JPH0339454A - Production of cast aluminum alloy bar for vtr cylinder - Google Patents

Production of cast aluminum alloy bar for vtr cylinder

Info

Publication number
JPH0339454A
JPH0339454A JP17294089A JP17294089A JPH0339454A JP H0339454 A JPH0339454 A JP H0339454A JP 17294089 A JP17294089 A JP 17294089A JP 17294089 A JP17294089 A JP 17294089A JP H0339454 A JPH0339454 A JP H0339454A
Authority
JP
Japan
Prior art keywords
hardness
forgeability
alloy
cooling rate
aluminum alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17294089A
Other languages
Japanese (ja)
Inventor
Teruo Uno
宇野 照生
Yoshio Watanabe
良夫 渡辺
Kazuyoshi Oka
岡 一嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP17294089A priority Critical patent/JPH0339454A/en
Publication of JPH0339454A publication Critical patent/JPH0339454A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To inexpensively produce an Al alloy bar for VTR cylinder excellent in forgeability, wear resistance, and hardness by casting a molten Al alloy with a specific composition under specific cooling conditions and then carrying out homogenizing treatment, annealing treatment, and slow cooling at the time of producing a cast Al alloy bar for VTR cylinder. CONSTITUTION:At the time of producing an Al alloy bar for VTR cylinder with ease by means of casting, a molten Af alloy, as raw material, having a composition containing, by weight, 3-4.5% Cu, 0.3-1.8% Mg, 0.5-2.5% Ni, 0.1-0.9% Si, and 0.1-0.7% Fe is cast into a shape of a bar of <=phi80mm, cooled at >=50 deg.C/sec average cooling rate, heated up to 450-520 deg.C for >=8hr to undergo homogenizing treatment, successively annealed at 330-390 deg.C for >=2hr, and cooled slowly from the annealing temp. down to <=250 deg.C at <=20 deg.C/hr average cooling rate.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、vRTシリンダー用アルアルミニウム合金鋳
造棒造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for making an aluminum alloy cast rod for vRT cylinders.

[従来の技術] 従来、vRTシリンダーにはアルミニウム合金押出棒を
素材とした鍛造品が多く使用されているが、低コスト化
のため押出工程のない鋳造棒の製法への切替えが望まれ
、実施されつつある。しかし、鋳造棒は押出棒のように
押出加工によって素材の加工性向上を図ることができな
いため、鍛造の際に割れ、亀裂を生じやすいという問題
を有する。また、素材を冷間鍛造して製品形状とする際
、従来は2回鍛造、すなわち、−度鍛造して素材を製品
形状に近づけた後、鍛造時に加工硬化した素材を焼鈍し
、鍛造しやすい状態にしてから再鍛造を行ない、製品形
状に仕上げるという方法がとられていたが、工程合理化
のため、1回鍛造化が望まれており、さらにVTRシリ
ンダーの軽量化、低コスト化にともなって、製品形状が
薄肉化、複雑化し、素材に求められる鍛造性はより厳し
いものになっている。
[Conventional technology] Traditionally, forged products made from extruded aluminum alloy rods have often been used for vRT cylinders, but in order to reduce costs, it has been desired to switch to a manufacturing method for cast rods that does not require an extrusion process, and this has been implemented. It is being done. However, unlike extruded rods, cast rods cannot improve the workability of the material through extrusion processing, and therefore have the problem of being susceptible to cracking and cracking during forging. In addition, when cold forging a material into a product shape, conventionally, the material is forged twice, that is, forged twice to bring the material closer to the product shape, and then the work-hardened material during forging is annealed, making it easier to forge. Previously, a method was used in which the forging was re-forged and finished into the product shape, but in order to streamline the process, single-step forging was desired, and as VTR cylinders were becoming lighter and cheaper, , product shapes are becoming thinner and more complex, and the forgeability required of materials is becoming more demanding.

このため、鋳造棒を鍛造すると、割れや亀裂が生じやす
く、鋳造棒を使用する上での大きな問題になっている。
For this reason, when a cast bar is forged, cracks and cracks are likely to occur, which is a major problem in using the cast bar.

このため、鋳造棒を鍛造すると、割れや亀裂が生じゃす
く、鋳造棒を使用する上での大きな問題になっている。
For this reason, when a cast bar is forged, cracks and cracks tend to occur, which is a major problem in using the cast bar.

