JP3746591B2 - Gasification combined power generation facility - Google Patents

Gasification combined power generation facility Download PDF

Info

Publication number
JP3746591B2
JP3746591B2 JP13658797A JP13658797A JP3746591B2 JP 3746591 B2 JP3746591 B2 JP 3746591B2 JP 13658797 A JP13658797 A JP 13658797A JP 13658797 A JP13658797 A JP 13658797A JP 3746591 B2 JP3746591 B2 JP 3746591B2
Authority
JP
Japan
Prior art keywords
water
gasification
economizer
pipe
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13658797A
Other languages
Japanese (ja)
Other versions
JPH10325505A (en
Inventor
義孝 古閑
治 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13658797A priority Critical patent/JP3746591B2/en
Publication of JPH10325505A publication Critical patent/JPH10325505A/en
Application granted granted Critical
Publication of JP3746591B2 publication Critical patent/JP3746591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、低温腐食を防止し、熱効率の向上を図り得るガス化複合発電設備に関する。
【0002】
【従来の技術】
図3は従来のガス化複合発電設備における高圧機器の冷却水系統を示したものである。
ガス化複合発電設備には、沢山の機器や設備があるが、ここでは、高圧機器冷却水系統の例を示す。
ガス化複合発電設備の高圧機器冷却水系統としては、蒸気タービンの復水器1と、高圧機器冷却水ポンプ2とを備えており、高圧冷却水供給母管3を通してガス化設備4の各機器に連結されている。通常、約30℃の復水をガス化設備4の各所の機器を冷却するため、高圧機器冷却水ポンプ2によって冷却水として送り出している。
ガス化設備4においては、高圧冷却水は高圧冷却水供給母管3から各所、例えば、バーナノズル、炉内監視装置、ガスサンプリング装置等に流れ、これらを冷却し、即ち、吸熱し、高圧冷却水戻り母管5へと流れる。
【0003】
この高圧冷却水戻り母管5に流れた高圧冷却水は、冷却水圧力調整弁6によって、ガス化設備の炉内圧力より高目に圧力を調整される。これは、仮に冷却水管が洩れても炉内のガスが冷却水系統に逆流しないようにするため、および余りにも低圧であれば冷却水が容易に沸騰し、冷却能力が低下するからである。
高圧冷却水は冷却水圧力調節弁6を通過した後、水の回収の為、復水器1に回収され、吸熱した熱量は復水器1内で海水に放熱される。
【0004】
【発明が解決しようとする課題】
しかしながら、前記の従来の技術においては、ガス化設備4のバーナノズル等の各所に約30℃の冷却水が流れるが、温度が低すぎる為、加熱されない局部或いは、ガス化設備4の起動、停止時等、の炉内の低温時に冷却される部分の表面において、低温腐食が発生する。また、冷却時に吸熱した熱量を回収せずに海水に放熱してしまい、熱効率を低下させる課題がある。
【0005】
本発明は上記課題を解決し、低温腐食を防止し、熱効率の向上を図り得るガス化複合発電設備を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するため、ガス化炉、ガスタービンの排熱回収ボイラ、および蒸気タービンの復水器を有するガス化複合発電設備において、前記排熱回収ボイラの節炭器の中間または出口から抽水し、該抽水を、蒸発を含まない圧縮水の範囲でガス化設備の炉底管およびバーナノズルの冷却に利用し、かつ冷却後の前記抽水を前記排熱回収ボイラに回収するように構成したことにある。
本発明は、前記ガス化設備の炉底管およびバーナノズルを通過する冷却水の流量および出入口温度を計測する手段を設けたことにある。
また、本発明は、上記節炭器に、節炭器入口管寄10と節炭器出口管寄11を設け、上記節炭器入口管寄10側の管路101に排熱回収ボイラ用給水ポンプ8を連結し、上記節炭器出口管寄11側の管路102に給水流量調整弁12を介して蒸気ドラム13を連結するとともに、上記節炭器出口管寄11側の管路102の途中に、管路103を分岐し、この管路103に接続された高圧給水ポンプ18を介してガス化設備の熱交換器に給水することにある。
【0007】
【発明の実施の形態】
以下本発明の実施の形態を図面を参照しながら詳細に説明する。
【0008】
図1は、本発明のガス化複合発電設備に係る第1の実施の形態を示すガス化複合発電設備の機器の高圧冷却水系統図で、図3と同一部分には同符号を付して示す。
図1において、本発明のガス化複合発電設備では、蒸気タービンの復水器1と、ガス化設備4に、ガスタービンの排気から熱を回収する排熱回収ボイラ(「HRSG」と称する)7を加えたものである。
この排熱回収ボイラ7と復水器1を結ぶ管路101には、排熱回収ボイラ用給水ポンプ8が設けられている。この排熱回収ボイラ用給水ポンプ8は、復水器1の復水を排熱回収ボイラ7に給水するものである。この排熱回収ボイラ用給水ポンプ8によって給水された復水は、排熱回収ボイラ7の節炭器9に給水されて加熱される。
【0009】
上記節炭器9には、節炭器入口管寄10と節炭器出口管寄11が設けられており、節炭器入口管寄10側の管路101に排熱回収ボイラ用給水ポンプ8が連結され、節炭器出口管寄11側の管路102に給水流量調整弁12を介して蒸気ドラム13が連結されている。管路102の途中には、管路103が分岐しており、この管路103に接続された高圧給水ポンプ18を介してガス化設備の熱交換器に給水するものである。
【0010】
節炭器9によって加熱された給水は給水流量調整弁12にて流量調整された後、蒸気ドラム13に供給される。蒸気ドラム13は、管路201,202を介して排熱回収ボイラ7の蒸発器15に連結されており、管路201に設けられた排熱回収ボイラ循環ポンプ14によって缶水を循環するものである。ガスタービンの排気熱により蒸発器15にて蒸気を発生させ、蒸気ドラム13内で気水分離を行う。蒸気ドラム13内の蒸気は蒸気管16によって後流の過熱器に導かれる。蒸気ドラム13の水位は給水流量調整弁12にて制御されており、一時的なドラム水位の急変に対応できるように蒸気ドラム13と復水器1を連結する管路301に急速ブロー弁17を設け、復水器1側に排出するようにしている。
【0011】
上記排熱回収ボイラ7の節炭器9の途中には、節炭器中間管寄20が設けられており、この節炭器中間管寄20から高圧冷却水流量調整弁21を介して給水の一部を抽水し、これを管路401から高圧冷却水供給母管3を通してガス化設備4の高圧機器の冷却水として利用するものである。節炭器中間管寄20が設けられる位置としては節炭器9の出口より少し上流で給水温度が約180℃程度の所が望ましい。ガス化設備4の高圧機器の冷却水として利用した冷却水は、高圧冷却水戻り母管5に戻り、高圧冷却水戻り母管5と蒸気ドラム13を連結する管路402に設けられた冷却水圧力調整弁6によって圧力を調整された後、蒸気ドラム13に給水されるものである。
【0012】
次に、上記構成による本発明の作用を説明する。
上記第1の実施の形態では、節炭器9の圧力は約60kg/cm2 で、給水流量調整弁12にて排熱回収ボイラ7への給水流量を制御しており、節炭器9の入り口温度は約30〜60℃と低いが、節炭器9の出口温度は約220℃とかなり高く運転される。
【0013】
一方、ガス化設備4の高圧機器の冷却水用としては、圧力は炉内圧力より高く、温度は機器の低温腐食を防止するため、約160℃より高い方がよい。
したがって、節炭器9の出口より少し上流で給水温度が約180℃程度の所に節炭器中間管寄20を設け、ガス化設備4の高圧機器冷却水用として節炭器9から抽水し、ガス化設備4のバーナノズル等を冷却後、約220℃程度に過熱された後、冷却水圧力調整弁6を介し排熱回収ボイラ7の蒸気ドラム13に回収する。
この時、ガス化設備4の高圧機器冷却水は、排熱回収ボイラ7にとっては、いかにも節炭器9の一部として作用し、高圧機器冷却水の回収は、そのままで排熱回収ボイラ7への給水として作用する。
【0014】
すなわち、本発明によれば、節炭器9の途中から抽水した高圧機器冷却水は、ガス化設備4にとっては、低温腐食を防止する高温の冷却水であり、排熱回収ボイラ7にとっては、節炭器9の一部として作用し、熱の回収も行い、一挙両得の発明である。
【0015】
高圧冷却水流量調整弁21は、ガス化設備4のバーナノズル等の各機器に所要な冷却水流量に調整し、冷却水圧力調整弁6は蒸気ドラム13の圧力に拘らず、仮に、冷却水管が漏洩しても、炉内ガスが冷却水系統に逆流しないように、ガス化設備4の炉内圧力より高い圧力に制御する。
【0016】
蒸気ドラム13の水位は給水流量調整弁12にて制御され、高圧機器冷却水の抽水開始、終了時等の一時的なドラム水位の急変に対応できるように急速ブロー弁17を設けている。急速ブロー弁17の排出先は復水器1にして水を回収してもよく、一時的なものであるので、フラッシュパイプ等へ捨てても構わない。
【0017】
次に、図2は本発明の第2の実施の形態を示したもので、ガス化複合発電設備のガス化炉の炉底冷却水系統を示す系統図である。
この場合、図1と同一部分には同符号を付してその説明を省略して示す。
【0018】
