JPH033934Y2 - - Google Patents

Info

Publication number
JPH033934Y2
JPH033934Y2 JP1982001226U JP122682U JPH033934Y2 JP H033934 Y2 JPH033934 Y2 JP H033934Y2 JP 1982001226 U JP1982001226 U JP 1982001226U JP 122682 U JP122682 U JP 122682U JP H033934 Y2 JPH033934 Y2 JP H033934Y2
Authority
JP
Japan
Prior art keywords
resin composition
vinyl chloride
chloride resin
tape
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982001226U
Other languages
Japanese (ja)
Other versions
JPS58104518U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP122682U priority Critical patent/JPS58104518U/en
Publication of JPS58104518U publication Critical patent/JPS58104518U/en
Application granted granted Critical
Publication of JPH033934Y2 publication Critical patent/JPH033934Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

[産業上の利用分野] この考案は耐水性及び耐薬品性に優れたゴム、
プラスチツク絶縁電力ケーブルに関するものであ
る。 [従来技術とその問題点] 一般に使用電圧が6600Vにも達する高電圧用の
ゴムまたはプラスチツク絶縁電力ケーブルは、第
1図に例示するように、導体1上に内部半導電層
2、ポリエチレン、架橋ポリエチレン、エチレン
プロピレンゴムまたはブチルゴムなどによる絶縁
体層3、外部半導電層4、銅テープ等による遮蔽
層5および軟質塩化ビニル樹脂組成物などによる
保護シース6がこれらの順に設けられた基本構成
を有している。 そしてかかる構成の電力ケーブルにあつては、
前記保護シースが必ずしもケーブル内部への水浸
透を完全に遮断できるとは限らない。ケーブルコ
アに到達した水分は遂には外部半導電層または絶
縁体層に拡散し、これらにより絶縁体層中にいわ
ゆる水トリーなどを発生させその結果電力ケーブ
ルの絶縁性能など電気特性を低下させる重大な原
因になつていた。 考案者らは先に、かかる水分浸入による電力ケ
ーブルの電気特性の低下を有効に防止するものと
して、該電力ケーブルのケーブルコア上に、より
具体的には絶縁体層または外部半導電層直上に、
遮水層として金属−プラスチツクラミネートテー
プを縦添え包被して配置する多数の改良構成の電
力ケーブルを提案し多大の成果を収めることがで
きた。 一方、上記のようなケーブルコア上に遮水層を
設けたいわゆるコア上遮水ケーブルとは別に、金
属テープの少なくとも片面にプラスチツクテープ
をラミネートしたものをケーブルコアの外側のシ
ース直下に縦添え包被してシースと一体化させた
構成のいわゆる金属ラミネートシースケーブル=
シース下遮水ケーブルの開発も進められている。 このシース下遮水ケーブルにおいては、通常の
シース材である軟質塩化ビニル樹脂組成物と金属
プラスチツクラミネートテープとの一体化につい
て次のような問題があつた。 すなわち、軟質塩化ビニル樹脂組成物からなる
シース材とラミネートテープとを一体化させる一
つの手段として、ラミネートテープのシース側プ
ラスチツク材表面にニトリル−フエノーリツク、
ニトリルゴム、ポリウレタンエラストマーなどの
軟質塩化ビニル樹脂用接着剤をコートし、これら
の接着剤層を介して両者を接着一体化させる方法
が考えられる。しかし、接着剤を用いる方法を試
みた結果、接着剤の塗布むらやブロツキング化な
どの問題があるうえ、長期的は軟質塩化ビニル樹
脂組成物に含まれている可塑剤が接着界面にブリ
ードアウトし、接着不良を引き起こし遂にはシー
スとラミネートテープとが剥離してしまうという
問題があつた。 そこで、シースとラミネートテープとを一体化
させる別の手段として接着剤を使用しない方法を
試みた。すなわち、シース材と同じ軟質塩化ビニ
ル樹脂組成物を金属プラスチツクラミネートテー
プのプラスチツク材に使用してシースとラミネー
トテープのプラスチツク材とをシース押出時の熱
で融着一体化させた構成のケーブルを製造し、長
期の耐水性能を評価した。その結果、ラミネート
テープのプラスチツク材として軟質塩化ビニル樹
脂組成物を用いた場合、その初期特性(シースと
ラミネートテープとの一体化)には全く問題がな
いが、長期間経過後に軟質塩化ビニル樹脂組成物
中の可塑剤が金属テープ側にブリードアウトし、
結果的に金属テープと前記プラスチツク材との接
着の安定性が低下し遂には相互剥離を生じ遮水性
能を失つてしまうに到る問題があつた。 [考案の構成及び作用効果] ここに考案者らはかかる問題を解決すべく鋭意
検討を重ねた結果、上記ラミネートテープのプラ
スチツク材として、可塑剤を0〜15phr含有する
硬質塩化ビニル樹脂組成物を用い、これをシース
側にして配しシース材である軟質塩化ビニル樹脂
組成物と熱融着一体化させることにより有効な結
果が得られることを見出しこの考案を完成したの
である。 即ちこの考案は、導体上に内部半導電層、絶縁
体層、外部半導電層、銅テープなどによる遮蔽
層、および塩化ビニル樹脂組成物などによる保護
シースをこれらの順に設けた基本構成を有する電
力ケーブルにて、前記保護シースとして可塑剤を
20phr以上含有する軟質塩化ビニル樹脂組成物を
用い、該保護シースの内側に、金属テープの少な
くとも片面に可塑剤を0〜15phr含有する硬質塩
化ビニル樹脂組成物テープをラミネートした遮水
層をその硬質塩化ビニル樹脂組成物面を前記保護
シース側に向けて配し、これら前記保護シースと
前記硬質塩化ビニル樹脂組成物面とを熱融着一体
化してなるゴム、プラスチツク絶縁電力ケーブル
である。 この考案において上記の如く、金属プラスチツ
クラミネートテープのプラスチツク材として可塑
剤を0〜15phr含有する硬質塩化ビニル樹脂組成
物を用いたことにより、 (i) プラスチツク材には可塑剤を含まないかある
いはこれらが著しく少ないことにより、プラス
チツク材の金属テープ側への可塑剤のブリード
が激減するか殆どなく、ラミネートテープにお
ける金属テープとプラスチツク材との接着安定
性が著しく向上する、 (ii) ラミネートテープ自体の強度、耐熱性、耐衝
