JPH0339187B2 - - Google Patents

Info

Publication number
JPH0339187B2
JPH0339187B2 JP62173855A JP17385587A JPH0339187B2 JP H0339187 B2 JPH0339187 B2 JP H0339187B2 JP 62173855 A JP62173855 A JP 62173855A JP 17385587 A JP17385587 A JP 17385587A JP H0339187 B2 JPH0339187 B2 JP H0339187B2
Authority
JP
Japan
Prior art keywords
heat exchanger
cooling water
temperature
heat
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62173855A
Other languages
Japanese (ja)
Other versions
JPS6419158A (en
Inventor
Takemitsu Hamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANPURANTO KK
Original Assignee
SANPURANTO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANPURANTO KK filed Critical SANPURANTO KK
Priority to JP62173855A priority Critical patent/JPS6419158A/en
Publication of JPS6419158A publication Critical patent/JPS6419158A/en
Publication of JPH0339187B2 publication Critical patent/JPH0339187B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、往復動内燃機関駆動の発電装置に
より、ある施設の電力需要の全部又は一部を賄う
とともに、往復動内燃機関(以下「エンジン」と
称す)から排出される排気ガス並びにシリンダー
ジヤケツト及び潤滑油の冷却水の熱を回収して冷
房、暖房及び給湯などの熱需要を賄う熱電併給シ
ステムにおける排気ガス熱回収装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention provides a power generation system driven by a reciprocating internal combustion engine (hereinafter referred to as an "engine") to meet all or part of the electricity demand of a certain facility. The present invention relates to an exhaust gas heat recovery device in a combined heat and power system that recovers the heat of exhaust gas discharged from a cylinder jacket and cooling water of a cylinder jacket and lubricating oil to meet heat demands such as air conditioning, heating, and hot water supply.

従来の技術 熱電併給システムにおける排気ガスからの熱回
収の方法は、一般に熱媒として水又はその他の媒
体を使用する廃ガスボイラを用いる方法及び排気
ガス−熱媒熱交換器を用いる方法とに大別され
る。第3図に、エンジン駆動発電装置による熱電
併給システムにおける排気ガス−熱媒熱交換器
(以下「エコノマイザ」という)を用いる代表的
な例のシステムフローの説明図を示す。
BACKGROUND TECHNOLOGY Methods for recovering heat from exhaust gas in combined heat and power systems are generally divided into two methods: methods using waste gas boilers that use water or other media as a heat medium, and methods using exhaust gas-thermal heat exchangers. be done. FIG. 3 is an explanatory diagram of a system flow of a typical example using an exhaust gas-heat medium heat exchanger (hereinafter referred to as an "economizer") in a combined heat and power generation system using an engine-driven power generator.

エンジン1から排出される排気ガスは、排気管
2を経てエコノマイザ3に入り、エンジン1から
ジヤケツト冷却水管7で送られてくる冷却水を更
に加熱し、排気ガス出口管5及び消音器6を経て
大気に放出される。一方上記の如くエンジンのジ
ヤケツト内で温度の上つた冷却水はエコノマイザ
3で排気ガスの熱により更に加熱され、温水出口
管8から熱交換器9に入り、2次側の水と熱交換
し、温度上昇した2次側の水は、例えば吸収式冷
温水発生装置、暖房及び給湯などの熱源として使
用される。19は2次側配管を示す。
Exhaust gas discharged from the engine 1 enters the economizer 3 through the exhaust pipe 2, further heats the cooling water sent from the engine 1 through the jacket cooling water pipe 7, and passes through the exhaust gas outlet pipe 5 and the muffler 6. released into the atmosphere. On the other hand, the cooling water whose temperature has risen inside the engine jacket as described above is further heated by the heat of the exhaust gas in the economizer 3, enters the heat exchanger 9 from the hot water outlet pipe 8, and exchanges heat with the water on the secondary side. The water on the secondary side whose temperature has increased is used as a heat source for, for example, an absorption type cold/hot water generator, space heating, and hot water supply. 19 indicates the secondary side piping.

熱交換器9を出た冷却水は冷却水ポンプ17に
より、冷却水入口管18を経てエンジン1に戻
る。
The cooling water leaving the heat exchanger 9 is returned to the engine 1 via a cooling water inlet pipe 18 by a cooling water pump 17.

