JPH10325505A - Gasification compound power generation equipment - Google Patents

Gasification compound power generation equipment

Info

Publication number
JPH10325505A
JPH10325505A JP9136587A JP13658797A JPH10325505A JP H10325505 A JPH10325505 A JP H10325505A JP 9136587 A JP9136587 A JP 9136587A JP 13658797 A JP13658797 A JP 13658797A JP H10325505 A JPH10325505 A JP H10325505A
Authority
JP
Japan
Prior art keywords
water
heat recovery
recovery boiler
cooling water
economizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9136587A
Other languages
Japanese (ja)
Other versions
JP3746591B2 (en
Inventor
Yoshitaka Koga
義孝 古閑
Osamu Shinada
治 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP13658797A priority Critical patent/JP3746591B2/en
Publication of JPH10325505A publication Critical patent/JPH10325505A/en
Application granted granted Critical
Publication of JP3746591B2 publication Critical patent/JP3746591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To achieve a higher heat efficiency by a method wherein water is extracted at an intermediate point or an outlet of an economizer of a waste heat recovery boiler, utilized to cool a device to be cooled in equipment and the extracted water after the cooling is recovered into the waste heat recovery boiler to prevent low temperature corrosion. SOLUTION: In cooling water for a high pressure device of gasification equipment 4, it is better that the pressure thereof is higher than that in a furnace and the temperature thereof is higher than about 160 deg.C, for instance. Therefore, an intermediate header 20 of an economizer 9 is provided at a point where the temperature of feed water is, for example, 180 deg.C a little on the upstream side from an outlet of the economizer 9 and water is extracted from the economizer 9 as water for cooling the high pressure device of the gasification equipment 4 to cool a burner nozzle or the like of the gasification equipment 4. Thereafter, the water is superheated up to about 220 deg.C to be recovered into a steam drum 13 of the waste heat recovery boiler 7. At this point, the water used for cooling the high pressure device of the gasification equipment 4 is used as a part of the economizer 9 as for the waste heat recovery boiler 7 and as feed water into the waste heat recovery boiler 7 in the recovery of the water for cooling the high pressure device.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、低温腐食を防止
し、熱効率の向上を図り得るガス化複合発電設備に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined gasification and power generation system capable of preventing low-temperature corrosion and improving thermal efficiency.

【0002】[0002]

【従来の技術】図3は従来のガス化複合発電設備におけ
る高圧機器の冷却水系統を示したものである。ガス化複
合発電設備には、沢山の機器や設備があるが、ここで
は、高圧機器冷却水系統の例を示す。ガス化複合発電設
備の高圧機器冷却水系統としては、蒸気タービンの復水
器1と、高圧機器冷却水ポンプ2とを備えており、高圧
冷却水供給母管3を通してガス化設備4の各機器に連結
されている。通常、約30℃の復水をガス化設備4の各
所の機器を冷却するため、高圧機器冷却水ポンプ2によ
って冷却水として送り出している。ガス化設備4におい
ては、高圧冷却水は高圧冷却水供給母管3から各所、例
えば、バーナノズル、炉内監視装置、ガスサンプリング
装置等に流れ、これらを冷却し、即ち、吸熱し、高圧冷
却水戻り母管5へと流れる。
2. Description of the Related Art FIG. 3 shows a cooling water system for high-pressure equipment in a conventional integrated gasification combined cycle facility. The integrated gasification combined cycle facility has many devices and facilities. Here, an example of a high-pressure equipment cooling water system is shown. As a high-pressure equipment cooling water system of the integrated gasification combined cycle facility, a condenser 1 of a steam turbine and a high-pressure equipment cooling water pump 2 are provided. It is connected to. Usually, the condensed water of about 30 ° C. is sent out as cooling water by the high-pressure equipment cooling water pump 2 in order to cool the equipment in various parts of the gasification facility 4. In the gasification facility 4, the high-pressure cooling water flows from the high-pressure cooling water supply main pipe 3 to various places, for example, a burner nozzle, a furnace monitoring device, a gas sampling device, etc., and cools, that is, absorbs heat, and It returns to the mother pipe 5.