撃性などが向上する、 また、プラスチツク材として上記のような硬質
塩化ビニル樹脂組成物を用い、接着剤層を介さず
に軟質塩化ビニル樹脂組成物からなるシース材と
熱融着一体化することにより、 (iii) シース材からの可塑剤のブリードがあつて
も、ラミネートテープのプラスチツク材中の可
塑剤が少ないので接合界面に滞留せずにそれを
吸収することができ、シース材とラミネートテ
ープの接合面で剥離することがない、 ことなどから上述の問題が解消されケーブル遮水
性能に有効な結果が得られることになるものであ
る。 上記ラミネートテープにおける硬質塩化ビニル
樹脂組成物中の可塑剤が15phrを超えると、上記
(i)、(ii)及び(iii)のいずれも満足されずこの考案の効
果が得られない。 以上の硬質塩化ビニル樹脂組成物からなるテー
プとラミネートする金属テープ材料としては鉛、
アルミニウム、銅、鉄、ステンレス、黄銅などが
挙げられるが、中でも耐蝕性が高いなどの理由で
鉛が特に好ましい。 ラミネートテープの厚さ構成としては、例えば
ケーブルコアへの縦添え包被の際の作業性、遮水
性等の観点から金属テープは10〜15μ、硬質塩化
ビニル樹脂組成物層の厚さは10〜100μの範囲が
好ましい。特に硬質塩化ビニル樹脂組成物層の厚
さがその上限を超えるとその硬さのためにケーブ
ルの繰り返し曲げにより割れ、亀裂などを生じ易
くなる。 この考案にいて硬質塩化ビニル樹脂組成物は前
記金属テープの少なくとも片面に設け、該硬質塩
化ビニル樹脂組成物を保護シース側に向けて配し
保護シースと熱融着一体化させるのであるが、金
属テープの両面に硬質塩化ビニル樹脂組成物をラ
ミネートしたものを使用しても同様の効果が得ら
れる。 [実施例] 第2図はこの考案の一実施態様の電力ケーブル
の横断面図であり、図において7は遮水層である
ラミネートテープ、7aは該ラミネートテープの
金属テープ層、7bは硬質塩化ビニル樹脂組成物
テープ層であり、又同図の符号1〜6は前記従来
の電力ケーブルの基本構成と同一であり同一符号
で示してある。 そしてこれらの基本構成の各部、即ち導体、絶
縁体層、半導電層などは特に従来のものと変更は
なくこれらの材質などに関しての説明はこれを省
略する。 この考案は以上の説明及び後記実施例から明ら
かなように、電力ケーブルに用いた金属プラスチ
ツクラミネートテープ遮水層のプラスチツク層と
して、可塑剤の著しく少ない硬質塩化ビニル樹脂
組成物を用い、しかも該硬質塩化ビニル樹脂組成
物層を軟質塩化ビニル樹脂組成物シース側に向け
て配し両層を熱融着一体化させたことにより、前
述の可塑剤のブリードアウトを主因とする両層の
一体化の経時的な不安定さが著しく改善され、特
に高電圧用の電力ケーブルとして電気特性が改善
される効果を有し工業的価値が極めて大きい。 以下実施例によりこの考案を具体的に説明す
る。 実施例1〜3、比較例1〜3 第2図の構成に準じ、常法により6KV1×100
mm2(19/2.6)CVケーブルを下表に示す遮水層ラ
ミネートテープ及びシース用材料を用いて製造し
た。尚この場合該ラミネートテープはケーブルコ
アの外側に縦添え包被した後にラツ部を熱圧着
し、その上にシースを押出しその熱によりラミネ
ートテープとシースとを融着一体化させた。 次に各電力ケーブルを15KVAC課電下で80℃
温水中に1年間浸漬した後取り出してAC破壊電
圧特性を調べるとともに、絶縁体中の水分量およ
びシースとラミネートテープ間の接着強度を測定
しそれらの結果を同表に示した。 尚表中において硬質及び軟質塩化ビニル樹脂組
成物を夫々硬PVC、軟PVCと略記した。
[Industrial Application Field] This invention is a rubber with excellent water resistance and chemical resistance.
It concerns plastic insulated power cables. [Prior art and its problems] Rubber or plastic insulated power cables for high voltages, in which the operating voltage reaches 6,600 V, generally have an internal semiconducting layer 2 on a conductor 1, a polyethylene cross-linked It has a basic configuration in which an insulating layer 3 made of polyethylene, ethylene propylene rubber, or butyl rubber, etc., an external semiconducting layer 4, a shielding layer 5 made of copper tape, etc., and a protective sheath 6 made of a soft vinyl chloride resin composition are provided in this order. are doing. For power cables with such a configuration,
The protective sheath is not necessarily able to completely block water penetration into the interior of the cable. Moisture that reaches the cable core will eventually diffuse into the outer semiconducting layer or insulating layer, causing so-called water trees in the insulating layer, which can cause serious problems that degrade the electrical properties such as the insulation performance of the power cable. It was becoming the cause. The inventors previously proposed that a method for effectively preventing the deterioration of the electrical properties of power cables due to such moisture infiltration is provided on the cable core of the power cables, more specifically, directly above the insulating layer or the outer semiconducting layer. ,