重油を使用するデイーゼルエンジン又はガスを
使用するガスエンジンの場合、それらの排気中に
は水蒸気、及びデイーゼルエンジンにあつては無
水硫酸(SO3)、ガスエンジンにあつては炭酸ガ
ス(CO2)が含まれており、排気ガスの温度が燃
焼生成物の露点温度(例えば52〜66℃)以下に下
がると、エコノマイザ配管内で、水蒸気が凝縮
し、無水硫酸又は炭酸ガスは夫々硫酸又は炭酸と
いつた極めて腐蝕性の強い生成物となり管を腐蝕
させ、いわゆる、低温腐蝕が発生する。この低温
腐蝕を防止するため、エコノマイザ3の入口に排
気ガスの温度検出器11を設け、そこを通る排気
ガスが予め設定された温度以下に下がれば、温度
検出器11からの電気信号により、調節器12を
介してバイパス管4にあるモータダンパ13を開
き、エコノマイザ入口のモータダンパ14を閉止
する。そのため排気はバイパス管4に流れ、エコ
ノマイザに入らない。
In the case of diesel engines that use heavy oil or gas engines that use gas, their exhaust contains water vapor, sulfuric anhydride (SO 3 ) in the case of diesel engines, and carbon dioxide (CO 2 ) in the case of gas engines. When the temperature of the exhaust gas falls below the dew point temperature of the combustion products (e.g. 52-66°C), water vapor condenses in the economizer piping and the anhydrous sulfuric acid or carbon dioxide gas becomes sulfuric acid or carbonic acid, respectively. The resulting highly corrosive products corrode the pipes, resulting in so-called low-temperature corrosion. In order to prevent this low-temperature corrosion, an exhaust gas temperature detector 11 is installed at the inlet of the economizer 3, and when the exhaust gas passing through it drops below a preset temperature, an electric signal from the temperature detector 11 causes the temperature to be adjusted. The motor damper 13 in the bypass pipe 4 is opened via the device 12, and the motor damper 14 at the economizer inlet is closed. Therefore, the exhaust gas flows into the bypass pipe 4 and does not enter the economizer.

さらに第3図におけるエコノマイザは、冷却水
系が約0.5Kg/cm2の圧力を有するため、労働安全
衛生法に基ずくボイラ圧力容器構造規格に定める
第一種圧力容器を使用しなければならない。
Furthermore, in the economizer shown in Fig. 3, the cooling water system has a pressure of approximately 0.5 kg/cm 2 , so a first-class pressure vessel specified in the boiler pressure vessel structural standards based on the Industrial Safety and Health Act must be used.

なお冷却水管18内における冷却水がエンジン
に還流するにはまだ水温が高いことが温度検出器
15によつて検出されたときは、三方弁切換弁1
6により、熱交換器9より出た冷却水は三方弁1
6から配管18′により矢印cで示す如く冷却器
にゆき、そこから矢印dで示す如く配管18″で
戻り、三方弁16から冷却水入口管18に入る。
冷却水温度が設定値以下に下がれば、再び三方弁
により、熱交換器9を出た冷却水は直接配管18
に入る。
Note that when the temperature detector 15 detects that the temperature of the cooling water in the cooling water pipe 18 is still too high to return to the engine, the three-way switching valve 1
6, the cooling water coming out of the heat exchanger 9 is transferred to the three-way valve 1.
6, the water passes through a pipe 18' to the cooler as shown by arrow c, returns from there through pipe 18'' as shown by arrow d, and enters the cooling water inlet pipe 18 from the three-way valve 16.
When the cooling water temperature falls below the set value, the three-way valve again directs the cooling water that has exited the heat exchanger 9 to the pipe 18.
to go into.

この発明が解決しようとする問題点 熱電併給システムは、一般に、部分負荷で運転
することが多く、従来技術におけるエコノマイザ
出口温度は、エコノマイザ入口温度を全負荷運転
時の温度に基づいて設定しても、部分負荷時には
一定せず、排気ガス温度が露点温度以下になつて
いるか、いないかの検證が困難である。また、低
温腐蝕を防止するため、排気ガスのエコノマイザ
入口における温度を検出し、それによつて2個の
ダンパを閉止及び開放して排気ガスの経路の切換
えを行つているが、そのための制御系がやや複雑
となる。さらにエコノマイザは労働安全衛生法に
基ずき第1種圧力容器として設計、製造し、か
つ、同法に定める公的検査機関の検査を受けるこ
とが要求され、これらは製品のコストアツプにつ
ながる。
Problems to be Solved by the Invention Generally, combined heat and power systems are often operated at partial load, and in the prior art, the economizer outlet temperature is set based on the economizer inlet temperature based on the temperature during full load operation. , it is not constant during partial load, making it difficult to verify whether the exhaust gas temperature is below the dew point temperature or not. Additionally, in order to prevent low-temperature corrosion, the temperature at the exhaust gas inlet to the economizer is detected, and two dampers are closed and opened accordingly to switch the exhaust gas path, but the control system for this purpose is It gets a little complicated. Furthermore, economizers are required to be designed and manufactured as Class 1 pressure vessels based on the Industrial Safety and Health Act, and to be inspected by an official inspection agency as stipulated by the Act, which increases the cost of the product.