【0003】この高圧冷却水戻り母管5に流れた高圧冷
却水は、冷却水圧力調整弁6によって、ガス化設備の炉
内圧力より高目に圧力を調整される。これは、仮に冷却
水管が洩れても炉内のガスが冷却水系統に逆流しないよ
うにするため、および余りにも低圧であれば冷却水が容
易に沸騰し、冷却能力が低下するからである。高圧冷却
水は冷却水圧力調節弁6を通過した後、水の回収の為、
復水器1に回収され、吸熱した熱量は復水器1内で海水
に放熱される。
The pressure of the high-pressure cooling water flowing into the high-pressure cooling water return mother pipe 5 is adjusted by a cooling water pressure regulating valve 6 to a value higher than the pressure in the furnace of the gasification facility. This is because even if the cooling water pipe leaks, the gas in the furnace is prevented from flowing back to the cooling water system, and if the pressure is too low, the cooling water easily boils and the cooling capacity is reduced. After the high-pressure cooling water passes through the cooling water pressure control valve 6, the water is recovered.
The amount of heat collected and absorbed by the condenser 1 is radiated to seawater in the condenser 1.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記の
従来の技術においては、ガス化設備4のバーナノズル等
の各所に約30℃の冷却水が流れるが、温度が低すぎる
為、加熱されない局部或いは、ガス化設備4の起動、停
止時等、の炉内の低温時に冷却される部分の表面におい
て、低温腐食が発生する。また、冷却時に吸熱した熱量
を回収せずに海水に放熱してしまい、熱効率を低下させ
る課題がある。
However, in the prior art described above, cooling water of about 30 ° C. flows to various places such as the burner nozzle of the gasification facility 4, but the temperature is too low, so that a local or unheated part is not heated. Low-temperature corrosion occurs on the surface of the part cooled at low temperature in the furnace, such as when the gasification facility 4 is started or stopped. In addition, there is a problem that the heat absorbed during cooling is radiated to the seawater without being recovered, thereby lowering the thermal efficiency.

【0005】本発明は上記課題を解決し、低温腐食を防
止し、熱効率の向上を図り得るガス化複合発電設備を提
供することを目的とする。
[0005] It is an object of the present invention to solve the above-mentioned problems, to provide a gasification combined cycle power plant capable of preventing low-temperature corrosion and improving thermal efficiency.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するため、ガス化炉、ガスタービンの排熱回収ボイラ、
および蒸気タービンの復水器を有するガス化複合発電設
備において、前記排熱回収ボイラの節炭器の中間または
出口から抽水し、これを設備内の被冷却機器の冷却に利
用し、冷却後の前記抽水を前記排熱回収ボイラに回収す
るように構成したことにある。本発明は、前記被冷却機
器がガス化炉の炉を構成する冷却管であることにある。
また、本発明は、前記被冷却機器を通過する冷却水の流
量および出入口温度を計測する手段を設けたことにあ
る。さらに、本発明は、ガス化炉、ガスタービンの排熱
回収ボイラ、および蒸気タービンの復水器を有するガス
化複合発電設備において、前記排熱回収ボイラから水ま
たは蒸気を抽水または抽気し、他の用途に使用後、再び
前記排熱回収ボイラに回収する系統を有するとともに、
前記排熱回収ボイラの水系に急速ブロー弁を設けたこと
にある。
In order to solve the above-mentioned problems, the present invention provides a gasifier, a gas turbine exhaust heat recovery boiler,
And a gasification combined cycle power plant having a steam turbine condenser, water is extracted from the middle or outlet of the economizer of the waste heat recovery boiler, and this is used for cooling equipment to be cooled in the facility, and after cooling. The present invention is configured to collect the extracted water in the exhaust heat recovery boiler. The present invention resides in that the equipment to be cooled is a cooling pipe constituting a furnace of a gasification furnace.
Further, the present invention is characterized in that a means for measuring a flow rate and an inlet / outlet temperature of the cooling water passing through the equipment to be cooled is provided. Further, the present invention provides a gasification combined cycle power plant having a gasifier, a gas turbine exhaust heat recovery boiler, and a steam turbine condenser, wherein water or steam is extracted or extracted from the exhaust heat recovery boiler. After having been used for the purpose, while having a system to recover to the waste heat recovery boiler again,
A rapid blow valve is provided in the water system of the exhaust heat recovery boiler.

【0007】[0007]

【発明の実施の形態】以下本発明の実施の形態を図面を
参照しながら詳細に説明する。
Embodiments of the present invention will be described below in detail with reference to the drawings.

【0008】図1は、本発明のガス化複合発電設備に係
る第1の実施の形態を示すガス化複合発電設備の機器の
高圧冷却水系統図で、図3と同一部分には同符号を付し
て示す。図1において、本発明のガス化複合発電設備で
は、蒸気タービンの復水器1と、ガス化設備4に、ガス
タービンの排気から熱を回収する排熱回収ボイラ(「H
RSG」と称する)7を加えたものである。この排熱回
収ボイラ7と復水器1を結ぶ管路101には、排熱回収
ボイラ用給水ポンプ8が設けられている。この排熱回収
ボイラ用給水ポンプ8は、復水器1の復水を排熱回収ボ
イラ7に給水するものである。この排熱回収ボイラ用給
水ポンプ8によって給水された復水は、排熱回収ボイラ
7の節炭器9に給水されて加熱される。
FIG. 1 is a diagram of a high-pressure cooling water system of an integrated gasification combined cycle power generation system showing a first embodiment of the integrated gasification combined cycle power generation system according to the present invention. It is shown as follows. In the integrated gasification combined cycle power plant of the present invention, in FIG. 1, a waste heat recovery boiler (“H”) for recovering heat from exhaust gas of a gas turbine is provided to a condenser 1 of a steam turbine and a gasification facility 4.
RSG ”). A pipe 101 connecting the exhaust heat recovery boiler 7 and the condenser 1 is provided with a water supply pump 8 for the exhaust heat recovery boiler. The waste heat recovery boiler feedwater pump 8 supplies condensate from the condenser 1 to the waste heat recovery boiler 7. The condensed water supplied by the waste heat recovery boiler feed water pump 8 is supplied to the economizer 9 of the waste heat recovery boiler 7 and heated.

