 17, and the control device 17 that receives this liquid level height signal responds to the bypass flow. The flow rate control valve 15 of the passage 14 is opened to a predetermined degree to allow a portion of the dilute solution to flow into the bypass passage 14. This allows the flow rate of the entire dilute solution to be
increases to correspond to the concentrated solution flow rate ratio Gw/Gs,
Therefore, the rise in the internal liquid level height of the generator 1 is controlled and an equilibrium state is achieved.

そして、この平衡状態からエンジンの運転状態
が変化して稀・濃溶液流量比Gw/Gsが変化した
ときには、上記と同様に、その変化に対応するよ
うに流量制御弁15の開度が変化して稀溶液流量
が増減調整され、新たな平衡状態に移行する。
Then, when the operating condition of the engine changes from this equilibrium state and the dilute/concentrated solution flow rate ratio Gw/Gs changes, the opening degree of the flow control valve 15 changes in response to the change, as described above. The dilute solution flow rate is increased or decreased, and a new equilibrium state is reached.

したがつて、このように、エンジンの運転条件
が変化して稀・濃溶液流量比Gw/Gsが増減変化
しても、その変化分に対応するようにバイパス流
路14で稀溶液流量のみが変化するため、タービ
ンポンプ11の液タービン12への稀溶液流量は
常に略一定となり、すなわち液タービン12が常
に最大効率点の流量で駆動されて、ポンプ作用を
したり過大抵抗となることはなく、よつて高圧の
稀溶液の持つエネルギーを安定して確実に回収し
てポンプ13の動力に利用することができる。
Therefore, even if the engine operating conditions change and the dilute/concentrated solution flow rate ratio Gw/Gs increases or decreases, only the dilute solution flow rate is adjusted in the bypass flow path 14 to correspond to the change. Therefore, the flow rate of the dilute solution from the turbine pump 11 to the liquid turbine 12 is always approximately constant, that is, the liquid turbine 12 is always driven at the flow rate at the maximum efficiency point, and there is no pumping action or excessive resistance. Therefore, the energy of the high-pressure dilute solution can be stably and reliably recovered and used to power the pump 13.

また、発生器1内溶液の液面高さに応じ稀溶液
流量を変えて稀・濃溶液流量比Gw/Gsの変化分
を補償しているため、エンジンの運転条件を急変
させても速やかにエンジンシステムを平衡状態に
することができ、よつてエンジンを安定して自動
運転することができる。
In addition, since the dilute solution flow rate is changed according to the liquid level height of the solution in the generator 1 to compensate for the change in the dilute/concentrated solution flow rate ratio Gw/Gs, even if the engine operating conditions suddenly change, the dilute solution flow rate can be changed quickly. The engine system can be brought into equilibrium, and the engine can therefore be operated stably and automatically.

さらに、エンジンの運転条件の変化に伴う稀・
濃溶液流量比Gw/Gsの変化をバイパス流路14
の流路面積を調整制御することによつて補償して
いるため、タービン・ポンプ流量比は一定にして
差し支えなく、よつて小型で構造の簡単な直結型
タービンポンプ11の使用が可能となる。
Furthermore, due to changes in engine operating conditions,
Bypass flow path 14 changes in concentrated solution flow rate ratio Gw/Gs
Since the compensation is made by adjusting and controlling the flow path area of , the turbine-pump flow rate ratio can be kept constant, and a direct-coupled turbine pump 11 that is small and has a simple structure can be used.

第3図は第2実施例を示し、前記第1実施例で
は発生器1の内部液面高さに応じて稀溶液流量
Gwを増減制御するようにしたのに対し、濃溶液
流量Gsを増減制御するようにしたものである
(尚、第2図と同じ部分については同じ符号を付
してその詳細な説明を省略する)。
FIG. 3 shows a second embodiment. In the first embodiment, the dilute solution flow rate is adjusted according to the internal liquid level height of the generator 1.
In contrast to increasing/decreasing Gw, the concentrated solution flow rate Gs is also controlled increasing/decreasing (the same parts as in Figure 2 are given the same reference numerals and detailed explanations are omitted). ).