[発明が解決しようとする課題] 本発明は、こうした実情の下に鍛造の際に割れ、亀裂の
生じにくいVTRシリンダー用アルミニウム合金鋳造棒
の製造方法を提供することを目的とする。
[Problems to be Solved by the Invention] Under these circumstances, an object of the present invention is to provide a method for manufacturing an aluminum alloy cast bar for a VTR cylinder that is less likely to break or crack during forging.

[3題を解決するための手段] 本発明は前記の問題点を解消し、鍛造性の良好なVTR
シリンダー用アルミニウム合金鋳造棒の製造方法を提供
するものであり、その要旨とするところは、Cu  3
〜4.5 if[41%、MgO03〜1.8 ffi
量%、Ni0.5〜2.5ffi量%、S i  O,
1〜0.9ffi量%、F e  O,1〜0.7 f
fi量%を含み、残りアルミニウムと不純物とからなる
アルミニウム合金を平均冷却速度5o″C/see以上
でφ80關以下に鋳造後、450〜520℃で8時間以
上均質化処理し、330〜390℃で2時間以上焼鈍し
た後、その温度から平均冷却速度20’C/hr以下で
250℃以下まで徐冷することを特徴とするVTRシリ
ンダー用アルミニウム合金鋳造棒の製造方法にある。
[Means for solving the three problems] The present invention solves the above problems and provides a VTR with good forgeability.
The present invention provides a method for manufacturing an aluminum alloy cast rod for cylinders, and its gist is that Cu 3
~4.5 if [41%, MgO03~1.8 ffi
amount%, Ni0.5-2.5ffi amount%, S i O,
1-0.9ffi amount%, F e O, 1-0.7 f
After casting an aluminum alloy consisting of the remaining aluminum and impurities at an average cooling rate of 5 o''C/see or more to a diameter of 80 mm or less, the aluminum alloy is homogenized at 450 to 520 °C for 8 hours or more, and then 330 to 390 °C. The method of manufacturing an aluminum alloy cast bar for a VTR cylinder is characterized by annealing the bar for 2 hours or more and then slowly cooling it from that temperature to 250°C or less at an average cooling rate of 20'C/hr or less.

本発明における上記合金成分、および製造方法の限定理
由は下記の通りである。
The reasons for limiting the alloy components and manufacturing method in the present invention are as follows.

Cu : Cuは本来、鍛造後に実施される(T6焼入
れ、焼戻し)処理によってVTRシリンダーの強度を高
めるために添加される元素であるが、鍛造の際は次のよ
うな影響を及ぼす。
Cu: Cu is an element originally added to increase the strength of the VTR cylinder through processing (T6 quenching, tempering) performed after forging, but it has the following effects during forging.

すなわち、Al中に存在するCuは主に品出物や析出物
を形成し、一部はAl中に固溶する。このうち、晶出物
は鋳造時の他の元素と共に形成される粗大な化合物であ
り、鍛造割れの起点となる。したがって、鋳造後には晶
出物を均質化処理によってできるだけ多く溶入(固溶)
させることが望ましい。析出物はその働きによって大き
く2つに分けられる。
That is, Cu present in Al mainly forms deposits and precipitates, and some of it is dissolved in Al. Among these, crystallized substances are coarse compounds formed together with other elements during casting, and become the starting point of forging cracks. Therefore, after casting, as much crystallized material as possible is injected (solid solution) through homogenization treatment.
It is desirable to Precipitates can be broadly divided into two types depending on their function.

一つは素材の硬さを低下させる安定相(θ:A12 C
u%S :A12 CuMg)であり、一つは硬さや強
度を向上させる準安定相やG8P帯である。このうち、
G、P帯は鋳造や均質化処理後に過飽和に固溶している
Cuによって自然に放置された状態でも短期間のうちに
形成され、素材の硬さを高める。素材の鍛造性は硬さが
低いほど向上するから、鍛造前には軟化処理によって、
鋳造や均質化処理で過飽和に固溶したCuをG、P帯や
準安定相ではなく安定相の形で多量に析出させることが
望ましい。従って、晶出物量を少なくし、安定相を多く
することが鍛造性の向上には望ましい。
One is the stable phase (θ: A12 C
u%S: A12 CuMg), and one is a metastable phase or G8P band that improves hardness and strength. this house,
The G and P bands are formed in a short period of time even when left naturally due to the supersaturated solid solution of Cu after casting or homogenization treatment, increasing the hardness of the material. The forgeability of the material improves as the hardness decreases, so before forging, softening treatment is performed to
It is desirable to precipitate a large amount of Cu, which has become a supersaturated solid solution during casting or homogenization, in the form of a stable phase rather than a G, P band or metastable phase. Therefore, it is desirable to reduce the amount of crystallized substances and increase the number of stable phases in order to improve forgeability.

