JPS60108507A - Heat recovering system in marine engine plant - Google Patents

Heat recovering system in marine engine plant

Info

Publication number
JPS60108507A
JPS60108507A JP58215750A JP21575083A JPS60108507A JP S60108507 A JPS60108507 A JP S60108507A JP 58215750 A JP58215750 A JP 58215750A JP 21575083 A JP21575083 A JP 21575083A JP S60108507 A JPS60108507 A JP S60108507A
Authority
JP
Japan
Prior art keywords
pipe
steam
pressure side
drain
main engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58215750A
Other languages
Japanese (ja)
Other versions
JPS6365802B2 (en
Inventor
Yoshimasa Eguchi
嘉昌 江口
Kenji Tani
賢治 谷
Hiromasa Sugimura
杉村 浩正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP58215750A priority Critical patent/JPS60108507A/en
Publication of JPS60108507A publication Critical patent/JPS60108507A/en
Publication of JPS6365802B2 publication Critical patent/JPS6365802B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To greatly increase the volume of steam generated by the heat of exhaust gas from a main engine, by recovering heat by means of a low pressure side gas-water separator and a vacuum drain cooler in addition to heat-recovery by means of a three-stage pressure type exhaust gas economizer system. CONSTITUTION:High, middle and low pressure side evaporating pipes 5 through 7 are disposed in an exhaust gas discharge pipe 1 from a main engine 2. High temperature cooling water from the cylinder head section 2a of the main engine 2 is led into a low pressure side gas-air separator 14 in order to recover heat. Steam drain discharged from a general steam consumption installation 44 is led into a drain cooler 56 to increase the coefficient of utilization, and as well is cooled within the drain cooler 56 by condensate from the steam turbine 47. With this arrangement, the amount of steam generated by the heat of exhaust gas from the main engine is greatly increased so that fuel may be saved.

Description

【発明の詳細な説明】 本発明は舶用機関プラント熱回収システムに関する。[Detailed description of the invention] The present invention relates to a marine engine plant heat recovery system.

一般に、ディーゼル機関を主機とする船舶における常用
航海時の必要電力と、主機がらの排ガスを利用してター
ボ発電機により発生し得る発生電力とを示すと、第1図
に示すグラフのようになる。
In general, the graph shown in Figure 1 shows the power required for regular voyages in ships using diesel engines as the main engine, and the power that can be generated by a turbo generator using exhaust gas from the main engine. .

なお、縦軸が電力、横軸が主機の出力を表わす。Note that the vertical axis represents electric power and the horizontal axis represents the output of the main engine.

第1図から分かるように、ある主機出力(例えば1万5
千馬力)以上ではターボ発電機だけで必要電力を十分に
まかなえるが、この出力以下の船舶でしかも主機排ガス
から広範囲の温度に亘って熱回収を行なう8段圧力式排
ガスエコノマイザシステムを有する船舶であっても、タ
ーボ発電機だけではまかなうことができない。従って、
従来、例えば主機出力が1万馬力程度の場合、ディーゼ
ル発電機を別途設けて、必要電力をまかなっており、主
機排ガスの熱利用が十分に成されていなかった。
As can be seen from Figure 1, a certain main engine output (for example, 15,000
For vessels with an output of 1,000 horsepower or more, a turbo generator alone can provide sufficient power, but ships with less than this output and equipped with an 8-stage pressure exhaust gas economizer system that recovers heat from the main engine exhaust gas over a wide range of temperatures. However, this cannot be covered by turbo generators alone. Therefore,
Conventionally, when the main engine output is about 10,000 horsepower, for example, a separate diesel generator has been installed to cover the necessary power, and the heat from the main engine exhaust gas has not been sufficiently utilized.

そこで、本発明者等は従来における主機の冷却系統のシ
リンダジャケット部とシリンダヘッド部とが同一系統に
されて冷却水温度が低くなって熱回収が十分に行なわれ
ていないこと、及び船内一般蒸気消費設備から出る蒸気
処理用ドレンクーラに海水が使用されると共に熱を奪っ
た海水がそのまま海に莱てられていること等に着目して
、上記欠点を解消し得る本発明を提案するに至った。
Therefore, the inventors of the present invention discovered that the cylinder jacket section and cylinder head section of the main engine cooling system in the past were integrated into the same system, resulting in a low cooling water temperature and insufficient heat recovery, and that Focusing on the fact that seawater is used in drain coolers for steam processing discharged from consumer equipment, and that the seawater that has absorbed heat is directly dumped into the sea, we have proposed the present invention that can eliminate the above-mentioned drawbacks. .