すなわち、本実施例では、バイパス流量14′
はタービンポンプ11のポンプ13上下流側の濃
溶液流路9を接続するように設けられており、ポ
ンプ13から吐出された濃溶液の一部をバイパス
流路14′によつてポンプ13吸込み側ヘリター
ンさせるようになされている。また、該バイパス
流路14′に介設された流量制御弁15′の開度
は、液面検出器16の出力を受けて作動する制御
装置17′により制御される。その他の構成は前
記第1実施例と同様である。
That is, in this embodiment, the bypass flow rate 14'
are provided to connect the concentrated solution flow path 9 on the upstream and downstream sides of the pump 13 of the turbine pump 11, and a part of the concentrated solution discharged from the pump 13 is transferred to the suction side of the pump 13 through the bypass flow path 14'. It is made to return to the ground. Further, the opening degree of the flow rate control valve 15' provided in the bypass passage 14' is controlled by a control device 17' which operates in response to the output of the liquid level detector 16. The rest of the structure is the same as that of the first embodiment.

したがつて、本実施例では、エンジンの運転条
件の変化により稀・濃溶液流量比Gw/Gsが変化
したときには、前記第1実施例と同様にして液面
検出器16および制御装置17′が作動すること
によりバイパス流路14′の流量制御弁15′の開
度が増減調整され、このことにより該バイパス流
路14′る流れる濃溶液流量すなわち濃溶液のリ
ターン流量が変化して全体の濃溶液流量Gsが前
記新しい稀・濃溶液流量比Gw/Gsに対応するよ
うに変更され、その結果、発生器1内の液面高さ
の変動が制御される。よつて前記第1実施例と同
様の作用効果を奏することができる。
Therefore, in this embodiment, when the dilute/concentrated solution flow rate ratio Gw/Gs changes due to a change in engine operating conditions, the liquid level detector 16 and the control device 17' are activated in the same manner as in the first embodiment. When activated, the opening degree of the flow rate control valve 15' of the bypass channel 14' is adjusted to increase or decrease, thereby changing the flow rate of the concentrated solution flowing through the bypass channel 14', that is, the return flow rate of the concentrated solution, and increasing the overall concentration. The solution flow rate Gs is changed to correspond to the new dilute to concentrated solution flow rate ratio Gw/Gs, so that variations in the liquid level in the generator 1 are controlled. Therefore, the same effects as in the first embodiment can be achieved.

尚、前記両実施例では、発生器1の内部液面高
さを検出してそれに応じて制御装置17,17′
により流量制御弁15,15′の開度を制御する
ようにしたが、吸収器2の内部液面高さを検出し
てそれに応じて前記と同様な制御を行うようにし
てもよく、必要に応じて適宜選択すればよい。
In both of the above embodiments, the internal liquid level of the generator 1 is detected and the control devices 17, 17' are controlled accordingly.
Although the opening degree of the flow rate control valves 15, 15' is controlled by the above, it is also possible to detect the internal liquid level height of the absorber 2 and perform the same control as described above accordingly. It may be selected as appropriate.

また、本発明は、濃度差エンジンのみならず、
吸収式冷凍機等に対しても適用することができる
のは勿論である。
In addition, the present invention is applicable not only to a concentration difference engine, but also to
Of course, the present invention can also be applied to absorption refrigerators and the like.