しかし、4.5wt%を超えると鍛造割れの起点となる
晶出物が著しく多くなり、均質化処理でこれを溶入化さ
せると、過飽和に固溶するCuが著しく多く収る。この
ため、軟化処理でそのほとんどを安定相の形で析出させ
ることが困難となり、硬さの低下が不十分となる。また
、3wt%未満では(T6焼入れ、焼戻し)処理におい
て析出する準安定相やG。
However, when the content exceeds 4.5 wt%, the amount of crystallized substances that become the starting point of forging cracks increases significantly, and when this is infiltrated by homogenization treatment, a significantly large amount of Cu dissolved in supersaturated solid solution is accommodated. For this reason, it becomes difficult to precipitate most of it in the form of a stable phase during the softening treatment, resulting in insufficient reduction in hardness. In addition, if it is less than 3 wt%, metastable phases and G precipitate during processing (T6 quenching, tempering).

Pll)が少ないため十分な強度が得られない。Pll), sufficient strength cannot be obtained.

従って、3〜4.5wt%の範囲とする。Therefore, the content should be in the range of 3 to 4.5 wt%.

Mg : MgもCu同様にT6処理でVTRシリンダ
ーの強度を高めるために添加される元素であるが、鍛造
前には軟化処理によって安定相を多量に析出させて素材
の硬さを低下させ、鍛造性を向上させることができる。
Mg: Like Cu, Mg is an element added to increase the strength of VTR cylinders during the T6 process, but before forging, a softening process precipitates a large amount of stable phase to reduce the hardness of the material. can improve sex.

しかし、1.8ffl量%を超えると硬さの低下が不十
分となり、又0.3重量%未満ではT6処理後に十分な
強度が得られない。従って、0.3〜1.8重量%の範
囲とする。
However, if it exceeds 1.8% by weight, the reduction in hardness will be insufficient, and if it is less than 0.3% by weight, sufficient strength will not be obtained after T6 treatment. Therefore, the content should be in the range of 0.3 to 1.8% by weight.

Si:SiもCu、Mg同様にT6処理でVTRシリン
ダーの強度を高めるために添加される元素であるが、鍛
造前には軟化処理によって安定相を多量に析出させて素
材の硬さを低下させ、鍛造性を向上させることができる
Si: Similar to Cu and Mg, Si is an element added to increase the strength of VTR cylinders in the T6 process, but before forging, a softening process precipitates a large amount of stable phase and reduces the hardness of the material. , it is possible to improve forgeability.

しかし、0.9ffl量%を超えると硬さの低下が不十
分となり、また0、111t%未満ではT6処理後に十
分な強度が得られない。従って、0.1〜0.9重量%
の範囲とする。
However, if it exceeds 0.9 ffl amount %, the reduction in hardness will be insufficient, and if it is less than 0.111 t %, sufficient strength will not be obtained after T6 treatment. Therefore, 0.1-0.9% by weight
The range shall be .

Ni :NiはAI中への固溶量が極めて少なく、添加
量のほとんどが晶出物としてAI中に残存し、均質化処
理でも溶入させることはほとんど不可能である。この晶
出物はVTRシリンダーの耐摩耗性、切削性の向上に寄
与するが、鍛造の際は割れの起点として働き、鍛造性の
低下を招く。0.5重量%未満では耐摩耗性、切削性へ
の寄与が小さく、2.5重量%を超えると鍛造性が著し
く低下する。従って、0.5〜2.5重量%の範囲とす
る。
Ni: The amount of Ni dissolved in solid solution in AI is extremely small, and most of the added amount remains in AI as a crystallized substance, making it almost impossible to dissolve it even in a homogenization treatment. This crystallized material contributes to improving the wear resistance and machinability of the VTR cylinder, but during forging, it acts as a starting point for cracks, resulting in a decrease in forgeability. If it is less than 0.5% by weight, the contribution to wear resistance and machinability will be small, and if it exceeds 2.5% by weight, forgeability will be significantly reduced. Therefore, the content should be in the range of 0.5 to 2.5% by weight.