即ち、本発明は、主機排ガスの熱回収を行なうための排
ガス放出管内に、高温部から低温部に向って順次高圧側
汽水分離器に接続された高圧側蒸発管、中圧側汽水分離
器に接続された中圧側蒸発水循環管の一部を低圧側汽水
分離器の液相部内に導き、上記各汽水分離器で発生する
蒸気の二部を発電用蒸気タービンに尋くと共に、その残
りを一般蒸気消費設備に導き、“上記蒸気タービン用真
空復水器からの復水をホットウェルタンクに導く復水移
送管を設け、上記一般蒸気消費設備から排出された蒸気
(ドレン)を冷却する真空ドレンクーラを設けると共に
、上記復水移送管内の復水を真空ドレンクーラ内でフラ
ッシュさせるフラッシュ管を設け、且つ上記真空ドレン
クーラからのドレン水を上記ホットウェルタンクに送る
ドレン水移相管を設けたことを特徴とする舶用機関プラ
ント熱回収システムである。上記本発明の構成によると
、8段圧力式排ガスエコノマイザシステムによる熱回収
に加えて、主機のシリンダヘッド部の高温冷却水を低圧
側汽水分離器内に導いて熱回収を行ない、且つ一般蒸気
消費設備から排出される蒸気ドレンを真空ドレンクーラ
内に導いて低圧蒸気の利用度を増すと共に、この蒸気ド
レンを真空ドレンクーラ内で蒸気タービンからの復水に
よって冷却して蒸気ドレンの持つ熱を回収するようにし
たので、従来のものに比べて、主機排ガスの熱によって
発生させられる蒸気を大幅に増加させることができ、従
って例えば主機出力が1万鴫力程度のものでも、一般蒸
気消費設備に供給する分を除いた残りの蒸気でターボ発
電機を駆動させて常時航海必要電力をまかなうことがで
き、従って従来のディーゼル発電機に必要であった燃料
をすべて節約できる。
That is, the present invention provides a high-pressure side evaporation pipe that is connected to a high-pressure side brackish water separator and an intermediate-pressure side brackish water separator that are connected to a high-pressure side brackish water separator in order from a high temperature section to a low temperature section in an exhaust gas discharge pipe for recovering heat of main engine exhaust gas. A part of the intermediate pressure side evaporated water circulation pipe is led into the liquid phase part of the low pressure side brackish water separator, and two parts of the steam generated in each of the above brackish water separators is sent to the power generation steam turbine, and the rest is used as general steam. A condensate transfer pipe is installed to lead the condensate from the steam turbine vacuum condenser to the hot well tank, and a vacuum drain cooler is installed to cool the steam (drainage) discharged from the general steam consumption equipment. Further, a flash pipe is provided for flushing the condensate in the condensate transfer pipe within the vacuum drain cooler, and a drain water phase shift pipe is provided for sending drain water from the vacuum drain cooler to the hot well tank. This is a marine engine plant heat recovery system.According to the configuration of the present invention, in addition to heat recovery by the eight-stage pressure exhaust gas economizer system, high-temperature cooling water from the cylinder head of the main engine is guided into the low-pressure side brackish water separator. In addition, steam drain discharged from general steam consumption equipment is guided into a vacuum drain cooler to increase the utilization of low-pressure steam, and this steam drain is cooled in the vacuum drain cooler by condensed water from the steam turbine. Since the heat contained in the steam drain is recovered from the steam drain, it is possible to significantly increase the amount of steam generated by the heat of the main engine exhaust gas compared to conventional systems. Even if the steam is not supplied to the general steam consuming equipment, the remaining steam can be used to drive the turbo generator to cover the constant power required for navigation, thus saving all the fuel required for conventional diesel generators. can.

以下、本発明の一実施例を第2図に基づき説明する。(
1)は船舶における主機(ディーゼル機関)(2)から
の排ガスを放出するための排ガス放出管で、三段圧力式
排ガスエコノマイザシステムが設けられている。即ち、
排ガス放出W(1)の内部には、高温部から低温部に向
って、順番に高温側過熱管(3)。
An embodiment of the present invention will be described below with reference to FIG. (
1) is an exhaust gas discharge pipe for discharging exhaust gas from the main engine (diesel engine) (2) of a ship, and is equipped with a three-stage pressure type exhaust gas economizer system. That is,
Inside the exhaust gas discharge W (1), there are high temperature side superheating pipes (3) in order from the high temperature section to the low temperature section.