We have proposed a number of improved power cable configurations in which a metal-plastic laminate tape is vertically wrapped and wrapped as a water-blocking layer, and we have achieved great results. On the other hand, in addition to the above-mentioned so-called water-shielding cable on the core, in which a water-shielding layer is provided on the cable core, a metal tape laminated with plastic tape on at least one side is wrapped vertically just under the outer sheath of the cable core. A so-called metal laminate sheath cable that is integrated with a sheath.
Development of an under-sheath water-shielding cable is also progressing. In this under-sheathed water-shielding cable, the following problems arose regarding the integration of the soft vinyl chloride resin composition, which is a common sheath material, and the metal-plastic laminate tape. That is, as a means of integrating a sheath material made of a soft vinyl chloride resin composition and a laminate tape, nitrile-phenolic,
A possible method is to coat the adhesive with a soft vinyl chloride resin adhesive such as nitrile rubber or polyurethane elastomer, and to bond the two together via this adhesive layer. However, as a result of trying methods using adhesives, there were problems such as uneven adhesive application and blocking, and in the long term, the plasticizer contained in the soft PVC resin composition may bleed out to the adhesive interface. However, there was a problem in that the sheath and the laminate tape eventually peeled off due to poor adhesion. Therefore, we tried a method that does not use adhesive as another means of integrating the sheath and laminate tape. In other words, a cable is produced in which the same soft vinyl chloride resin composition as the sheath material is used as the plastic material of the metal-plastic laminate tape, and the sheath and the plastic material of the laminate tape are fused and integrated using the heat during sheath extrusion. The long-term water resistance performance was evaluated. As a result, when a soft vinyl chloride resin composition is used as the plastic material for a laminated tape, there is no problem with its initial properties (integration of the sheath and the laminated tape), but after a long period of time, the soft vinyl chloride resin composition The plasticizer in the material bleeds out to the metal tape side,
As a result, the stability of adhesion between the metal tape and the plastic material deteriorates, resulting in mutual peeling and a loss of water-blocking performance. [Structure and effects of the invention] As a result of intensive studies to solve this problem, the inventors have developed a hard vinyl chloride resin composition containing 0 to 15 phr of plasticizer as the plastic material for the laminate tape. They found that effective results could be obtained by placing this on the sheath side and heat-sealing and integrating it with the soft vinyl chloride resin composition that is the sheath material, and completed this idea. That is, this invention is a power source having a basic configuration in which an inner semiconducting layer, an insulating layer, an outer semiconducting layer, a shielding layer such as a copper tape, and a protective sheath made of a vinyl chloride resin composition are provided on a conductor in this order. In the cable, the plasticizer is used as the protective sheath.