この実施の形態のガス化炉26はガス化炉圧力容器25の熱遮蔽のため、冷却水を循環する缶水循環系31を有するが、排熱回収ボイラ7の節炭器9で加熱される給水の一部をガス化炉26の一部分を構成する炉底27の冷却水として使用するものである。
この実施の形態では、節炭器9の途中に節炭器中間管寄20を設け、この節炭器中間管寄20から給水の一部を抽水し、ガス化設備4の炉底の給水する管路501に設けられた高圧冷却水流量調整弁21を介して、ガス化設備4の炉底27に冷却水を供給するものである。ガス化設備4の炉底27を冷却した冷却水は、炉底27から蒸気ドラム13に戻る管路502に設けられた冷却水圧力調整弁6で圧力を調整された後、蒸気ドラム13に給水される。
管路501には、流量計測手段として炉底冷却水流量計30が設けられ、この炉底冷却水流量計30で炉底冷却水の流量を計測する。また、管路501のガス化設備4の炉底27近くには、温度計測手段として冷却水入口温度検出器28が設けられ、冷却水の炉底27入口側の温度が計測される。冷却水出口側の管路502には冷却水出口温度検出器29が設けられ、ガス化設備4の炉底27出口温度を検出するものである。缶水循環系31を構成する管路601には気水分離ドラム32が設けられており、この気水分離ドラム32で分離された蒸気は蒸気管33を通して蒸気タービンまたは排熱回収ボイラ等へ送られる。この蒸気は、高圧給水ポンプ18から送られる蒸気と同じガス化設備の熱交換器に供給される。
【0019】
この第2の実施の形態では、節炭器9の圧力は約60kg/cm2 で、給水流量調整弁12にて排熱回収ボイラ7への給水流量を制御しており、節炭器9の入り口温度は約30〜60℃と低いが、節炭器9の出口温度は約220℃とかなり高く運転される。
【0020】
一方、ガス化設備4の高圧機器の冷却水用としては、圧力は炉内圧力より高く、温度は機器の低温腐食を防止するため、約160℃より高い方がよく、また、水平部が多いため固気二相流を伴う蒸発管でなく、蒸発を含まない圧縮水の範囲で冷却する方がよい。即ち、蒸発を伴う場合、炉底管の加熱面側である管の上方に蒸気が滞留し、加熱面側の熱伝達を著しく悪化させ、炉底冷却管を焼損し易いからである。
したがって、節炭器9の出口より少し上流で給水温度が約180℃程度の所に節炭器中間管寄20を設け、ガス化設備4の炉底冷却水用として節炭器9から抽水し、ガス化設備4の炉底を冷却後、約220℃程度に過熱された後、冷却水圧力調整弁6を介し排熱回収ボイラ7の蒸気ドラム13に回収する。
【0021】
この時、ガス化設備4の炉底冷却水は、排熱回収ボイラ7にとっては、いかにも節炭器9の一部として作用し、炉底冷却水の回収はそのままで排熱回収ボイラ7への給水として作用する。
また、炉底冷却水として缶水等の蒸発を伴う飽和水を使用する場合、缶水の温度は一定であるため、炉底での吸熱量を缶水温度から計測することはできない。
しかし、この実施の形態による蒸発を含まない圧縮水の範囲で冷却する場合、炉底冷却水流量計30にて冷却水流量を計測し、冷却水入口温度検出器28および冷却水出口温度検出器29にて温度を計測することにより、炉底での吸収熱量を容易に計測することができる。
【0022】
すなわち、本発明によれば、節炭器9の途中から抽水した炉底冷却水は、ガス化設備4にとっては低温腐食を防止し、冷却管焼損に対し、より安全な冷却水であり、炉底の吸熱量をも計測できる。
また、排熱回収ボイラ7にとっては節炭器9の一部として作用し、プラント全体としても、熱の回収を行い、機器の信頼性を高めるのみならず、経済性にも優れている。
なお、上記実施の形態では、設備内の被冷却機器の冷却に利用する冷却水を排熱回収ボイラの節炭器の出口より少し上流で給水温度が約180℃程度の所に節炭器中間管寄20を設けて抽水したが、冷却水温度によっては、節炭器の中間または出口から抽水してもよい。
【0023】
【発明の効果】
以上述べたように、本発明によるガス化複合発電設備によれば次のような効果を奏することができる。
節炭器の中間または出口から抽水した炉底冷却水を蒸発を含まない圧縮水の範囲で冷却利用して、被冷却機器を冷却するので、ガス化設備にとっては低温腐食を防止することができる。節炭器の中間または出口から抽水し、該抽水を、蒸発を含まない圧縮水の範囲でガス化設備の炉底管およびバーナノズルの冷却に利用するので、冷却管焼損に対し、より安全な冷却水である。また、排熱回収ボイラにとっては節炭器の一部として作用し、プラント全体としても、熱の回収を行い、機器の信頼性を高めるのみならず、経済性にも優れている。
流量計測手段と温度計測手段によって被冷却機器を通過する冷却水の流量および出入口温度を計測するので、冷却部の吸熱量を計測することができる。
排熱回収ボイラの水系に急速ブロー弁を設けているので、高圧機器冷却水の抽水開始、終了時等の一時的なドラム水位の急変に対応することができる。
【図面の簡単な説明】
【図1】本発明によるガス化複合発電設備の第1の実施の形態を示す系統図である。
【図2】本発明によるガス化複合発電設備の第2の実施の形態を示す系統図である。
【図3】従来のガス化複合発電設備を示す系統図である。
【符号の説明】
1 復水器
3 高圧冷却水供給母管
4 ガス化設備
5 高圧冷却水戻り母管
6 冷却水圧力調整弁
7 排熱回収ボイラ
8 排熱回収ボイラ用給水ポンプ
9 節炭器
10 節炭器入口管寄
11 節炭器出口管寄
12 給水流量調整弁
13 蒸気ドラム
14 排熱回収ボイラ循環ポンプ
15 蒸発器
16 蒸気管
17 急速ブロー弁
18 高圧給水ポンプ
20 節炭器中間管寄
21 高圧冷却水流量調整弁
25 ガス化炉圧力容器
26 ガス化炉
27 炉底
28 冷却水入口温度検出器
29 冷却水出口温度検出器
30 炉底冷却水流量計
31 缶水循環系
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gasification combined power generation facility capable of preventing low-temperature corrosion and improving thermal efficiency.
[0002]
[Prior art]
FIG. 3 shows a cooling water system for high-pressure equipment in a conventional gasification combined power generation facility.
There are many devices and facilities in the combined gasification power generation facility, but here, an example of a high-pressure device cooling water system is shown.
The high pressure equipment cooling water system of the combined gasification power generation facility includes a steam turbine condenser 1 and a high pressure equipment cooling water pump 2, and each equipment of the gasification equipment 4 through the high pressure cooling water supply main pipe 3. It is connected to. Usually, condensate at about 30 ° C. is sent out as cooling water by the high-pressure equipment cooling water pump 2 in order to cool equipment at various locations of the gasification facility 4.
In the gasification facility 4, the high-pressure cooling water flows from the high-pressure cooling water supply main pipe 3 to various places, for example, a burner nozzle, an in-furnace monitoring device, a gas sampling device, etc., and cools them, that is, absorbs heat. It flows to the return mother pipe 5.
[0003]
The pressure of the high-pressure cooling water that has flowed into the high-pressure cooling water return main pipe 5 is adjusted by the cooling water pressure adjusting valve 6 to be higher than the pressure in the furnace of the gasification facility. This is because the gas in the furnace does not flow back into the cooling water system even if the cooling water pipe leaks, and if the pressure is too low, the cooling water boils easily and the cooling capacity decreases.