中圧側過熱管(4)、高圧側蒸発管(5)、中圧側蒸発
管(6)及び低圧側蒸発管(7)が配置され、また高圧
側蒸発管(5)と高圧側汽水分離器(8)とは第1温水
管(9)及び第1蒸気管αQを介して接続され、中圧側
蒸発管(6)と中圧側汽水分離器Qυとは第2温水管(
2)及び第2蒸気管@を介して接続され、低圧側蒸発管
(7)と低圧側蒸発管1!+[α4とは第8温水管(至
)及び第8蒸気w (toを介して接続されている。な
お、(17)Q[9QIは上記各温水管(Q) OR(
ト)途中に設けられた循環水ポンプである。翰は上記各
汽水分離器(8)(ロ)α→に水を供給するための給水
管であ企。即ち、給水管(ホ)の一端部は蒸気のドレン
水及び復水を貯えるポットウェルタンクシ■に接続され
、また池端部は主機(2)の過給空気冷却器(ホ)の高
熱部を通されると共にその端部は、低圧側蒸発管1雅器
0→に接続された第8給水枝管(イ)と、中圧側汽水分
離器0υに接続された第2給水枝管(財)と、更に一部
がこの第一2給水技管(ハ)から分岐されて他端が高圧
側蒸発管1雅器(8)に接続された第1給水技管に)と
にそれぞれ分岐されている。なお、(ハ)は給水管い)
途中に設けられた給水ポンプ、(イ)は給水管翰の過給
空気冷却器(イ)への導入部をバイパスするバイパス管
(ハ)途中に設けられた制御弁で、給水管翰内の温度を
検出する温度調節器−によって制御される。(至)は第
2給水枝管(ハ)途中に設けられた加熱用熱交換器で、
第2温水管α諺のバイパス管(81)との間で熱交換を
行なうためのものである。なお、(@はバイパス管)1
)を制御するための三方口温度調節弁で、@2濡水管0
2内の温度を検出する温度調節器(83)によって制御
される。叫)は第1給水枝管に)途中に設けられた加熱
用熱交換器で、第1温水管(9)との間で熱交換を行な
うためのものである。なお、に)■(ロ)は各給水枝管
に)(ハ)に)に設けら゛れた制御弁で、各汽水分離器
(8)α■α◆内の液面を検出する液面調節器(88X
a9)(イ)によって制御される。(41)(至)(4
S)は上記各汽水分離器(8)0ηa→で発生した蒸気
を一般蒸気消費設備■に供給する第1.第2、第8蒸気
供給管、(4のは一端が第8蒸気供給管(48)途中に
接続されると共に他端が発電機■駆動用の蒸気タービン
(4ツの低圧部に接続された低圧蒸気導入管、(48)
は一端が第2蒸気供給管(イ)途中に接続されると共に
他端が中圧側過熱管(4)を介して蒸気タービン(4す
の中圧部に接続された中圧蒸気導入管、(ト))は一端
が第1蒸気供給管印)途中に接続されると共に他端が高
圧側過熱管(3)を介して蒸気タービン0′7)の高圧
部に接続された高圧蒸気導入管である。
A medium pressure side superheating pipe (4), a high pressure side evaporation pipe (5), a medium pressure side evaporation pipe (6) and a low pressure side evaporation pipe (7) are arranged, and a high pressure side evaporation pipe (5) and a high pressure side brackish water separator ( 8) is connected via the first hot water pipe (9) and the first steam pipe αQ, and the intermediate pressure side evaporation pipe (6) and the intermediate pressure side brackish water separator Qυ are connected to the second hot water pipe (
2) and are connected via the second steam pipe @, and the low pressure side evaporation pipe (7) and the low pressure side evaporation pipe 1! + [α4 is connected via the 8th hot water pipe (to) and the 8th steam w (to. In addition, (17) Q[9QI is the above hot water pipe (Q) OR (
g) A circulating water pump installed midway. The pipes are water supply pipes for supplying water to each of the above brackish water separators (8) (b) α→. That is, one end of the water supply pipe (E) is connected to the potwell tank (■) that stores steam drain water and condensate, and the end of the pond is connected to the high-temperature part of the supercharged air cooler (E) of the main engine (2). At the same time, its ends are connected to the 8th water supply branch pipe (A) connected to the low-pressure side evaporation pipe 1 GA 0 → and the 2nd water supply branch pipe (A) connected to the medium-pressure side brackish water separator 0υ. A part of the pipe is further branched from this 1st 2nd water supply pipe (c), and the other end is branched into the 1st water supply pipe whose other end is connected to the high pressure side evaporation pipe 1 gage (8). There is. In addition, (c) is a water supply pipe)
The water supply pump installed in the middle (a) is a bypass pipe (c) that bypasses the introduction part of the water supply pipe into the supercharged air cooler (a), and the control valve is installed in the middle of the water supply pipe. It is controlled by a temperature regulator that detects the temperature. (To) is a heating heat exchanger installed in the middle of the second water supply branch pipe (C),
This is for exchanging heat between the second hot water pipe α and the bypass pipe (81). In addition, (@ is bypass pipe) 1
) is a three-way temperature control valve for controlling @2 wet water pipes 0
It is controlled by a temperature regulator (83) that detects the temperature inside the chamber. 9) is a heating heat exchanger installed in the middle of the first water supply branch pipe (9) for exchanging heat with the first hot water pipe (9). In addition, 2)■(B) is a control valve installed in each water supply branch pipe)(C)), which detects the liquid level in each brackish water separator (8)α■α◆. Adjuster (88X
a9) Controlled by (a). (41) (to) (4
S) is the first section that supplies the steam generated in each of the above-mentioned brackish water separators (8) 0ηa→ to the general steam consumption equipment (■). The 2nd and 8th steam supply pipes (4) have one end connected to the middle of the 8th steam supply pipe (48), and the other end connected to the steam turbine (4 low pressure parts) for driving the generator. Low pressure steam introduction pipe, (48)
is an intermediate pressure steam introduction pipe, one end of which is connected to the middle of the second steam supply pipe (A), and the other end of which is connected to the intermediate pressure section of the steam turbine (4) via the intermediate pressure side superheating pipe (4); G)) is a high pressure steam introduction pipe with one end connected to the first steam supply pipe (marked) and the other end connected to the high pressure section of the steam turbine 0'7) via the high pressure side superheating pipe (3). be.