以上説明したように、本願の第1の発明によれ
ば、発生器と吸収器とを備え、発生器から吸収器
に流通する高圧の作動流体を出力に使用する一
方、タービンとポンプとを同軸に直結してなるタ
ービンポンプのタービンを介して前記発生器内の
稀溶液を吸収器へ、またポンプを介して吸収器内
の濃溶液を発生器へそれぞれ流通させるようにし
た濃度差エンジンや吸収式冷凍機等において、前
記タービンポンプとして濃度差エンジン等の運転
条件範囲内での最小の稀・濃溶液流量比と略等し
いタービン・ポンプ流量比を持つタービンポンプ
を用い、かつ該タービンポンプのタービンまたは
ポンプのいずれか一方をバイパスするバイパス流
路を設けたことにより、エンジン等の運転条件が
変化して稀・濃溶液流量比が変化してもその変化
分は溶液が前記バイパス流路をバイパス流通する
ことによつて補償されて発生器または吸収器の内
部液面高さが変化するのを制御することができる
ので、小型で簡単な構造のタービンポンプを使用
しつつ、該タービンポンプのタービンを、エンジ
ン等の広範囲な運転条件に対し安定してかつ効率
的に作動させて、ポンプ駆動のための動力を回収
することができ、よつて濃度差エンジンや吸収式
冷凍機等における動力の低減を図ることができる
ものである。
As explained above, according to the first invention of the present application, the generator and the absorber are provided, and the high-pressure working fluid flowing from the generator to the absorber is used for output, while the turbine and the pump are coaxially connected. A concentration difference engine or an absorption engine that flows the dilute solution in the generator to the absorber through the turbine of a turbine pump directly connected to the engine, and flows the concentrated solution in the absorber to the generator through the pump. In a type refrigerator, etc., a turbine pump having a turbine-to-pump flow rate approximately equal to the minimum dilute/concentrated solution flow rate ratio within the operating condition range of a concentration difference engine, etc. is used as the turbine pump, and the turbine of the turbine pump is Alternatively, by providing a bypass flow path that bypasses either one of the pumps, even if the operating conditions of the engine etc. change and the ratio of dilute/concentrated solution flow rates changes, the solution will bypass the bypass flow path by the amount of the change. Since it is possible to control changes in the internal liquid level of the generator or absorber by compensating for the flow, the turbine of the turbine pump can be used while using a small and simple turbine pump. It is possible to operate stably and efficiently under a wide range of engine operating conditions and recover the power for driving the pump, thereby reducing the power used in concentration difference engines, absorption chillers, etc. It is possible to achieve this goal.

また、本願の第2の発明によれば、前記バイパ
ス流路に流量制御弁を設け、該流量制御弁の開度
を前記発生器または吸収器の内部液面高さに応じ
て制御するようにしたことにより、バイパス流路
を流れる溶液流量が調整されて前記タービンポン
プのタービンをより一層安定して作動させること
ができ、濃度差エンジンや吸収式冷凍機等におけ
る動力の確実な低減を図ることができるものであ
る。
Further, according to the second invention of the present application, a flow control valve is provided in the bypass flow path, and the opening degree of the flow control valve is controlled according to the internal liquid level height of the generator or absorber. By doing so, the flow rate of the solution flowing through the bypass flow path is adjusted, and the turbine of the turbine pump can be operated more stably, and the power of the concentration difference engine, absorption refrigerator, etc. can be reliably reduced. It is something that can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の濃度差エンジンの模式説明図、
第2図は本発明の第1実施例を示す第1図相当
図、第3図は同第2実施例を示す第1図相当図、
第4図は発生器内温度および圧力を一定にしたと
きの吸収器内温度および圧力と稀・濃溶液流量比
との相関関係の一例を示す説明図、第5図は吸収
器内温度および圧力を一定にしたときの発生器内
温度および圧力と稀・濃溶液流量比との相関関係
の一例を示す説明図である。 1……発生器、2……吸収器、3……タービ
ン、4……作動流体流路、6……稀溶液流路、7
……電動モータ、9……濃溶液流路、10……熱
交換器、11……タービンポンプ、12……液タ
ービン、13……ポンプ、14,14′……バイ
パス流路、15,15′……流量制御弁、16…
…液面検出器、17,17′……制御装置。
Figure 1 is a schematic illustration of a conventional concentration difference engine.
2 is a diagram equivalent to FIG. 1 showing the first embodiment of the present invention, FIG. 3 is a diagram equivalent to FIG. 1 showing the second embodiment,
Figure 4 is an explanatory diagram showing an example of the correlation between the temperature and pressure inside the absorber and the rare/concentrated solution flow rate ratio when the temperature and pressure inside the generator are kept constant, and Figure 5 is the temperature and pressure inside the absorber. FIG. 2 is an explanatory diagram showing an example of the correlation between the temperature and pressure inside the generator and the rare/concentrated solution flow rate ratio when the temperature and pressure are kept constant. DESCRIPTION OF SYMBOLS 1... Generator, 2... Absorber, 3... Turbine, 4... Working fluid flow path, 6... Dilute solution flow path, 7
...Electric motor, 9... Concentrated solution channel, 10... Heat exchanger, 11... Turbine pump, 12... Liquid turbine, 13... Pump, 14, 14'... Bypass channel, 15, 15 '...Flow control valve, 16...
...Liquid level detector, 17, 17'...control device.