After the high-pressure cooling water passes through the cooling water pressure control valve 6, the high-pressure cooling water is recovered in the condenser 1 for water recovery, and the absorbed heat is radiated to seawater in the condenser 1.
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned conventional technology, cooling water of about 30 ° C. flows in various places such as the burner nozzle of the gasification equipment 4, but because the temperature is too low, local parts that are not heated or when the gasification equipment 4 is started and stopped Etc., low temperature corrosion occurs on the surface of the portion cooled at a low temperature in the furnace. In addition, there is a problem in that the amount of heat absorbed during cooling is dissipated to the seawater without being recovered, resulting in a decrease in thermal efficiency.
[0005]
An object of the present invention is to solve the above-mentioned problems, and to provide a gasification combined power generation facility capable of preventing low-temperature corrosion and improving thermal efficiency.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a gasification combined power generation facility having a gasification furnace, a gas turbine exhaust heat recovery boiler, and a steam turbine condenser. Water is extracted from the outlet, and the extracted water is used for cooling the furnace bottom tube and burner nozzle of the gasification facility within the range of compressed water not including evaporation, and the extracted water after cooling is recovered in the exhaust heat recovery boiler. It is in the configuration.
The present invention is provided with means for measuring the flow rate and the inlet / outlet temperature of the cooling water passing through the furnace bottom tube and the burner nozzle of the gasification facility .
Further, according to the present invention, the economizer is provided with an economizer inlet 10 and an economizer outlet 11, and the water supply for the exhaust heat recovery boiler is provided in the pipeline 101 on the economizer inlet 10 side. The pump 8 is connected, and the steam drum 13 is connected to the conduit 102 on the side of the economizer outlet 11 via the feed water flow rate adjusting valve 12, and the pipeline 102 on the side of the economizer outlet 11 is connected. In the middle, the pipe 103 is branched, and water is supplied to the heat exchanger of the gasification facility via the high-pressure feed pump 18 connected to the pipe 103.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0008]
FIG. 1 is a high-pressure cooling water system diagram of an apparatus of a combined gasification power generation facility showing a first embodiment of the combined gasification combined power generation facility of the present invention. The same parts as those in FIG. Show.
In FIG. 1, in the combined gasification power generation facility of the present invention, an exhaust heat recovery boiler (referred to as “HRSG”) 7 that recovers heat from the exhaust of the gas turbine to the condenser 1 of the steam turbine and the gasification facility 4. Is added.
A water supply pump 8 for exhaust heat recovery boiler is provided in a pipe line 101 connecting the exhaust heat recovery boiler 7 and the condenser 1. This exhaust heat recovery boiler feed water pump 8 supplies the condensate of the condenser 1 to the exhaust heat recovery boiler 7. The condensate supplied by the exhaust heat recovery boiler feed pump 8 is supplied to the economizer 9 of the exhaust heat recovery boiler 7 and heated.
[0009]
The economizer 9 is provided with an economizer inlet pipe 10 and a economizer outlet pipe 11, and is connected to a pipe 101 on the side of the economizer inlet pipe 10 with a water supply pump 8 for a waste heat recovery boiler. Are connected, and a steam drum 13 is connected to a pipe line 102 on the side of the outlet 11 of the economizer via a feed water flow rate adjusting valve 12. A pipe 103 is branched in the middle of the pipe 102, and water is supplied to the heat exchanger of the gasification facility via the high-pressure feed pump 18 connected to the pipe 103.
[0010]