また、φのは高圧蒸気導入管(49)途中から分岐され
た高圧蒸気導入枝管で、中圧側汽水分離器αり内の液相
部に尋人されて液相部を加熱する。なお、(51)は高
圧蒸気導入枝管(至)途中に設けられた制御弁で、中圧
側汽水分離器(ロ)内の圧力を検出する圧力調節器(5
ツによって制御される。(財)は蒸気タービン(4すか
ら排出された排気を復水させる真空復水器、(2)はこ
の真空復水器(財)からの復水を、途中に介在された復
水ポンプ(5)により、ホットウェルタンク12+)に
移送する復水移送管である。(5Φは一般蒸気消費設備
■から排出された低圧の蒸気ドレンを冷却する真空ドレ
ンクーラで、上記真空復水器(58)とは制御弁(51
)を有する連通管ノ8)によって互いに連通されてイル
。なお、上記制御弁(5すは真空ドレンクーラ(5の内
の圧力を検出する圧力調節器(5咄こよって制御されて
、真空ドレンクーラφ6)内の圧力が一定値以下に保た
れる。そして、上記真空ドレンクーラ(δΦ内には、接
続管(財)を介して復水移送管(9)の復水ポンプに)
より下流側に接続されたフラッシュ管@)が配置されて
いる。(6)は上記真空ドレンクーラ(財)がらのドレ
ン水を、途中に介在されたドレンポンプ((至)により
、ホットウェルタンクal)に移送するドレン水移送管
である。なお、(財)は一般蒸気消費設備■のうち例え
ば主機燃料油加熱器(44a )から排出された高圧の
蒸気ドレンを直接ホットウェルタンクQυに導く蒸気排
出管である。(ホ)は主機(2)のシリングヘッド部(
2a)の出口から入口に亘って設けられた冷却水循環管
で、その一部は低圧側汽水分離器0◆内の液相部に尋人
されている。上記冷却水循環%′働の出口側配管(65
a)途中には加熱用熱交換器(66)が設けられて、第
2蒸気供給管(6)からの第2蒸気供給枝管(67)と
の間で熱交換するようにされている。また、冷却水循環
管(600Åロ側配管(65b)途中には、エキスパン
ションタンク(7)、三方口温度調節弁(69)及び冷
却水循環ポンプ00)が設けられ、更に上記三方口温度
調節弁(69)を介して入口側配管(65b)と出口側
配管(65a)とを連通させるバイパス管償)が設けら
れている。また、上記三方口温度調節弁(69)tよ入
口側配管(65b)内温度を検出する温度調節器(’?
2)によって制御中れる。なお、(至)は第2蒸気供給
技管(67)途中に設けられた制御弁で、低圧側汽水分
離器a→内正圧力検出する圧力調節器ff4)によって
制御される。(至)は主機(2)のジャケット冷却水を
冷却するための冷却器で、海水供給管66)が導入され
ている。ff?)及び(78)はシリンダジャケット部
(2b)と冷却器ff6)とに亘って配設された冷却水
供給管及び冷却水戻り管である。上記冷却水戻り管(7
8)途中には、加熱用熱交換器(79) 、冷却水循環
ポンプ■及び造水器@1)が設けられている。なお、上
記熱交換器ff9)には、第3蒸気供給管(ロ)から分
岐された第8蒸気供給枝管(8)が導入されている。そ
して上記冷却水供給管(7つと戻り’# (78)とに
亘って冷却器(75)をバイパスするバイパス管(財)
が設けられ、またバイパス管−と冷却水供給管(5)と
の接続部には、三方口温度調整弁(ロ)が設けられると
共に、この三方口温度調整弁(80は冷却水温度を検出
する温度調節器(イ)によって制御される。■は一端が
冷却水供給管(5)の三方口温度調節弁■より下流側に
接続されると共に他端が上記過給空気冷却器(2)の中
温部及び船内空調装置Q3’i’)を介して冷却水戻り
管(7g)の冷却水循環ポンプ(8Φより上流側に接続
された望調用循環管である。なお、(88)は空調装置
M (87)をバイパスするバイパス管で、その途中に
開閉弁[F]9)が設けられている。
Further, φ is a high pressure steam introduction branch pipe branched from the middle of the high pressure steam introduction pipe (49), which is heated by being introduced into the liquid phase part inside the intermediate pressure side brackish water separator α. In addition, (51) is a control valve installed in the middle of the high-pressure steam introduction branch pipe (to), and a pressure regulator (51) that detects the pressure in the intermediate pressure side brackish water separator (b).
controlled by (2) is a vacuum condenser that condenses the exhaust gas discharged from the steam turbine (4), and (2) is a condensation pump (2) that condenses condensate from this vacuum condenser (2). 5) is a condensate transfer pipe for transferring to the hot well tank 12+). (5Φ is a vacuum drain cooler that cools the low-pressure steam drain discharged from the general steam consumption equipment ■, and the vacuum condenser (58) is different from the control valve (51).
) are communicated with each other by a communicating tube 8). In addition, the pressure inside the control valve (5 is a vacuum drain cooler (5) is controlled by a pressure regulator (5) that detects the pressure in the vacuum drain cooler (φ6) is maintained below a certain value.And, The vacuum drain cooler (inside δΦ is connected to the condensate pump of the condensate transfer pipe (9) via the connecting pipe)