Fe:Fe鋳造の際はNiと結合してFe−Ni系化合
物を形成し、VTRシリンダーの耐摩耗性に寄与する。
Fe: When Fe is cast, it combines with Ni to form a Fe-Ni compound, which contributes to the wear resistance of VTR cylinders.

しかし、Fe−N1系化合物は均質化処理でほとんど溶
入しないため、鍛造の際は、割れの起点となる。0.1
重量%未満では十分な耐摩耗性が得られず、0.7ff
i量%を超えると鍛造性が著しく低下する。従って、0
.1〜0.7 ffi量%の範囲とする。
However, since the Fe-N1 compound hardly penetrates during the homogenization process, it becomes a starting point for cracks during forging. 0.1
If it is less than 0.7ff, sufficient wear resistance cannot be obtained.
If the content exceeds i%, forgeability will be significantly reduced. Therefore, 0
.. The range is 1 to 0.7 ffi amount%.

鋳造冷却速度二本系合金が凝固する際は、初晶A1が樹
枝状に成長した後、樹枝間に主に合金元素からなる化合
物が晶出する。この化合物は非常に脆く、また樹枝間隔
(DAS)に比例して大きくなるため、DASが大きい
程鍛造性は低下する。特にDASの平均値が15μmを
超えると鍛造性が著しく低下する。ところで、DASは
冷却速度と次式の関係にあり、 C−に/D” C:冷却速度(’C/ 5ee) D:DAS(μm) m、に:定数 本系合金の場合は、Km 7.8XlG’ 、m−2,
7である。従って、DASの平均値を15μm以下にす
るには、平均50℃/sec以上の冷却速度を必要とす
る。
Casting Cooling Rate When a two-component alloy solidifies, primary crystals A1 grow in a dendritic shape, and then compounds mainly consisting of alloying elements crystallize between the dendrites. This compound is very brittle and increases in proportion to the dendritic spacing (DAS), so the greater the DAS, the lower the forgeability. In particular, when the average value of DAS exceeds 15 μm, forgeability is significantly reduced. By the way, DAS has a relationship with the cooling rate as shown in the following formula: C-ni/D'' C: cooling rate ('C/5ee) D: DAS (μm) m, ni: constant In the case of a book-based alloy, Km 7 .8XlG', m-2,
It is 7. Therefore, in order to make the average DAS value 15 μm or less, a cooling rate of 50° C./sec or more is required on average.

鋳造サイズ; また、平均冷却速度を50℃/sec以上にするには、
φ80mm以下であることが必要である。
Casting size; In addition, in order to make the average cooling rate 50 ° C / sec or more,
It is necessary that the diameter is 80 mm or less.

φ80+gmを超えると、平均冷却速度を50℃/se
C以上とすることが困難になるからである。
If it exceeds φ80+gm, the average cooling rate should be reduced to 50℃/se.
This is because it becomes difficult to achieve a rating of C or higher.

鋳造速度を450mm/win以上にし、冷却水量30
1/sin以上とするのが望ましい。
Casting speed is 450mm/win or more, cooling water amount is 30
It is desirable to set it to 1/sin or more.

均質化処理;鍛造の際、割れの起点となるのは主に晶出
物である。従って、晶出物量が多いほど鍛造性は低下す
る。本系合金の場合、晶出物含有量が20%を越えると
鍛造性の低下が著しい。しかし、本系合金の鋳造後の晶
出物含有量は20%を超えるため、均質化処理で品出物
を溶入化させなければならず、20%以下を達成するに
は450℃以上で8時間以上の処理が必要である。これ
より低温では、上記で限定した成分を有する全ての合金
の晶出物含有率を20%以下にするのは不可能である。
Homogenization treatment: During forging, the starting point of cracks is mainly crystallized substances. Therefore, the greater the amount of crystallized substances, the lower the forgeability. In the case of the present alloy, when the crystallized material content exceeds 20%, the forgeability is significantly reduced. However, since the crystallized content of this alloy exceeds 20% after casting, it is necessary to infiltrate the product through homogenization treatment. Treatment for 8 hours or more is required. At lower temperatures, it is impossible to reduce the crystallized content of all alloys having the above-defined components to 20% or less.

また高温で処理するほど短時間で晶出物含有率は20%
以下になるが、450℃の場合は8時間以上を必要とす
る。
In addition, the higher the temperature, the faster the crystallized content can be reduced to 20%.
However, in the case of 450°C, more than 8 hours are required.