The feed water heated by the economizer 9 is supplied to the steam drum 13 after the flow rate is adjusted by the feed water flow rate adjusting valve 12. The steam drum 13 is connected to the evaporator 15 of the exhaust heat recovery boiler 7 via pipe lines 201 and 202, and circulates can water by the exhaust heat recovery boiler circulation pump 14 provided in the pipe line 201. is there. Steam is generated in the evaporator 15 by the exhaust heat of the gas turbine, and steam is separated in the steam drum 13. The steam in the steam drum 13 is guided to the downstream superheater by the steam pipe 16. The water level of the steam drum 13 is controlled by the feed water flow rate adjustment valve 12, and the quick blow valve 17 is connected to a pipe line 301 connecting the steam drum 13 and the condenser 1 so as to cope with a sudden change in the drum water level. It is provided and discharged to the condenser 1 side.
[0011]
In the middle of the economizer 9 of the exhaust heat recovery boiler 7, an economizer intermediate pipe 20 is provided. From the economizer intermediate pipe 20, one of the water supply is supplied via a high-pressure cooling water flow rate adjustment valve 21. The water is extracted from the pipe section 401 and used as cooling water for the high pressure equipment of the gasification facility 4 through the high pressure cooling water supply main pipe 3 from the pipe line 401. The position where the economizer intermediate pipe 20 is provided is preferably a place where the feed water temperature is about 180 ° C. slightly upstream from the exit of the economizer 9. The cooling water used as the cooling water for the high-pressure equipment of the gasification facility 4 returns to the high-pressure cooling water return main pipe 5 and is provided in the pipe line 402 connecting the high-pressure cooling water return main pipe 5 and the steam drum 13. After the pressure is adjusted by the pressure adjusting valve 6, water is supplied to the steam drum 13.
[0012]
Next, the operation of the present invention having the above configuration will be described.
In the first embodiment, the pressure of the economizer 9 is about 60 kg / cm 2 , and the feed water flow rate to the exhaust heat recovery boiler 7 is controlled by the feed water flow rate adjustment valve 12. Although the inlet temperature is as low as about 30 to 60 ° C., the outlet temperature of the economizer 9 is operated as high as about 220 ° C.
[0013]
On the other hand, for the cooling water of the high pressure equipment of the gasification facility 4, the pressure is higher than the pressure in the furnace, and the temperature is preferably higher than about 160 ° C. in order to prevent low temperature corrosion of the equipment.
Therefore, an intermediate pipe 20 is installed at a location where the feed water temperature is about 180 ° C. slightly upstream from the outlet of the economizer 9, and water is extracted from the economizer 9 for the high-pressure equipment cooling water of the gasification facility 4. Then, after the burner nozzle of the gasification facility 4 is cooled, it is overheated to about 220 ° C., and is then recovered by the steam drum 13 of the exhaust heat recovery boiler 7 via the cooling water pressure regulating valve 6.
At this time, the high-pressure equipment cooling water of the gasification facility 4 acts as a part of the economizer 9 for the exhaust heat recovery boiler 7, and the high-pressure equipment cooling water is recovered as it is to the exhaust heat recovery boiler 7. Acts as a water supply.
[0014]
That is, according to the present invention, the high-pressure equipment cooling water extracted from the middle of the economizer 9 is a high-temperature cooling water that prevents low-temperature corrosion for the gasification facility 4, and for the exhaust heat recovery boiler 7, It acts as a part of the economizer 9 and also recovers heat.
[0015]
The high-pressure cooling water flow rate adjustment valve 21 adjusts the cooling water flow rate required for each device such as the burner nozzle of the gasification facility 4, and the cooling water pressure adjustment valve 6 is temporarily connected to the cooling water pipe regardless of the pressure of the steam drum 13. Even if it leaks, the pressure in the furnace is controlled to be higher than the pressure in the furnace of the gasification facility 4 so that the gas in the furnace does not flow back into the cooling water system.
[0016]
The water level of the steam drum 13 is controlled by the feed water flow rate adjustment valve 12, and a quick blow valve 17 is provided so as to cope with a temporary change in the drum water level such as at the start and end of extraction of the high-pressure equipment cooling water. The discharge destination of the quick blow valve 17 may be the condenser 1 and water may be collected, and since it is temporary, it may be discarded to a flash pipe or the like.