A flash tube connected to the downstream side is located. (6) is a drain water transfer pipe that transfers the drain water from the vacuum drain cooler (Incorporated) to the hot well tank al by a drain pump ((to) interposed in the middle). Incidentally, (Incorporated) is a steam discharge pipe that directly leads high-pressure steam drain discharged from the main engine fuel oil heater (44a) among the general steam consumption equipment (2) directly to the hot well tank Qυ. (E) is the shilling head part (of the main engine (2))
2a) is a cooling water circulation pipe provided from the outlet to the inlet, and a part of it is connected to the liquid phase part in the low pressure side brackish water separator 0◆. The outlet side piping (65
a) A heating heat exchanger (66) is provided in the middle to exchange heat with the second steam supply branch pipe (67) from the second steam supply pipe (6). In addition, an expansion tank (7), a three-way temperature control valve (69), and a cooling water circulation pump 00) are provided in the middle of the cooling water circulation pipe (600 Å side pipe (65b)), and the three-way temperature control valve (69) ) is provided to connect the inlet side pipe (65b) and the outlet side pipe (65a) to each other. In addition, a temperature controller ('?
2) is under control. Note that (to) is a control valve provided in the middle of the second steam supply pipe (67), and is controlled by the pressure regulator ff4) that detects the internal pressure from the low-pressure side brackish water separator a. (To) is a cooler for cooling the jacket cooling water of the main engine (2), into which a seawater supply pipe 66) is introduced. ff? ) and (78) are a cooling water supply pipe and a cooling water return pipe disposed across the cylinder jacket part (2b) and the cooler ff6). The above cooling water return pipe (7
8) A heating heat exchanger (79), a cooling water circulation pump (■), and a water generator @1) are installed along the way. Note that an eighth steam supply branch pipe (8) branched from the third steam supply pipe (b) is introduced into the heat exchanger ff9). And a bypass pipe (goods) that bypasses the cooler (75) over the above cooling water supply pipes (7) and the return '# (78).
A three-way temperature adjustment valve (b) is provided at the connection between the bypass pipe and the cooling water supply pipe (5), and this three-way temperature adjustment valve (80 is a valve for detecting the temperature of the cooling water). One end of ■ is connected to the downstream side of the three-way temperature control valve ■ of the cooling water supply pipe (5), and the other end is connected to the supercharged air cooler (2). This is a monitoring circulation pipe connected to the upstream side of the cooling water circulation pump (8Φ) of the cooling water return pipe (7g) via the medium temperature section and the ship's air conditioner Q3'i'). Note that (88) is the air conditioning system This is a bypass pipe that bypasses M (87), and an on-off valve [F]9) is provided in the middle of the pipe.