Using a soft vinyl chloride resin composition containing 20 phr or more, on the inside of the protective sheath, a metal tape is coated with a water-blocking layer laminated with a hard vinyl chloride resin composition tape containing 0 to 15 phr of plasticizer on at least one side of the metal tape. The rubber or plastic insulated power cable is made by disposing the vinyl chloride resin composition side facing the protective sheath side, and integrating the protective sheath and the hard vinyl chloride resin composition side by heat fusion. In this invention, as mentioned above, by using a hard vinyl chloride resin composition containing 0 to 15 phr of plasticizer as the plastic material of the metal-plastic laminate tape, (i) the plastic material does not contain a plasticizer or contains no plasticizer; As a result, the bleeding of the plasticizer to the metal tape side of the plastic material is drastically reduced or almost no, and the adhesion stability between the metal tape and the plastic material in the laminate tape is significantly improved. (ii) The laminate tape itself Strength, heat resistance, impact resistance, etc. are improved.Also, by using a hard vinyl chloride resin composition as described above as the plastic material, it is possible to connect a sheath material made of a soft vinyl chloride resin composition and heat without using an adhesive layer. (iii) Even if the plasticizer bleeds from the sheath material, the plasticizer in the laminated tape's plastic material is small, so it can be absorbed without remaining at the bonding interface. Since the sheath material and the laminate tape do not peel off at the joint surface, the above-mentioned problems are solved and effective results can be obtained for cable water-shielding performance. If the plasticizer in the hard vinyl chloride resin composition in the above laminated tape exceeds 15 phr, the above
None of (i), (ii) and (iii) are satisfied and the effect of this invention cannot be obtained. Metal tape materials to be laminated with the tape made of the above hard vinyl chloride resin composition include lead,