[0017]
Next, FIG. 2 shows a second embodiment of the present invention and is a system diagram showing a bottom cooling water system of a gasification furnace of a combined gasification power generation facility.
In this case, the same parts as those in FIG.
[0018]
The gasification furnace 26 of this embodiment has a can water circulation system 31 that circulates cooling water for heat shielding of the gasification furnace pressure vessel 25, but feed water heated by the economizer 9 of the exhaust heat recovery boiler 7. Is used as cooling water for the furnace bottom 27 constituting a part of the gasification furnace 26.
In this embodiment, an economizer intermediate pipe 20 is provided in the middle of the economizer 9, a part of the water supply is extracted from the economizer intermediate pipe 20, and a pipe for supplying water to the furnace bottom of the gasification facility 4 is provided. Cooling water is supplied to the furnace bottom 27 of the gasification facility 4 through the high-pressure cooling water flow rate adjustment valve 21 provided in the passage 501. The cooling water that has cooled the furnace bottom 27 of the gasification facility 4 is adjusted in pressure by the cooling water pressure regulating valve 6 provided in the pipe line 502 returning from the furnace bottom 27 to the steam drum 13, and then supplied to the steam drum 13. Is done.
The pipeline 501 is provided with a furnace bottom cooling water flow meter 30 as a flow rate measuring means, and the furnace bottom cooling water flow meter 30 measures the flow rate of the furnace bottom cooling water. Further, a coolant inlet temperature detector 28 is provided as a temperature measuring means near the furnace bottom 27 of the gasification facility 4 in the pipe line 501 to measure the temperature of the coolant bottom 27 inlet side. A cooling water outlet temperature detector 29 is provided in the pipe 502 on the cooling water outlet side, and detects the outlet temperature of the furnace bottom 27 of the gasification facility 4. An air / water separation drum 32 is provided in the pipe line 601 constituting the can water circulation system 31, and the steam separated by the air / water separation drum 32 is sent to a steam turbine or an exhaust heat recovery boiler through the steam pipe 33. . This steam is supplied to the heat exchanger of the same gasification facility as the steam sent from the high-pressure feed water pump 18.
[0019]
In the second embodiment, the pressure of the economizer 9 is about 60 kg / cm 2 , and the feed water flow rate to the exhaust heat recovery boiler 7 is controlled by the feed water flow rate adjustment valve 12. Although the inlet temperature is as low as about 30 to 60 ° C., the outlet temperature of the economizer 9 is operated as high as about 220 ° C.
[0020]
On the other hand, for the cooling water of the high pressure equipment of the gasification facility 4, the pressure is higher than the pressure in the furnace, and the temperature is preferably higher than about 160 ° C. in order to prevent cold corrosion of the equipment, and there are many horizontal portions. Therefore, it is better to cool in the range of compressed water that does not include evaporation, rather than an evaporation pipe with a solid-gas two-phase flow. That is, in the case of evaporation, the steam stays above the tube on the heating surface side of the furnace bottom tube, remarkably deteriorates the heat transfer on the heating surface side, and the furnace bottom cooling tube is easily burned.
Therefore, an intermediate storage 20 is provided at a location where the feed water temperature is about 180 ° C. slightly upstream from the outlet of the economizer 9, and water is extracted from the economizer 9 for the bottom cooling water of the gasification facility 4. Then, after cooling the furnace bottom of the gasification facility 4, it is heated to about 220 ° C. and then recovered to the steam drum 13 of the exhaust heat recovery boiler 7 via the cooling water pressure regulating valve 6.
[0021]
At this time, the bottom cooling water of the gasification facility 4 acts as a part of the economizer 9 for the exhaust heat recovery boiler 7, and the recovery of the bottom bottom cooling water remains as it is to the exhaust heat recovery boiler 7. Acts as a water supply.