Claims (1)

【特許請求の範囲】 1 溶液を加熱して作動流体を発生させる発生器
1と、溶液を冷却して該溶液内に作動流体を吸収
させる吸収器2と、前起発生器1で発生した作動
流体を吸収器2に流通させる作動流体流路4と、
作動流体を発生した後の発生器1内の稀溶液を吸
収器2に流通させる稀溶液流路6と、作動流体を
吸収した後の吸収器2内の濃溶液を発生器1内に
流通させる濃溶液流路9と、前記稀溶液流路6に
介設したタービン12と濃溶液流路9に介設した
ポンプ13とが同軸に直結されてなるタービンポ
ンプ11と、該タービンポンプ11を駆動する電
動モータ7とからなる濃度差エンジンや吸収式冷
凍機等において、前記タービンポンプ11として
運転条件範囲内での最小の稀・濃溶液流量比
Gw/Gsと略等しいタービン・ポンプ流量比Gt/
Gpを持つ同軸直結型のタービンポンプを用い、
かつタービン12またはポンプ13のいずれか一
方にバイパス流路14,14′を備えたことを特
徴とする動力回収システム。 2 溶液を加熱して作動流体を発生させる発生器
1と、溶液を冷却して該溶液内に作動流体を吸収
させる吸収器2と、前起発生器1で発生した作動
流体を吸収器2に流通させる作動流体流路4と、
作動流体を発生した後の発生器1内の稀溶液を吸
収器2に流通させる稀溶液流路6と、作動流体を
吸収した後の吸収器2内の濃溶液を発生器1内に
流通させる濃溶液流路9と、前記稀溶液流路6に
介設したタービン12と濃溶液流路9に介設した
ポンプ13とが同軸に直結されてなるタービンポ
ンプ11と、該タービンポンプ11を駆動する電
動モータ7とを備えた濃度差エンジンや吸収式冷
凍機等において、前記タービンポンプ11として
運転条件範囲内での最小の稀・濃溶液流量比
Gw/Gsと略等しいタービン・ポンプ流量比Gt/
Gpを持つタービンポンプを用い、さらに、ター
ビンポンプ11のタービン12またはポンプ13
のいずれか一方をバイパスし、かつ流量制御弁1
5,15′を有するバイパス流路14,14′と、
前記発生器1または吸収器2の内部液面高さを検
出する液面検出器16と、該液面検出器16の出
力を受けて、発生器1または吸収器2の内部液面
高さを一定ないし所定範囲に保つように前記バイ
パス流路14,14′の流量制御弁15,15′を
開閉制御する制御装置17,17′とを設けたこ
とを特徴とする動力回収システム。
[Claims] 1. A generator 1 that heats a solution to generate a working fluid, an absorber 2 that cools a solution and absorbs the working fluid into the solution, and a generator 1 that generates a working fluid. a working fluid flow path 4 that allows fluid to flow through the absorber 2;
A dilute solution flow path 6 that allows the dilute solution in the generator 1 after generating the working fluid to flow through the absorber 2, and a dilute solution flow path 6 that allows the concentrated solution in the absorber 2 to flow into the generator 1 after absorbing the working fluid. A turbine pump 11 in which a concentrated solution flow path 9, a turbine 12 provided in the dilute solution flow path 6, and a pump 13 provided in the concentrated solution flow path 9 are directly connected coaxially; and a turbine pump 11 for driving the turbine pump 11. In a concentration difference engine, an absorption refrigerator, etc., which is composed of an electric motor 7, the turbine pump 11 has the minimum dilute/concentrate solution flow rate ratio within the operating condition range.
Turbine/pump flow rate ratio Gt/ approximately equal to Gw/Gs
Using a coaxial direct-coupled turbine pump with Gp,
A power recovery system characterized in that either the turbine 12 or the pump 13 is provided with a bypass passage 14, 14'. 2. A generator 1 that heats a solution to generate a working fluid, an absorber 2 that cools the solution and absorbs the working fluid into the solution, and a generator 1 that supplies the working fluid generated in the pre-generating generator 1 to the absorber 2. A working fluid flow path 4 that circulates;
A dilute solution flow path 6 that allows the dilute solution in the generator 1 after generating the working fluid to flow through the absorber 2, and a dilute solution flow path 6 that allows the concentrated solution in the absorber 2 to flow into the generator 1 after absorbing the working fluid. A turbine pump 11 in which a concentrated solution flow path 9, a turbine 12 provided in the dilute solution flow path 6, and a pump 13 provided in the concentrated solution flow path 9 are directly connected coaxially; and a turbine pump 11 for driving the turbine pump 11. In a concentration differential engine, an absorption refrigerator, etc., equipped with an electric motor 7, the turbine pump 11 has the minimum dilute/concentrate solution flow rate ratio within the operating condition range.
Turbine/pump flow rate ratio Gt/ approximately equal to Gw/Gs
Using a turbine pump with Gp, furthermore, the turbine 12 of the turbine pump 11 or the pump 13
Bypass either one of the flow control valves 1 and 1
a bypass channel 14, 14' having 5, 15';
A liquid level detector 16 detects the internal liquid level height of the generator 1 or absorber 2, and receives the output of the liquid level detector 16 to detect the internal liquid level height of the generator 1 or absorber 2. A power recovery system comprising: a control device 17, 17' for controlling the opening and closing of the flow control valves 15, 15' of the bypass passages 14, 14' so as to maintain the flow rate within a constant or predetermined range.
JP23120182A 1982-12-29 1982-12-29 Power recovery system Granted JPS59122784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23120182A JPS59122784A (en) 1982-12-29 1982-12-29 Power recovery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23120182A JPS59122784A (en) 1982-12-29 1982-12-29 Power recovery system