次に、熱回収作用について説明すると、各汽水分離器(
s) Ql)αΦ内の水はそれぞれ循環水ポンプミノに
)01により、各蒸発管(5) (6) (7)に送ら
れて加熱され、蒸気となって各汽水分離器(8)00α
φ内に戻る。そして、高圧側汽水分離器(8)からの高
圧蒸気の一部は、高圧側過熱管(3)により更に加熱(
1o kg/d 、 215℃程度)されて蒸気タービ
ン(4′oの高圧部に供給され、また中圧側汽水分離器
σ◇からの中圧蒸気の一部は、中圧側過熱管(4)によ
り更に加熱(4,7kg/d、 185℃程度)されて
蒸気タービン(4?)の中圧部に供給され、更に低圧側
汽水分離器0→からの蒸気の一部は蒸気タービン0りの
低圧部に供給され、これら各蒸気によって蒸気タービン
(47)が回転されると共に発電機(4Φが回転されて
、発電が成される。そして、蒸気タービン(4″t)か
ら排出された蒸気は、真空復水器(財)で復水されると
共に復水移送管(財)を介してホットウェルタンク(a
+)内に移送される。一方、残りの各蒸気は一般蒸気消
費設備(各種燃料タンク加熱装置、lA用蒸気消費施設
等)■に供給され、そしてここから排出された蒸気ドレ
ンは真空ドレンクーラ(56)内に導入される。真空ド
レンクーラ(財)内に導入された蒸気ドレンJよ、フラ
ッシュ管(61)からフラッシュされる復水により冷却
され、そしてドレン水移送管(財)を介してホットウェ
ルタンクなりに送られる。なお、ホットウェルタンクe
I)内に入った温水は、給水管−を通って各汽水分離器
(8)0υ0→内に給水されるが、その途中に設けられ
た過給空気冷却器に)及び各給水枝管に)(ハ)に設け
られた加熱用熱交換器(8◇(1)によって加熱される
。また、主機(2)のシリンダヘッド部(2a)から出
た高温の冷却水(140℃程度)は、低圧側汽水分画器
0<内の水を淵めて低温の冷却水(180°C程度)と
なってシリンダヘッド部(2a)に戻り、シリンダヘッ
ドを冷却する。更に、主機(2)のシリンダジャケット
部(2b)から出た高温の冷却水(75°C程度)は遣
水器(81)及び冷却器(7Φで低温(65℃程度)に
され、そしてその一部はシリンダジャケット部(2b)
に送られてシリンダ壁面を冷却し、また低温にされた冷
却水の残りは空調用循扉管(財)内に入り、過給空気冷
却器磐で熱を吸収して高温(75°C程度)となって、
空調装置m (87)でその熱が使用された後、シリン
ダジャケットから出た高温の冷却水と一諸に冷却器(7
0に戻される。
Next, to explain the heat recovery effect, each brackish water separator (
s) Ql) αΦ The water in each circulating water pump (01) is sent to each evaporation pipe (5) (6) (7) and heated, and becomes steam to each brackish water separator (8)00α.
Return to φ. A part of the high pressure steam from the high pressure side brackish water separator (8) is further heated (
1 kg/d, approximately 215°C) and supplied to the high pressure section of the steam turbine (4'o), and a part of the intermediate pressure steam from the intermediate pressure side brackish water separator σ◇ is sent to the intermediate pressure side superheating pipe (4). It is further heated (4.7 kg/d, about 185°C) and supplied to the intermediate pressure section of the steam turbine (4?), and a part of the steam from the low pressure side brackish water separator 0 → is supplied to the low pressure section of the steam turbine 0. These steams rotate the steam turbine (47) and rotate the generator (4Φ) to generate electricity.The steam discharged from the steam turbine (4''t) is Water is condensed in a vacuum condenser (Foundation) and transferred to a Hot Well tank (A) via a condensate transfer pipe (Foundation).
+). On the other hand, the remaining steam is supplied to general steam consumption equipment (various fuel tank heating devices, IA steam consumption equipment, etc.), and the steam drain discharged from there is introduced into the vacuum drain cooler (56). The steam drain J introduced into the vacuum drain cooler is cooled by condensate flashed from the flash pipe (61), and then sent to the hot well tank via the drain water transfer pipe. In addition, hot well tank e
I) The hot water that has entered the system is supplied to each brackish water separator (8) 0υ0→ through the water supply pipe, but it is also supplied to the supercharged air cooler installed in the middle) and to each water supply branch pipe. ) (c) It is heated by the heating heat exchanger (8◇(1)) installed in The water in the low-pressure side steam water fractionator 0< is drained and becomes low-temperature cooling water (about 180°C), which returns to the cylinder head (2a) and cools the cylinder head.Furthermore, the main engine (2) The high temperature cooling water (about 75°C) coming out of the cylinder jacket part (2b) is brought to a low temperature (about 65°C) by the water sprinkler (81) and the cooler (7Φ), and a part of it is transferred to the cylinder jacket part (2b). 2b)
The rest of the cooled water enters the air-conditioning circulation pipe, where it absorbs heat in the supercharged air cooler block and reaches a high temperature (approximately 75°C). ),
After that heat is used in the air conditioner m (87), it is combined with the high temperature cooling water coming out of the cylinder jacket into the cooler (7).
Returned to 0.