問題点を解決するための手段 この発明においては、前記の各欠点を解消する
ために、上部に膨張タンクを付設し、内部に熱媒
を充満した開放式の熱交換器を排気管に接続し、
ここで加熱された熱媒によつてエンジンの冷却水
を加熱するようにしたもので、上記の開放式の熱
交換器と、冷却水を加熱する熱交換器とを接続す
る配管にバイパス管を設け、開放式の熱交換器に
おける排気の出口温度が設定温度以下になつたと
きは、熱媒は冷却水加熱用の熱交換器にゆかず、
循環するように構成された排気熱回収装置を得た
ものである。
Means for Solving the Problems In the present invention, in order to eliminate the above-mentioned drawbacks, an expansion tank is attached to the upper part and an open heat exchanger filled with a heating medium is connected to the exhaust pipe. ,
The engine cooling water is heated by the heat medium heated here, and a bypass pipe is installed in the piping connecting the above-mentioned open heat exchanger and the heat exchanger that heats the cooling water. When the outlet temperature of the exhaust gas in the open type heat exchanger falls below the set temperature, the heat medium does not flow to the heat exchanger for heating the cooling water.
This provides an exhaust heat recovery device configured to circulate.

実施例 第1図はこの発明の装置の排気ガス熱回収シス
テムフローを示す図であつて、エジジン20から
の排気管21に、上部に膨張タンク23を付設
し、熱媒を充満した開放式の多管円筒熱交換器2
2が接続されている。排気はここで内部の熱媒を
加熱し、排気管34、消音器26を経て大気中に
放出される。この熱媒は配管36,37により、
エンジン20のジヤケツトから冷却水出口管31
によつて流れてくる冷却水を加熱するための熱交
換器27との間を流れ、エンジンからの冷却水を
加熱する。加熱された冷却水は温水出口管32に
よつて熱交換器28にゆき、2次側35と熱交換
する。
Embodiment FIG. 1 is a diagram showing the flow of the exhaust gas heat recovery system of the apparatus of the present invention, in which an expansion tank 23 is attached to the upper part of the exhaust pipe 21 from the engine 20, and an open-type exhaust gas heat recovery system filled with a heat medium is installed. Multi-tube cylindrical heat exchanger 2
2 are connected. The exhaust heats the internal heating medium here, and is discharged into the atmosphere through the exhaust pipe 34 and the muffler 26. This heat medium is transferred through pipes 36 and 37.
Cooling water outlet pipe 31 from the jacket of the engine 20
The heat exchanger 27 heats the cooling water flowing from the engine, and heats the cooling water from the engine. The heated cooling water passes through the hot water outlet pipe 32 to the heat exchanger 28 and exchanges heat with the secondary side 35.

エンジンが定常運転に入り、温度検出器24で
検出された熱交換器22の出口温度が予め設定さ
れた温度例えば150℃以上となれば、循環ポンプ
によつて熱媒は熱交換器27との間に流れる。エ
ンジンの運転状態が変わり出口温度が設定値以下
となれば、三方弁39が切り換り、熱媒はバイパ
ス管38を流れ、熱交換器27にゆくことなく、
熱交換器22の系統内のみを循環する。このよう
に制御は1個の電動三方弁の開閉のみとなり、制
御系全体は単純なものとなる。この切り換つた後
は、熱媒は比較的低温のジヤケツト冷却水と熱交
換することなく、比較的高温の排気ガスによつて
加熱されて、循環しているため、開放式熱交換器
内温度は、排気ガス生成物の露点温度以上に保た
れることになり、低温腐蝕を起すことはない。ま
た熱交換器22は膨張タンク付設の開放式である
ので、労働安全衛生法に基ずく圧力容器としての
規格を受けることがない。
When the engine enters steady operation and the outlet temperature of the heat exchanger 22 detected by the temperature detector 24 reaches a preset temperature, for example, 150°C or higher, the heat medium is transferred to the heat exchanger 27 by the circulation pump. flowing between. When the operating condition of the engine changes and the outlet temperature falls below the set value, the three-way valve 39 switches and the heat medium flows through the bypass pipe 38 without going to the heat exchanger 27.
It circulates only within the heat exchanger 22 system. In this way, control involves only opening and closing of one electric three-way valve, and the entire control system becomes simple. After this switching, the heat medium is heated by the relatively high temperature exhaust gas and circulated without exchanging heat with the relatively low temperature jacket cooling water, so the temperature inside the open heat exchanger decreases. will be maintained above the dew point temperature of the exhaust gas products and will not cause low temperature corrosion. Further, since the heat exchanger 22 is an open type with an expansion tank attached, it does not meet the standards as a pressure vessel based on the Industrial Safety and Health Act.