Aluminum, copper, iron, stainless steel, brass, etc. may be used, but lead is particularly preferred because of its high corrosion resistance. Regarding the thickness structure of the laminate tape, for example, from the viewpoint of workability when vertically covering the cable core and water-blocking properties, the thickness of the metal tape is 10 to 15 μm, and the thickness of the hard vinyl chloride resin composition layer is 10 to 15 μm. A range of 100μ is preferred. In particular, if the thickness of the hard vinyl chloride resin composition layer exceeds the upper limit, cracks and the like will easily occur due to the hardness of the cable due to repeated bending. In this invention, the hard vinyl chloride resin composition is provided on at least one side of the metal tape, and the hard vinyl chloride resin composition is placed toward the protective sheath and integrated with the protective sheath by heat fusion. A similar effect can be obtained by using a tape laminated with a hard vinyl chloride resin composition on both sides. [Example] Fig. 2 is a cross-sectional view of a power cable according to an embodiment of this invention, in which 7 is a laminate tape that is a water-blocking layer, 7a is a metal tape layer of the laminate tape, and 7b is a hard chloride layer. This is a vinyl resin composition tape layer, and numerals 1 to 6 in the figure are the same as the basic structure of the conventional power cable, and are indicated by the same numerals. Each part of these basic structures, ie, the conductor, insulator layer, semiconducting layer, etc., is not particularly changed from the conventional one, and a description of these materials will be omitted. As is clear from the above explanation and the examples below, this invention uses a hard vinyl chloride resin composition with significantly less plasticizer as the plastic layer of the metal-plastic laminate tape water-blocking layer used for power cables, and By arranging the vinyl chloride resin composition layer toward the soft vinyl chloride resin composition sheath side and integrating both layers by thermal fusion, it is possible to prevent the integration of both layers due to the bleed-out of the plasticizer mentioned above. It has the effect of significantly improving instability over time and improving electrical properties, especially as a high-voltage power cable, and has extremely large industrial value. This invention will be specifically explained below with reference to Examples. Examples 1 to 3, Comparative Examples 1 to 3 6KV1×100 by the usual method according to the configuration shown in Figure 2
A mm 2 (19/2.6) CV cable was manufactured using the water-blocking layer laminate tape and sheath material shown in the table below. In this case, the laminate tape was vertically wrapped around the outside of the cable core, and then the lug portion was thermocompression bonded, and the sheath was extruded thereon, and the laminate tape and sheath were fused and integrated by the heat. Then each power cable is 80℃ under 15KVAC charging.
After being immersed in hot water for one year, it was taken out and AC breakdown voltage characteristics were examined, and the moisture content in the insulator and the adhesive strength between the sheath and the laminate tape were measured, and the results are shown in the same table. In the table, hard and soft vinyl chloride resin compositions are abbreviated as hard PVC and soft PVC, respectively.