Publications (2)

Publication Number Publication Date
JPS59122784A JPS59122784A (en) 1984-07-16
JPH0340207B2 true JPH0340207B2 (en) 1991-06-18

Family

ID=16919923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23120182A Granted JPS59122784A (en) 1982-12-29 1982-12-29 Power recovery system

Country Status (1)

Country Link
JP (1) JPS59122784A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2896423B2 (en) * 1988-02-12 1999-05-31 バブコツク日立株式会社 Rankine cycle equipment
WO2009037515A2 (en) * 2007-09-20 2009-03-26 Abdulsalam Al-Mayahi Process and systems
DE102011003068B4 (en) * 2011-01-24 2019-02-07 Robert Bosch Gmbh Device and method for waste heat utilization of an internal combustion engine
JP6016027B2 (en) * 2013-02-20 2016-10-26 パナソニックIpマネジメント株式会社 Waste heat heat pump system
JP6074798B2 (en) * 2013-02-20 2017-02-08 パナソニックIpマネジメント株式会社 Waste heat heat pump system
CN105008822B (en) * 2013-02-20 2017-05-17 松下知识产权经营株式会社 Heat pump system using waste heat and heat engine-driven vapor compression heat pump system

Also Published As

Publication number Publication date
JPS59122784A (en) 1984-07-16

Similar Documents

Publication Publication Date Title
WO2020026473A1 (en) Wave power generation system
JPH0340207B2 (en)
EP2762802B1 (en) Chilled water system and method of operating chilled water system
JPS6336528B2 (en)
JPH0721362B2 (en) Waste heat recovery power generator
JPH0784969B2 (en) Heat pump with auxiliary heater
EP1202006B1 (en) Absorption refrigerator
JP4157723B2 (en) Triple effect absorption refrigerator
JPS61145305A (en) Control device for turbine plant using hot water
JP2816012B2 (en) Control device for absorption refrigerator
JPH08338607A (en) Cavitation prevention apparatus for feed water pump
JP4408269B2 (en) Waste heat recovery system and cogeneration system
JPS60206911A (en) Flush preventive method for condensate in rankin cycle system
JPS6327204Y2 (en)
JP2001289530A (en) Absorption chiller-heater
JPH0586543B2 (en)
JPS60206912A (en) Flush preventive method for condensate in rankin cycle system
JPS6256428B2 (en)
JP4199977B2 (en) Triple effect absorption refrigerator
JPH1137407A (en) Gas vertical flow type exhaust heat recovery boiler and control for the same
JPS58216773A (en) Coupling plant for nuclear power installation and sea water desalting device
JPH09310933A (en) Waste heat recovering device for engine
JPH04237807A (en) Condenser cooling water heat recovery device
JPH0650627A (en) Method for controlling absorption heat pump
JPS5833071A (en) Controller for double-effect absorption cold and hot water machine