また処理温度が520℃を越えると、共晶融解が起こり
、材料が著しく劣化する。従って、均質化処理は450
〜520℃で8時間以上しなければならない。
Furthermore, if the processing temperature exceeds 520° C., eutectic melting occurs and the material deteriorates significantly. Therefore, the homogenization process is 450
-520°C for 8 hours or more.

軟化処理(焼紬):索材の硬さは鍛造性に大きな影響を
およぼす。硬さが高いと素材の伸びが小さくなり鍛造性
が著しく低下する。従って、鍛造前の硬さはできるだけ
低くしなければならず、水系合金をVTRシリンダーに
鍛造するには、ビッカース硬さ(Hv)で55以下にし
なければならない。硬さを低下させるには、固溶してい
る主硬化成分(Cu、Mg。
Softening treatment (sintered pongee): The hardness of the rope material has a large effect on its forgeability. If the hardness is high, the elongation of the material will be small and the forgeability will be significantly reduced. Therefore, the hardness before forging must be as low as possible, and in order to forge a water-based alloy into a VTR cylinder, the Vickers hardness (Hv) must be 55 or less. In order to reduce the hardness, the main hardening components (Cu, Mg, etc.) are dissolved in solid solution.

St)を多量に安定相の形で析出させなければならず、
通常実施されている軟化処理(35゜〜450℃に1〜
2時間保持し、約300’Cまで炉冷(約り0℃/hr
)後空冷もしくは炉冷なしで空冷)で硬さをHv≦55
にするのは困難である。これを達成するには330〜3
90 ”Cに少なくとも2時間以上保持し、平均冷却速
度20”C/hr以下で徐冷しなければならない。また
、本系合金は低温度でもかなりの固溶量を持つため、徐
冷は250’C以下まで行わなければならない。これ以
上の高温で徐冷を中止すると、軟化処理終了後、自然時
効硬化により著しく硬さが増加する。従って、軟化処理
では330〜390℃に2時間以上保持し、平均冷却速
度20℃以下で250℃以下まで徐冷することが必要で
ある。
St) must be precipitated in large amounts in the form of a stable phase,
Usually carried out softening treatment (1 to 35° to 450°C)
Hold for 2 hours, then cool in the furnace to approximately 300'C (approximately 0°C/hr)
) After air cooling or air cooling without furnace cooling), the hardness is Hv≦55.
It is difficult to do so. To achieve this 330~3
It must be maintained at 90"C for at least 2 hours and slowly cooled at an average cooling rate of 20"C/hr or less. Furthermore, since this alloy has a considerable amount of solid solution even at low temperatures, slow cooling must be carried out to 250'C or lower. If slow cooling is stopped at a higher temperature than this, the hardness will significantly increase due to natural age hardening after the softening process is completed. Therefore, in the softening treatment, it is necessary to maintain the temperature at 330 to 390°C for 2 hours or more and slowly cool it to 250°C or less at an average cooling rate of 20°C or less.

上記の工程を経た後、鋳造材料はVTR用シリンダーと
しての所定の形状に鍛造され、さらに強度、硬度を増大
するためにT6処理に付され、最後に切削加工により製
品に仕上げられる。
After passing through the above steps, the cast material is forged into a predetermined shape for a VTR cylinder, subjected to T6 treatment to increase strength and hardness, and finally finished into a product by cutting.

[実施例] 以下に実施例を挙げて、本発明をさらに詳細に説明する
[Example] The present invention will be explained in more detail by giving examples below.

実施例1 後記衣1に示した化学成分を有する合金を溶解後、溶湯
処理をして介在物除去、脱ガスを行ない、Tt、Bをそ
れぞれ0.02ffl量%、0.004重量%添加し、
鋳造速度510mm/m1n、平均冷却速度120℃/
secでφ65闘に鋳造した。この鋳造棒を480℃で
18時間均質化処理した後、晶出物含有量を測定した。
Example 1 After melting an alloy having the chemical components shown in Coating 1 below, the melt was treated to remove inclusions and degas, and 0.02 ffl and 0.004 wt% of Tt and B were added, respectively. ,
Casting speed 510mm/m1n, average cooling rate 120℃/
It was cast to φ65 in sec. After this cast bar was homogenized at 480° C. for 18 hours, the content of crystallized substances was measured.