熱交換器28を出た冷却水はポンプ30、冷却
水入口管33によりエンジン20に戻る。
The cooling water leaving the heat exchanger 28 is returned to the engine 20 via a pump 30 and a cooling water inlet pipe 33.

温度検出器29により検出された冷却水温が設
定温度以上のときは三方弁40が切り換り、冷却
水は矢印cで示す如く配管32′で冷却器にゆき、
矢印dで示すように冷却器から配管32″で戻り、
冷却水入口管32に戻る。
When the cooling water temperature detected by the temperature detector 29 is higher than the set temperature, the three-way valve 40 is switched, and the cooling water goes to the cooler through the pipe 32' as shown by arrow c.
As shown by arrow d, return from the cooler with piping 32'',
Return to the cooling water inlet pipe 32.

第2図は熱交換系の部分の構成の一例を示す
図、第4図はこの発明の排気熱回収制御のブロツ
クダイヤグラムを示し、第1図と同じ符号は同じ
部分を表している。第2図と第4図によりこの発
明の一実施例を説明すれば、エンジンはデイーゼ
ルエンジンであつて、排気ガス温度は、定格運転
時、310℃であつて、このときのエンジンからの
冷却水温度は80℃である。開放式熱交換器22の
出口側に温度検出器24を設け、その設定温度を
150℃とし、その設定温度に基ずく温度検出器2
4からの電気信号により電動三方弁39へ開放指
示が発せられる。
FIG. 2 shows an example of the structure of the heat exchange system, and FIG. 4 shows a block diagram of exhaust heat recovery control according to the present invention. The same reference numerals as in FIG. 1 represent the same parts. To explain one embodiment of the present invention with reference to FIGS. 2 and 4, the engine is a diesel engine, the exhaust gas temperature is 310°C during rated operation, and the cooling water from the engine at this time is 310°C. The temperature is 80℃. A temperature detector 24 is provided on the outlet side of the open heat exchanger 22, and the set temperature is detected.
Temperature detector 2 based on the set temperature of 150℃
An opening instruction is issued to the electric three-way valve 39 by an electric signal from the electric three-way valve 39.

温度検出器24は、150℃に設定してあるが、
エンジンを始動し排気ガスの開放式熱交換器22
の出口温度が設定温度に達するまで熱交換器22
内の熱媒(水)は三方弁39により配管36,3
7の間にかけ渡されたバイパス管38を通り、熱
交換器27にはゆかない。この間エンジンにより
加熱され温水となつた冷却水は、ジヤケツト冷却
水管31から冷却水熱交換器27を通過して(加
熱は受けていない)温水出口管32を経て二次側
に供給される。
The temperature detector 24 is set at 150°C,
Start the engine and open exhaust gas heat exchanger 22
heat exchanger 22 until the outlet temperature of the heat exchanger 22 reaches the set temperature.
The heat medium (water) inside is connected to pipes 36 and 3 by a three-way valve 39.
It does not go to the heat exchanger 27 through a bypass pipe 38 that extends between 7 and 7. During this time, the coolant heated by the engine and turned into hot water is supplied to the secondary side via the jacket coolant pipe 31, the coolant heat exchanger 27 (not heated), and the hot water outlet pipe 32.

エンジンが定常運転に入り、排気ガスの開放式
熱交換器22の出口温度が予め設定された温度
150℃に達すると、温度検出器24からの電気信
号により電気三方弁39が開き、熱媒(水)は冷
却水熱交換器27へ循環する。これによつて、エ
ンジンからの温度80℃のジヤケツト冷却水が加熱
され、84℃の温水となつて温水出口管32から二
次側へ送られる。
When the engine enters steady operation, the outlet temperature of the exhaust gas open heat exchanger 22 reaches a preset temperature.
When the temperature reaches 150° C., the electric three-way valve 39 is opened by an electric signal from the temperature detector 24, and the heat medium (water) is circulated to the cooling water heat exchanger 27. As a result, the jacket cooling water from the engine at a temperature of 80° C. is heated, becomes hot water at 84° C., and is sent from the hot water outlet pipe 32 to the secondary side.