Further, when saturated water accompanying evaporation such as can water is used as the furnace bottom cooling water, since the temperature of the can water is constant, the endothermic amount at the furnace bottom cannot be measured from the can water temperature.
However, when cooling in the range of compressed water not including evaporation according to this embodiment, the cooling water flow rate is measured by the furnace bottom cooling water flow meter 30, and the cooling water inlet temperature detector 28 and the cooling water outlet temperature detector are measured. By measuring the temperature at 29, the amount of heat absorbed at the furnace bottom can be easily measured.
[0022]
That is, according to the present invention, the bottom cooling water extracted from the middle of the economizer 9 is a safer cooling water for the gasification facility 4 and prevents cold corrosion, and is safer against cooling pipe burnout. The amount of heat absorbed at the bottom can also be measured.
Moreover, it acts as a part of the economizer 9 for the exhaust heat recovery boiler 7, and the entire plant not only recovers heat and improves the reliability of the equipment, but also is excellent in economy.
In the above embodiment, the cooling water used for cooling the equipment to be cooled in the facility is placed in the middle of the economizer at a place where the feed water temperature is about 180 ° C. slightly upstream from the outlet of the economizer of the exhaust heat recovery boiler. Although the pipe 20 was provided and extracted, depending on the cooling water temperature, water may be extracted from the middle or outlet of the economizer.
[0023]
【The invention's effect】
As described above, the combined gasification power generation facility according to the present invention can provide the following effects.
Cooling equipment is cooled by using the bottom cooling water extracted from the middle or outlet of the economizer in the range of compressed water that does not include evaporation, so that low temperature corrosion can be prevented for gasification equipment. . Water is extracted from the middle or outlet of the economizer, and the extracted water is used to cool the bottom tube and burner nozzle of the gasification facility within the range of compressed water that does not include evaporation. It is water. Moreover, it acts as a part of the economizer for the exhaust heat recovery boiler, and the whole plant not only recovers heat and improves the reliability of the equipment, but also is economical.
Since the flow rate of cooling water passing through the device to be cooled and the inlet / outlet temperature are measured by the flow rate measuring means and the temperature measuring means, the endothermic amount of the cooling section can be measured.
Since the rapid blow valve is provided in the water system of the exhaust heat recovery boiler, it is possible to cope with a sudden change in the drum water level temporarily such as at the start and end of extraction of the high-pressure equipment cooling water.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a first embodiment of a combined gasification combined power generation facility according to the present invention.
FIG. 2 is a system diagram showing a second embodiment of the combined gasification combined cycle facility according to the present invention.
FIG. 3 is a system diagram showing a conventional combined gasification power generation facility.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Condenser 3 High pressure cooling water supply main pipe 4 Gasification equipment 5 High pressure cooling water return main pipe 6 Cooling water pressure adjustment valve 7 Waste heat recovery boiler 8 Waste heat recovery boiler feed pump 9 Eco-saving device 10 Eco-saving device inlet Pipe 11, economizer outlet 12, feed water flow control valve 13, steam drum 14, heat recovery steam generator circulation pump 15, evaporator 16, steam pipe 17, rapid blow valve 18, high pressure feed pump 20, economizer intermediate pipe 21, high pressure coolant flow Regulating valve 25 Gasification furnace pressure vessel 26 Gasification furnace 27 Furnace 28 Cooling water inlet temperature detector 29 Cooling water outlet temperature detector 30 Furnace cooling water flow meter 31 Can water circulation system