その後、軟化処理として380℃に6時間保持し、冷却
速度10℃/hrで150℃まで徐冷した。この軟化後
の素材を用いて鍛造試験を行なった。結果を表2に示す
。また、軟化後の素材をT6処理(500’CX 1 
hr−水冷−175℃X8hr)L、耐摩耗性と硬さを
調べた結果を表2に併記する。
Thereafter, as a softening treatment, it was maintained at 380°C for 6 hours, and slowly cooled to 150°C at a cooling rate of 10°C/hr. A forging test was conducted using this softened material. The results are shown in Table 2. In addition, the material after softening is subjected to T6 treatment (500'CX 1
Table 2 also shows the results of examining the wear resistance and hardness.

表1の合金の巾でNo、1〜5は本発明の化学成分を有
する合金であり、No、8〜8は比較材である。No、
 1〜5は鍛造性、およびT6処理後の耐摩耗性、硬さ
に勝れている。
In the width of the alloys in Table 1, Nos. 1 to 5 are alloys having the chemical composition of the present invention, and Nos. 8 to 8 are comparative materials. No,
Nos. 1 to 5 are excellent in forgeability, wear resistance after T6 treatment, and hardness.

しかし、No、6はCu、Mg1lが多いために軟化後
の硬さが高く、さらに鍛造割れの起点となる粗大な晶出
物が多くなり、鍛造性に劣る。
However, No. 6 has a large amount of Cu and Mg1l, so the hardness after softening is high, and furthermore, there are many coarse crystallized substances that become the starting point of forging cracks, and the forgeability is poor.

No、7はN1Etが多いために鍛造割れの起点となる
粗大な品出物が多くなり、鍛造性に劣る。
No. 7 has a large amount of N1Et, so there are many coarse pieces that become the starting point of forging cracks, and the forgeability is poor.

また、No、8はCu1Mg、Ni量が少ないためにT
6処理後の硬さ、耐摩耗性に劣る。
In addition, No. 8 has a small amount of Cu1Mg and Ni, so T
6 Poor hardness and wear resistance after treatment.

なお、鍛造性、耐摩耗性はっぎの方法で評価した。In addition, forgeability and wear resistance were evaluated using Haggi's method.

鍛造性:φ20X L 3hmの円柱状試験片の両底面
を拘束したまま圧縮速度10mm/+glnで種々の全
圧縮し、側面に割れが発生する際の変形率(限界変形率
)で鍛造性を評価した。限界変形率が50%以上であれ
ばVTRシリンダーへの鍛造は十分可能である。
Forgeability: A cylindrical test piece of φ20X L 3hm was subjected to various full compressions at a compression speed of 10mm/+gln while both bottoms were restrained, and the forgeability was evaluated by the deformation rate (critical deformation rate) at which cracks occurred on the sides. did. If the critical deformation rate is 50% or more, forging into a VTR cylinder is fully possible.

耐摩耗性:耐摩耗性は入超式摩耗試験で評価した。試験
条件は、 摩擦距離 200m 摩擦速度 2.38m/sec 最終荷重 2.1)cg 相手材  550C(Hv=750) φ30XL3ms+ 無潤滑 である。比摩耗量8 +n / kg以下、ビッカース
硬さ 120以上であれば、VTRシリンダーとしての
耐摩耗性、硬さは十分である。
Abrasion resistance: Abrasion resistance was evaluated by an ultra-thickness abrasion test. The test conditions were: Friction distance: 200m Friction speed: 2.38m/sec Final load: 2.1)cg Compatible material: 550C (Hv=750) φ30XL3ms+ No lubrication. If the specific wear amount is 8+n/kg or less and the Vickers hardness is 120 or more, the wear resistance and hardness as a VTR cylinder are sufficient.

表1 実施例1に供した合金の化学成分(vt%)表2 実施例4の諸特性 実施flJ2 Cu4.0重量%、Mg  1.5ffiffi%、S
i0.3ffi量%、Ni1.effi量%、F e 
O,25重量%を含み、残りアルミニウムと不純物とか
らなるアルミニウム合金を溶解し、溶湯処理をして、T
iO,02ffi量%、B  O,004重量%を添加
後、鋳造速度500817gin %平均冷却速度10
0℃/secでφ65 amに鋳造した。
Table 1 Chemical composition (vt%) of the alloy used in Example 1 Table 2 Various characteristics of Example 4 FlJ2 Cu 4.0% by weight, Mg 1.5ffiffi%, S
i0.3ffi amount%, Ni1. effi amount%, Fe
An aluminum alloy containing 25% by weight of O and the remaining aluminum and impurities is melted and treated as a molten metal to obtain T.
After adding iO,02ffi amount % and B O,004 weight%, casting speed 500817 gin% Average cooling rate 10
It was cast to φ65 am at 0°C/sec.