以上のべた実施例におけるエンジン始動から温
水供給までの排気ガス熱回収制御のブロツクダイ
ヤグラムは第4図に示されている。排気ガス熱回
収の制御は、開放式熱交換器の出口温度の検出に
よる1個の電動三方弁の開放のみであるため制御
系の単純化が図られている。尚図において41は
水位検出器であり、それに応じて膨張タンク23
の大気への開放弁42が開放する。
A block diagram of the exhaust gas heat recovery control from engine start to hot water supply in the above embodiment is shown in FIG. The control system for exhaust gas heat recovery is simplified because only one electric three-way valve is opened by detecting the outlet temperature of the open heat exchanger. In the figure, 41 is a water level detector, and the expansion tank 23 is adjusted accordingly.
The release valve 42 to the atmosphere opens.

効 果 この発明の排気ガス熱回収装置は以上詳記した
ような構成であつて、熱回収の制御は1個の電動
三方弁の開放のみであるため制御系が単純化さ
れ、低温腐蝕の発生が防止されうる。また熱交換
器には膨張タンク付設の開放式熱交換器であるか
ら、労働安全衛生法による第1種圧力容器として
の規格を受けないため、特定の設計、製造とする
必要もなく、公的検査機関の検査も省略できるこ
とになり、製造コストが下がり、システムを安価
に構成することができる。
Effects The exhaust gas heat recovery device of the present invention has the configuration described in detail above, and since heat recovery is controlled only by opening one electric three-way valve, the control system is simplified and the occurrence of low-temperature corrosion is prevented. can be prevented. In addition, since the heat exchanger is an open type heat exchanger with an expansion tank, it does not meet the standards as a Class 1 pressure vessel under the Industrial Safety and Health Act, so there is no need for a specific design or manufacture, and there is no need for a specific design or manufacture. Inspections by inspection agencies can also be omitted, reducing manufacturing costs and making it possible to configure the system at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の熱回収システムフローを示
す図、第2図はこの発明の装置の一実施例を示す
図、第3図は従来のシステムフローを示す図、第
4図はこの発明の熱回収制御ブロツクダイヤグラ
ムを示す図である。 符号の説明、1……エンジン、2……排気管、
3……エコノマイザ、4……バイパス管、5……
排気管、6……消音器、7……冷却水管、8……
温水出口管、9……熱交換器、11……排気ガス
温度検出器、12……調節器、13,14……モ
ータダンパ、15……温度検出器、16……三方
切換弁、17……循環ポンプ、18……冷却水入
口管、19……2次側配管、20……エンジン、
21……排気管、22……開放式熱交換器、23
……膨張タンク、24……熱媒温度検出器、25
……熱媒ポンプ、26……消音器、27……熱交
換器、28……熱交換器、29……冷却水温度検
出器、30……冷却水ポンプ、31……冷却水出
口管、32……温水出口管、33……冷却水入口
管、34……排気管、35……2次側配管、3
6,37……熱媒管、38……バイパス管、39
……電動三方弁、40……三方弁、41……水位
検出器、42……開放弁。
Fig. 1 is a diagram showing the flow of the heat recovery system of the present invention, Fig. 2 is a diagram showing an embodiment of the apparatus of the present invention, Fig. 3 is a diagram showing the conventional system flow, and Fig. 4 is a diagram showing the flow of the conventional system. FIG. 3 is a diagram showing a heat recovery control block diagram. Explanation of symbols, 1...Engine, 2...Exhaust pipe,
3...Economizer, 4...Bypass pipe, 5...
Exhaust pipe, 6... Silencer, 7... Cooling water pipe, 8...
Hot water outlet pipe, 9... Heat exchanger, 11... Exhaust gas temperature detector, 12... Regulator, 13, 14... Motor damper, 15... Temperature detector, 16... Three-way switching valve, 17... Circulation pump, 18...Cooling water inlet pipe, 19...Secondary side piping, 20...Engine,
21...Exhaust pipe, 22...Open heat exchanger, 23
... Expansion tank, 24 ... Heat medium temperature detector, 25
... Heat medium pump, 26 ... Silencer, 27 ... Heat exchanger, 28 ... Heat exchanger, 29 ... Cooling water temperature detector, 30 ... Cooling water pump, 31 ... Cooling water outlet pipe, 32...Hot water outlet pipe, 33...Cooling water inlet pipe, 34...Exhaust pipe, 35...Secondary side piping, 3
6, 37...heat medium pipe, 38...bypass pipe, 39
...Electric three-way valve, 40... Three-way valve, 41... Water level detector, 42... Release valve.