【表】【table】

【表】 *…初値に対する割合で示す。
**…軟PVCとPb間で剥離。
***…シースとラミネートテープ間で剥離。
上記の結果によれば実施例品は苛酷な条件下で
も接着力が十分に維持され、絶縁体中への水分浸
入量が少なくAC破壊値の低下が小さいのに比し、
比較例品はこれらの特性値が著しく低下してお
り、本考案が優れていることが明かであつた。
[Table] *... Shown as a percentage of the initial price.
**…Peeling between soft PVC and Pb.
***…Peeling between the sheath and the laminated tape.
According to the above results, the example product maintains sufficient adhesion even under severe conditions, has a small amount of water intrusion into the insulator, and has a small decrease in AC breakdown value.
These characteristic values of the comparative example product were significantly reduced, and it was clear that the present invention was superior.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は夫々従来品及び本考案品の
電力ケーブルの横断面図である。 1……導体、2……内部半導電層、3……絶縁
体層、4……外部半導電層、5……遮蔽層、6…
…シース、7……ラミネートテープ(遮水層)、
7a……金属テープ、7b……硬質塩化ビニル樹
脂組成物テープ。
FIGS. 1 and 2 are cross-sectional views of power cables of a conventional product and a product of the present invention, respectively. DESCRIPTION OF SYMBOLS 1... Conductor, 2... Inner semiconducting layer, 3... Insulator layer, 4... Outer semiconducting layer, 5... Shielding layer, 6...
...sheath, 7...laminate tape (water-blocking layer),
7a...Metal tape, 7b...Hard vinyl chloride resin composition tape.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 導体上に内部半導電層、絶縁体層、外部半導電
層、銅テープなどによる遮蔽層、および塩化ビニ
ル樹脂組成物などによる保護シースをこれらの順
に設けた基本構成を有する電力ケーブルにおい
て、前記保護シースとして可塑剤を20phr以上含
有する軟質塩化ビニル樹脂組成物を用い、該保護
シースの内側に、金属テープの少なくとも片面に
可塑剤を0〜15phr含有する硬質塩化ビニル樹脂
組成物テープをラミネートした遮水層をその硬質
塩化ビニル樹脂組成物面を前記保護シース側に向
けて配し、これら前記保護シースと前記硬質塩化
ビニル樹脂組成物面とを熱融着一体化してなるゴ
ム、プラスチツク絶縁電力ケーブル。
In a power cable having a basic configuration in which an inner semiconducting layer, an insulating layer, an outer semiconducting layer, a shielding layer made of copper tape, etc., and a protective sheath made of a vinyl chloride resin composition etc. are provided on a conductor in this order, the protection A flexible vinyl chloride resin composition containing 20 phr or more of a plasticizer is used as a sheath, and a metal tape is laminated with a hard vinyl chloride resin composition tape containing 0 to 15 phr of a plasticizer on at least one side of the protective sheath. A rubber or plastic insulated power cable made by disposing a water layer with its hard vinyl chloride resin composition surface facing the protective sheath side, and integrating the protective sheath and the hard vinyl chloride resin composition surface by heat fusion. .
JP122682U 1982-01-11 1982-01-11 Rubber, plastic insulated power cable Granted JPS58104518U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP122682U JPS58104518U (en) 1982-01-11 1982-01-11 Rubber, plastic insulated power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP122682U JPS58104518U (en) 1982-01-11 1982-01-11 Rubber, plastic insulated power cable

Publications (2)

Publication Number Publication Date
JPS58104518U JPS58104518U (en) 1983-07-16
JPH033934Y2 true JPH033934Y2 (en) 1991-01-31

Family

ID=30014257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP122682U Granted JPS58104518U (en) 1982-01-11 1982-01-11 Rubber, plastic insulated power cable

Country Status (1)

Country Link
JP (1) JPS58104518U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841923B2 (en) * 1979-07-25 1983-09-16 日本パ−カライジング株式会社 Steel plate cleaning method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841923U (en) * 1981-09-15 1983-03-19 三菱電線工業株式会社 Waterproof insulated cable

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5841923B2 (en) * 1979-07-25 1983-09-16 日本パ−カライジング株式会社 Steel plate cleaning method

Also Published As

Publication number Publication date
JPS58104518U (en) 1983-07-16

Similar Documents

Publication Publication Date Title
US4472597A (en) Water impervious rubber or plastic insulated power cable
US4626619A (en) Water impervious rubber or plastic insulated power cable
EP3297001B1 (en) Power cable
KR20150085544A (en) Extra high voltage cable
JPS5952488B2 (en) Corrosion resistant cable shield tape
JPH033934Y2 (en)
JP2001291436A (en) Water barrier tape for cable and water barrier cable
JPS6023854Y2 (en) Rubber, plastic insulated power cable
JPH0412566B2 (en)
CN208298599U (en) Jewelling alloy cable in a kind of waterproof gear tidal stencils
KR20200101857A (en) Jointing Structure Of Power Cable
JPH0126003Y2 (en)
JP2590702Y2 (en) Waterproof shielding composite tape and waterproof type power cable using the same
JPS6210899Y2 (en)
JPS6213292Y2 (en)
JPS629611Y2 (en)
JPS6210898Y2 (en)
JPS6231945Y2 (en)
JPH0574884B2 (en)
JPH0142891Y2 (en)
JPH0119555Y2 (en)
JPH0430691B2 (en)
JPH0133635Y2 (en)
JP2000195345A (en) Impervious cable
JPS5924085Y2 (en) Rubber, plastic insulated power cable