Claims (3)

ガス化炉、ガスタービンの排熱回収ボイラ、および蒸気タービンの復水器を有するガス化複合発電設備において、前記排熱回収ボイラの節炭器の中間または出口から抽水し、該抽水を、蒸発を含まない圧縮水の範囲でガス化設備の炉底管およびバーナノズルの冷却に利用し、かつ冷却後の前記抽水を前記排熱回収ボイラに回収するように構成したことを特徴とするガス化複合発電設備。In a gasification combined power generation facility having a gasification furnace, a gas turbine exhaust heat recovery boiler, and a steam turbine condenser, water is extracted from the middle or outlet of the economizer of the exhaust heat recovery boiler, and the extracted water is evaporated. A gasification composite that is used for cooling a furnace bottom tube and a burner nozzle of a gasification facility in a range of compressed water not containing water, and that the extracted water after cooling is recovered in the exhaust heat recovery boiler Power generation equipment. 前記ガス化設備の炉底管およびバーナノズルを通過する冷却水の流量および出入口温度を計測する手段を設けたことを特徴とする請求項1に記載のガス化複合発電設備。 2. The combined gasification power generation facility according to claim 1, further comprising means for measuring a flow rate of cooling water passing through a furnace bottom tube and a burner nozzle of the gasification facility and an inlet / outlet temperature. 上記節炭器に、節炭器入口管寄10と節炭器出口管寄11を設け、上記節炭器入口管寄10側の管路101に排熱回収ボイラ用給水ポンプ8を連結し、上記節炭器出口管寄11側の管路102に給水流量調整弁12を介して蒸気ドラム13を連結するとともに、上記節炭器出口管寄11側の管路102の途中に、管路103を分岐し、この管路103に接続された高圧給水ポンプ18を介してガス化設備の熱交換器に給水することを特徴とする請求項1または2に記載のガス化複合発電設備。  The economizer is provided with an economizer inlet pipe 10 and an economizer outlet pipe 11, and a water supply pump 8 for exhaust heat recovery boiler is connected to the pipe 101 on the economizer inlet pipe 10 side, The steam drum 13 is connected to the pipe 102 on the side of the economizer outlet 11 via the feed water flow rate adjusting valve 12, and the pipe 103 is provided in the middle of the pipe 102 on the side of the economizer outlet 11. The combined gasification power generation facility according to claim 1, wherein water is supplied to a heat exchanger of the gasification facility through a high-pressure feed water pump 18 connected to the pipe 103.
JP13658797A 1997-05-27 1997-05-27 Gasification combined power generation facility Expired - Lifetime JP3746591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13658797A JP3746591B2 (en) 1997-05-27 1997-05-27 Gasification combined power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13658797A JP3746591B2 (en) 1997-05-27 1997-05-27 Gasification combined power generation facility