以上の構成によると、8段圧力式排ガスエコノマイザシ
ステムによる熱回収に加えて、主機のシリンダヘッド部
の高温冷却水を低圧側汽水分離器内に導いて熱回収を行
ない、且つ一般蒸気消費設備から排出される蒸気ドレン
を真空ドレンクーラ内に導いて低圧蒸気の利用度を増す
と共に、この蒸気ドレンを真空ドレンクーラ内で蒸気タ
ービンからの復水によって冷却して蒸気ドレンの持つ熱
を回収するようにしたので、従来のものに比べて、主機
排ガスの熱によって発生させられる蒸気を大幅に増加さ
せることができ、従って、一般蒸気消費設備に供給する
分を除いた残りの蒸気でターボ発電機を駆動させた場合
の発生電力は第1図破線とができ、従って従来のディー
ゼル発電機に必要であった燃料をすべて節約できる。
According to the above configuration, in addition to heat recovery by the 8-stage pressure exhaust gas economizer system, high-temperature cooling water from the cylinder head of the main engine is guided into the low-pressure side brackish water separator for heat recovery, and heat is recovered from the general steam consumption equipment. The discharged steam condensate is guided into a vacuum condensate cooler to increase the utilization of low-pressure steam, and the steam condensate is cooled in the vacuum condensate cooler by condensed water from the steam turbine to recover the heat held by the steam condensate. Therefore, compared to conventional systems, the steam generated by the heat of the main engine exhaust gas can be significantly increased. Therefore, the turbo generator can be driven with the steam remaining after excluding the steam supplied to general steam consumption equipment. The power generated in this case is as shown by the broken line in Figure 1, and therefore all the fuel required for conventional diesel generators can be saved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は船舶における主機馬力と常用航海必要%B、力
との関係を示すグラフ、第2図は本発明の一実施例の概
略jN成図である。 (1)・・・排ガス放出管、(2)−・・主機、(2a
)・・−シリンダヘッド部、(2b)・−シリンダジャ
ケット部、(3)・・・高圧側過熱管、(4)・・・中
圧側過熱管、(5)・・・高圧側蒸発・ば、(6)・・
・中圧側蒸発管、(7)・・・低圧側蒸発管、(8)・
・・高圧側汽水分離器、0】)・・−中圧側汽水分離器
、Q4・・・−低圧側汽水分離m、av・・・ホットウ
ェルタンク、に)・・・過給空気冷却器、(40・・−
第1蒸気供給管、(4〕・・−第2蒸気供給管、(43
)・−・第3蒸気供給管、(44)・−・一般蒸気消費
設備、(45)・・・低圧蒸気導入管、(4の一発電機
、(4す・・・蒸気タービン、(48)・・・中圧蒸気
導入管、(49)・・・高圧蒸気導入管、(財)・・・
真空復水器、(財)・・・復水移送管、働・−・復水ポ
ンプ、G6)・・・真空ドレンクーラ、(財)・・一連
通管、(7)・・・接続管、(61)・・・フラッシュ
管、(6の・・・ドレン水移送管、(財)・・・ドレン
水ポンプ、(財)・・−冷却水循環管、(65a)・−
・出口側配管、(65b)・・・入口側配管、(7の・
・・冷却水供給管、(78)・−・冷却水戻り管代理人
 森 本 義 弘
FIG. 1 is a graph showing the relationship between main engine horsepower, %B required for regular navigation, and power in a ship, and FIG. 2 is a schematic jN diagram of an embodiment of the present invention. (1)...Exhaust gas discharge pipe, (2)--Main engine, (2a
)...-Cylinder head part, (2b)--Cylinder jacket part, (3)...High pressure side superheating pipe, (4)...Intermediate pressure side superheating pipe, (5)...High pressure side evaporation/vapor , (6)...
・Intermediate pressure side evaporation pipe, (7)...Low pressure side evaporation pipe, (8)・
... High pressure side brackish water separator, 0]) ... - Medium pressure side brackish water separator, Q4 ... - Low pressure side brackish water separator m, av... Hotwell tank, ni) ... Supercharged air cooler, (40...-
First steam supply pipe, (4)...-second steam supply pipe, (43
)--Third steam supply pipe, (44)--General steam consumption equipment, (45)...Low-pressure steam introduction pipe, (4-1 generator, (4-steam turbine, (48) )...Medium pressure steam introduction pipe, (49)...High pressure steam introduction pipe, Foundation...
Vacuum condenser, (Foundation)...Condensate transfer pipe, Working...Condensate pump, G6)...Vacuum drain cooler, (Foundation)...Connection pipe, (7)...Connection pipe, (61)...Flash pipe, (6)...Drain water transfer pipe, (Foundation)...Drain water pump, (Foundation)...-Cooling water circulation pipe, (65a)...
・Outlet side piping, (65b)...Inlet side piping, (7)
・・Cooling water supply pipe, (78) ・・Cooling water return pipe agent Yoshihiro Morimoto