この鋳塊を表3記載の条件で300〜510℃で10〜
24時間均質化処理した後、晶出物含有率を測定した。
This ingot was heated at 300 to 510°C for 10 to 10 minutes under the conditions listed in Table 3.
After homogenization for 24 hours, the crystallized material content was measured.

その後、軟化処理として250〜380℃に4〜30時
間保持し、冷却速度lO〜ioo℃/hrで150℃ま
で冷却した。但し、No。
Thereafter, as a softening treatment, it was maintained at 250 to 380°C for 4 to 30 hours, and cooled to 150°C at a cooling rate of 10 to iooo°C/hr. However, no.

15のみはlO℃/hrで280℃まで徐冷した後、空
冷した。以上の素材を用いて行った鍛造試験の結果を表
3に示す。表3中軟化後の硬さは、軟化処理後自然時効
硬化によって硬さが増加し、硬さがピークになる約1ケ
月後の硬さ測定値である。
Only No. 15 was slowly cooled to 280° C. at 10° C./hr and then air-cooled. Table 3 shows the results of forging tests conducted using the above materials. The hardness after softening in Table 3 is the hardness measured about one month after the softening treatment, when the hardness increases due to natural age hardening and the hardness reaches its peak.

表3の合金の中でNo、1〜8は本発明の実施例、No
、9〜15は比較例である。No、1〜8と比へてNo
、9、lOは均質化処理が不十分であるため、鍛造割れ
の起点となる粗大な品出物が多く、鍛造性に劣り、No
、11〜15は軟化処理が不十分であるため、鍛造前の
硬さが高く、鍛造性に劣る。なお、No、1〜15のT
6処理後のビッカース硬さは全て120以上、また比摩
耗量は全て8■八gであった。なお、鍛造性の評価方法
は実施例1の場合と同じである。
Among the alloys in Table 3, No. 1 to 8 are examples of the present invention, and No.
, 9 to 15 are comparative examples. No, compared to 1-8
, 9. Because the homogenization process for IO is insufficient, there are many coarse products that become the starting point of forging cracks, and the forgeability is poor, resulting in No.
, Nos. 11 to 15 were insufficiently softened, so their hardness before forging was high and their forgeability was poor. In addition, No, T of 1 to 15
The Vickers hardness after the 6 treatments was all 120 or more, and the specific wear amount was all 8.8 g. Note that the evaluation method for forgeability is the same as in Example 1.

表3 実施例2の特性 ()内は150℃までの冷却速度(”C/hr)軟化処
理終了a、シから1ケ月後の硬さ260℃まで徐冷後、
空冷 [発明の効果] 以上説明したように、本発明によれば、鍛造性、耐摩耗
性、硬度に優れ、VTRシリンダー用としてきわめて適
合性のあるアルミニウム合金鋳造棒を得ることができる
Table 3 Characteristics of Example 2 () Shows the cooling rate ("C/hr") up to 150°C, hardness after softening treatment is completed one month after cooling to 260°C,
Air Cooling [Effects of the Invention] As explained above, according to the present invention, it is possible to obtain an aluminum alloy cast rod that has excellent forgeability, wear resistance, and hardness, and is extremely suitable for use in VTR cylinders.

Claims (1)

【特許請求の範囲】[Claims] Cu;3〜4.5重量%、Mg;0.3〜1.8重量%
、Ni;0.5〜2.5重量%、Si;0.1〜0.9
重量%、Fe;0.1〜0.7重量%を含み、残りアル
ミニウムと不純物とからなるアルミニウム合金を平均冷
却速度50℃/sec以上でφ80mm以下に鋳造後、
450〜520℃で8時間以上均質化処理し、330〜
390℃で2時間以上焼鈍した後、その温度から平均冷
却速度20℃/hr以下で250℃以下まで徐冷するこ
とを特徴とするVTRシリンダー用アルミニウム合金鋳
造棒の製造方法。
Cu: 3-4.5% by weight, Mg: 0.3-1.8% by weight
, Ni; 0.5 to 2.5% by weight, Si; 0.1 to 0.9
After casting an aluminum alloy containing 0.1 to 0.7 wt% of Fe; the remainder consisting of aluminum and impurities to a diameter of 80 mm or less at an average cooling rate of 50° C./sec or more,
Homogenization treatment at 450-520℃ for 8 hours or more, 330-520℃
A method for producing an aluminum alloy cast bar for a VTR cylinder, which comprises annealing at 390°C for 2 hours or more, and then gradually cooling from that temperature to 250°C or less at an average cooling rate of 20°C/hr or less.
JP17294089A 1989-07-06 1989-07-06 Production of cast aluminum alloy bar for vtr cylinder Pending JPH0339454A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17294089A JPH0339454A (en) 1989-07-06 1989-07-06 Production of cast aluminum alloy bar for vtr cylinder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17294089A JPH0339454A (en) 1989-07-06 1989-07-06 Production of cast aluminum alloy bar for vtr cylinder