Publications (2)

Publication Number Publication Date
JPH10325505A JPH10325505A (en) 1998-12-08
JP3746591B2 true JP3746591B2 (en) 2006-02-15

Family

ID=15178779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13658797A Expired - Lifetime JP3746591B2 (en) 1997-05-27 1997-05-27 Gasification combined power generation facility

Country Status (1)

Country Link
JP (1) JP3746591B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232167A (en) * 2014-09-22 2014-12-24 清华大学 Coal gasification circulating water system
KR101634594B1 (en) * 2015-08-25 2016-06-29 두산중공업 주식회사 An apparatus for cooling gasification burner using circulation water system cooling facilities of integrated gasification combined cycle by circulating boiler feed water

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5448883B2 (en) * 2010-01-28 2014-03-19 バブコック日立株式会社 Once-through exhaust heat recovery boiler
JP6004953B2 (en) * 2013-01-18 2016-10-12 三菱日立パワーシステムズ株式会社 Gasification furnace and operation method of gasification furnace
JP7220063B2 (en) * 2018-12-03 2023-02-09 川崎重工業株式会社 burner cooler
CN115948184A (en) * 2022-12-28 2023-04-11 山西阳煤化工机械(集团)有限公司 Water-cooling circulation gasification furnace

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232167A (en) * 2014-09-22 2014-12-24 清华大学 Coal gasification circulating water system
KR101634594B1 (en) * 2015-08-25 2016-06-29 두산중공업 주식회사 An apparatus for cooling gasification burner using circulation water system cooling facilities of integrated gasification combined cycle by circulating boiler feed water

Also Published As

Publication number Publication date
JPH10325505A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
JP3976857B2 (en) Combined power plant with forced once-through steam generator as a gas turbine cooling air cooler
JP3650112B2 (en) Gas turbine cooling medium cooling system for gas / steam turbine combined equipment
JPH0758043B2 (en) Method and apparatus for heat recovery from exhaust gas and heat recovery steam generator
JPH094417A (en) Composite cycle-system
JPH03124902A (en) Combined cycle power plant and operating method therefor
GB2099558A (en) Heat recovery steam generator
JP3746591B2 (en) Gasification combined power generation facility
JP2007023976A (en) Gas turbine generator and gas turbine combined-cycle power generation system
JPH10196316A (en) Combined power generating plant and closed air cooling gas turbine system
RU2152521C1 (en) Condensate degassing method and device
JP2003161164A (en) Combined-cycle power generation plant
JP4999992B2 (en) Gas turbine combined power generation system
US5873238A (en) Startup cooling steam generator for combustion turbine
CA2262722A1 (en) Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section
JP2624891B2 (en) Pressurized fluidized bed boiler power plant
JPH01252890A (en) Recovery of exhaust heat of metallurical furnace
JP2002256816A (en) Combined cycle generating plant
RU2144994C1 (en) Combined-cycle plant
JP2001241304A (en) Combined power generation system utilizing gas pressure energy
JP3050783B2 (en) Method for cooling intake air of compressor of gas turbine in gas turbine plant
JP3807702B2 (en) Gasification combined power generation facility
JPH09170405A (en) Pressurized fluidized bed compound power generation facility
JPS5922043B2 (en) Cold energy power generation plant
JP2683178B2 (en) Exhaust Reburning Combined Plant Operating Method and Exhaust Reburning Combined Plant
JP2002156493A (en) Site heat supply equipment of nuclear power station

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term