Claims (1)

【特許請求の範囲】[Claims] 1、主機排ガスの熱回収を行なうための排ガス放出管内
に、高温部から低温部に向って順次高圧側汽水分離器に
接続された高圧側蒸発管、中圧側汽水分離器に接続され
た中圧側蒸発管、及び低圧側汽水分離器に接続された低
圧側蒸発管を配置し、上記主機のシリンダヘッド部用冷
却水循環管の一部を低圧側汽水分離器の液相部内に導き
、上記各汽水分離器で発生する蒸気の一部を発電用蒸気
タービンに導くと共に、その残りを一般蒸気消費設備に
導き、上記蒸気タービン用、真空復水器からの復水をホ
ットウェルタンクに導く復水移送管を設け、上記一般蒸
気消費設備から排出された蒸気ドレンを冷却する真空ド
レンクーラを設けると共に、上記復水移送管内の復水を
真空ドレンクーラ内でフラッシュさせるフラッシュ管を
設け、且つ上記真空ドレンクーラからのドレン水を上記
ホットウェルタンクに送るドレン水移送管を設けたこと
を特徴とする舶用機関プラント熱回収システム。
1. In the exhaust gas discharge pipe for heat recovery of the main engine exhaust gas, a high-pressure side evaporation pipe is connected to the high-pressure side brackish water separator in order from the high temperature part to the low temperature part, and the medium-pressure side is connected to the medium-pressure side brackish water separator. An evaporation pipe and a low-pressure side evaporation pipe connected to the low-pressure side brackish water separator are arranged, and a part of the cooling water circulation pipe for the cylinder head of the main engine is guided into the liquid phase part of the low-pressure side brackish water separator. Condensate transfer that guides a part of the steam generated in the separator to the power generation steam turbine, guides the rest to general steam consumption equipment, and guides the condensate from the vacuum condenser for the steam turbine to the hot well tank. A vacuum drain cooler is provided for cooling the steam drain discharged from the general steam consuming equipment, and a flash pipe is provided for flashing the condensate in the condensate transfer pipe within the vacuum drain cooler, and A marine engine plant heat recovery system comprising a drain water transfer pipe for sending drain water to the hot well tank.
JP58215750A 1983-11-15 1983-11-15 Heat recovering system in marine engine plant Granted JPS60108507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58215750A JPS60108507A (en) 1983-11-15 1983-11-15 Heat recovering system in marine engine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58215750A JPS60108507A (en) 1983-11-15 1983-11-15 Heat recovering system in marine engine plant

Publications (2)

Publication Number Publication Date
JPS60108507A true JPS60108507A (en) 1985-06-14
JPS6365802B2 JPS6365802B2 (en) 1988-12-16

Family

ID=16677593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58215750A Granted JPS60108507A (en) 1983-11-15 1983-11-15 Heat recovering system in marine engine plant

Country Status (1)

Country Link
JP (1) JPS60108507A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059465A1 (en) * 2001-01-26 2002-08-01 Honda Giken Kogyo Kabushiki Kaisha Working medium feed and control device for heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002059465A1 (en) * 2001-01-26 2002-08-01 Honda Giken Kogyo Kabushiki Kaisha Working medium feed and control device for heat exchanger

Also Published As

Publication number Publication date
JPS6365802B2 (en) 1988-12-16

Similar Documents

Publication Publication Date Title
RU2152527C1 (en) Method of operation of gas-and-steam turbine plant and plant operating according to this method
RU2126491C1 (en) Device for cooling gas turbine cooler of gas-and-steam turbine plant
JP3883627B2 (en) Waste heat recovery steam generator and method for operating a gas turbocharger combined with a steam consumer
JPH07174003A (en) Improving method of whole generation of available energy in energy utilizer and liquid-cooled thermal power engine carrying out improving method
DK158107B (en) RECOVERY PLANT FOR RECOVERY OF WASTE HEAT FROM A COMBUSTION ENGINE
JP2011231636A (en) Exhaust heat recovery power generator and ship provided with exhaust heat recovery power generator
JP2012149541A (en) Exhaust heat recovery power generating apparatus and marine vessel
KR20130032228A (en) Energy saving system of ship by using waste heat
JP2013180625A (en) Exhaust heat recovery type ship propulsion device, and operation method therefor
JPH03124902A (en) Combined cycle power plant and operating method therefor
DK171201B1 (en) Methods and systems for use in stand-alone systems, preferably a wind / diesel system
JP2013160132A (en) Exhaust-heat recovery and utilization system
KR102220071B1 (en) Boiler system
JP2004526900A (en) Gas turbine coolant cooling system and gas / steam combined turbine equipment
JP3354750B2 (en) LNG vaporizer for fuel of natural gas-fired gas turbine combined cycle power plant
WO1992019851A2 (en) Airtight two-phase heat-transfer systems
US20040025510A1 (en) Method for operating a gas and steam turbine installation and corresponding installation
UA45490C2 (en) GAS AND STEAM TURBINE INSTALLATION AND METHOD FOR COOLING A COOLANT OF A GAS TURBINE OF SUCH INSTALLATION
KR20130040320A (en) Fresh water generating equipment for vessels by using waste heat
US20040187688A1 (en) Process and apparatus for the thermal degassing of the working medium of a two-phase process
US20190368383A1 (en) Internal combustion engine with evaporative cooling and waste heat utilization
JPS60108507A (en) Heat recovering system in marine engine plant
SU1514966A1 (en) Power unit
JPS628606B2 (en)
JP3746591B2 (en) Gasification combined power generation facility