Publications (1)

Publication Number Publication Date
JPH0339454A true JPH0339454A (en) 1991-02-20

Family

ID=15951170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17294089A Pending JPH0339454A (en) 1989-07-06 1989-07-06 Production of cast aluminum alloy bar for vtr cylinder

Country Status (1)

Country Link
JP (1) JPH0339454A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051348A (en) * 1991-06-25 1993-01-08 Sumitomo Light Metal Ind Ltd Cast aluminum alloy rod for vtr cylinder excellent in cutting machinability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714744A (en) * 1980-07-02 1982-01-26 Hitachi Ltd Apparatus for measuring differential fluorescence
JPS61170537A (en) * 1985-01-23 1986-08-01 Hitachi Ltd Aluminum alloy having high silicon content for cylinder of videotape recorder
JPS6286142A (en) * 1985-10-11 1987-04-20 Kobe Steel Ltd Aluminum alloy material having superior machinability and frictional characteristic for parts contacting with magnetic tape
JPS6416901A (en) * 1987-07-10 1989-01-20 Aisin Aw Co Steering sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5714744A (en) * 1980-07-02 1982-01-26 Hitachi Ltd Apparatus for measuring differential fluorescence
JPS61170537A (en) * 1985-01-23 1986-08-01 Hitachi Ltd Aluminum alloy having high silicon content for cylinder of videotape recorder
JPS6286142A (en) * 1985-10-11 1987-04-20 Kobe Steel Ltd Aluminum alloy material having superior machinability and frictional characteristic for parts contacting with magnetic tape
JPS6416901A (en) * 1987-07-10 1989-01-20 Aisin Aw Co Steering sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH051348A (en) * 1991-06-25 1993-01-08 Sumitomo Light Metal Ind Ltd Cast aluminum alloy rod for vtr cylinder excellent in cutting machinability

Similar Documents

Publication Publication Date Title
US6248188B1 (en) Free-cutting aluminum alloy, processes for the production thereof and use thereof
JP2010018875A (en) High strength aluminum alloy, method for producing high strength aluminum alloy casting, and method for producing high strength aluminum alloy member
EP1882754B1 (en) Aluminium alloy
CN109652688A (en) Production method of 6082 aluminum alloy section
EP1882753A1 (en) Aluminium alloy
JPS63286557A (en) Production of article from al base alloy
JPH07109536A (en) Aluminum alloy for forging and heat treatment therefor
CN106480344B (en) A kind of vacuum pump rotor rare-earth containing aluminium alloy and preparation method thereof
JPS5839225B2 (en) Manufacturing method of high strength aluminum alloy conductor
CN112501482B (en) Si microalloyed AlZnMgCu alloy and preparation method thereof
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
JP3516566B2 (en) Aluminum alloy for cold forging and its manufacturing method
JPH01147039A (en) Wear-resistant aluminum alloy and its manufacture
JPH01225756A (en) Manufacture of high-strength al-mg-si alloy member
JPH0457738B2 (en)
JP2004002987A (en) Aluminum alloy material for forging superior in high-temperature property
JPS6318034A (en) Aluminum-base powder metallurgical alloy combining high strength with stress corrosion cracking resistance
CN111118358B (en) Er-containing castable wrought Al-Cu alloy
JPH0339454A (en) Production of cast aluminum alloy bar for vtr cylinder
JP7073068B2 (en) Al-Cu-Mg-based aluminum alloy and Al-Cu-Mg-based aluminum alloy material
JPH0339453A (en) Production of cast aluminum alloy bar for vtr cylinder
JPH05132745A (en) Production of aluminum alloy excellent in formability
JPH0366387B2 (en)
JPH0256416B2 (en)
CN115896558B (en) 4Xxx series aluminum alloy forging and preparation method thereof