Claims (1)

【特許請求の範囲】[Claims] 1 上部に膨張タンクを付設し、熱媒を充満した
開放式熱交換器がエンジンの排気管に接続され、
又この排気で加熱された熱媒によつてエンジン冷
却水を加熱する熱交換器が冷却水の管系に設けら
れており、上部の開放式熱交換における排気の出
口温度が予め設定した温度以下になつたときに、
熱媒は冷却水加熱用の熱交換器を通ることなく循
環するようなバイパス管が開放式熱交換器と冷却
水加熱用熱交換器を連結する配管に設けられてい
ることを特徴とする排気ガス熱回収装置。
1 An open heat exchanger with an expansion tank attached to the top and filled with a heat medium is connected to the engine exhaust pipe,
In addition, a heat exchanger that heats engine cooling water using a heat medium heated by this exhaust gas is installed in the cooling water pipe system, and the exhaust temperature in the upper open type heat exchanger is lower than a preset temperature. When you become
An exhaust system characterized in that a bypass pipe is provided in the piping connecting the open heat exchanger and the heat exchanger for heating the cooling water so that the heat medium circulates without passing through the heat exchanger for heating the cooling water. Gas heat recovery equipment.
JP62173855A 1987-07-14 1987-07-14 Exhaust gas heat recovering apparatus Granted JPS6419158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62173855A JPS6419158A (en) 1987-07-14 1987-07-14 Exhaust gas heat recovering apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62173855A JPS6419158A (en) 1987-07-14 1987-07-14 Exhaust gas heat recovering apparatus

Publications (2)

Publication Number Publication Date
JPS6419158A JPS6419158A (en) 1989-01-23
JPH0339187B2 true JPH0339187B2 (en) 1991-06-13

Family

ID=15968397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62173855A Granted JPS6419158A (en) 1987-07-14 1987-07-14 Exhaust gas heat recovering apparatus

Country Status (1)

Country Link
JP (1) JPS6419158A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217221A (en) * 2012-04-05 2013-10-24 Toyota Industries Corp Rankine-cycle device

Also Published As

Publication number Publication date
JPS6419158A (en) 1989-01-23

Similar Documents

Publication Publication Date Title
JP5921739B2 (en) Ship and heat energy recovery method in ship
JPH03124902A (en) Combined cycle power plant and operating method therefor
JP2000304375A (en) Latent heat recovery type absorption water cooler heater
JP5916598B2 (en) Power system
JPH0339187B2 (en)
JPH07120178A (en) Heat siphon waste heat recovery apparatus
JPH0933004A (en) Waste heat recovery boiler
CN109779709A (en) A kind of cold and hot charge-coupled devices of LNG Power Vessel
KR101059514B1 (en) Ammonia Water Absorption Cooling System Using Exhaust Gas Residual Heat
CN102393024A (en) Composite phase change heat exchange device for boiler flue gas waste heat recovery
EP2344731A2 (en) Start-up system mixing sphere
DK155845B (en) DIESEL ENGINE SYSTEM WITH PRESS CHARGES AND WITH COOLING WATER COOLING AND COOLING THE COMPRESSED AIR COMPRESSED BY THE PRESSURE CHARGER
CN112673161B (en) Arrangement for vaporizing liquefied gas for providing gas to an engine
JPH06281289A (en) Cogeneration apparatus
CN220338434U (en) Boiler fixed exhaust steam waste heat recovery system
JPS60147097A (en) Heat exchanger for waste heat recovery
CN220857834U (en) Enclosed water cooling system of aero-modified gas turbine generator and generator
JP2004333033A (en) Heat medium circulating device and method for gas-gas heat exchanger
JP2556596B2 (en) Heat recovery device for coke dry fire extinguishing equipment
JP2022064171A (en) Power generation device and working medium circulation device
JPH05159792A (en) Fuel cell generating system
GB2092724A (en) Energy convertors
JPS60108507A (en) Heat recovering system in marine engine plant
RU1824510C (en) Power unit of thermoelectric plant
JPH03260337A (en) Cogenerating system