【0009】上記節炭器9には、節炭器入口管寄10と
節炭器出口管寄11が設けられており、節炭器入口管寄
10側の管路101に排熱回収ボイラ用給水ポンプ8が
連結され、節炭器出口管寄11側の管路102に給水流
量調整弁12を介して蒸気ドラム13が連結されてい
る。管路102の途中には、管路103が分岐してお
り、この管路103に接続された高圧給水ポンプ18を
介してガス化設備の熱交換器に給水するものである。
[0009] The economizer 9 is provided with an economizer inlet pipe 10 and an ecommerce outlet pipe 11. The feedwater pump 8 is connected, and a steam drum 13 is connected to a pipe 102 on the side of the economizer outlet pipe 11 via a feedwater flow control valve 12. A pipe 103 is branched in the middle of the pipe 102, and supplies water to the heat exchanger of the gasification facility via the high-pressure water supply pump 18 connected to the pipe 103.

【0010】節炭器9によって加熱された給水は給水流
量調整弁12にて流量調整された後、蒸気ドラム13に
供給される。蒸気ドラム13は、管路201,202を
介して排熱回収ボイラ7の蒸発器15に連結されてお
り、管路201に設けられた排熱回収ボイラ循環ポンプ
14によって缶水を循環するものである。ガスタービン
の排気熱により蒸発器15にて蒸気を発生させ、蒸気ド
ラム13内で気水分離を行う。蒸気ドラム13内の蒸気
は蒸気管16によって後流の過熱器に導かれる。蒸気ド
ラム13の水位は給水流量調整弁12にて制御されてお
り、一時的なドラム水位の急変に対応できるように蒸気
ドラム13と復水器1を連結する管路301に急速ブロ
ー弁17を設け、復水器1側に排出するようにしてい
る。
The feed water heated by the economizer 9 is supplied to a steam drum 13 after its flow rate is adjusted by a feed water flow rate adjusting valve 12. The steam drum 13 is connected to the evaporator 15 of the exhaust heat recovery boiler 7 via pipes 201 and 202, and circulates can water by a waste heat recovery boiler circulation pump 14 provided in the pipe 201. is there. Steam is generated in the evaporator 15 by the exhaust heat of the gas turbine, and steam-water separation is performed in the steam drum 13. The steam in the steam drum 13 is guided to a downstream superheater by a steam pipe 16. The water level of the steam drum 13 is controlled by the feedwater flow control valve 12, and the rapid blow valve 17 is connected to the pipe 301 connecting the steam drum 13 and the condenser 1 so as to cope with a sudden sudden change in the drum water level. And is discharged to the condenser 1 side.

【0011】上記排熱回収ボイラ7の節炭器9の途中に
は、節炭器中間管寄20が設けられており、この節炭器
中間管寄20から高圧冷却水流量調整弁21を介して給
水の一部を抽水し、これを管路401から高圧冷却水供
給母管3を通してガス化設備4の高圧機器の冷却水とし
て利用するものである。節炭器中間管寄20が設けられ
る位置としては節炭器9の出口より少し上流で給水温度
が約180℃程度の所が望ましい。ガス化設備4の高圧
機器の冷却水として利用した冷却水は、高圧冷却水戻り
母管5に戻り、高圧冷却水戻り母管5と蒸気ドラム13
を連結する管路402に設けられた冷却水圧力調整弁6
によって圧力を調整された後、蒸気ドラム13に給水さ
れるものである。
In the middle of the economizer 9 of the exhaust heat recovery boiler 7, an economizer intermediate pipe 20 is provided. From the economizer intermediate pipe 20, a high pressure cooling water flow control valve 21 is provided. A part of the feedwater is extracted and used as cooling water for the high-pressure equipment of the gasification facility 4 through the pipeline 401 through the high-pressure cooling water supply mother pipe 3. As a position where the economizer intermediate pipe 20 is provided, it is desirable that the feedwater temperature is about 180 ° C. slightly upstream of the outlet of the economizer 9. The cooling water used as the cooling water for the high-pressure equipment of the gasification facility 4 returns to the high-pressure cooling water return mother pipe 5, and the high-pressure cooling water return mother pipe 5 and the steam drum 13
Cooling water pressure regulating valve 6 provided in pipe 402 connecting
The water is supplied to the steam drum 13 after the pressure is adjusted.

【0012】次に、上記構成による本発明の作用を説明
する。上記第1の実施の形態では、節炭器9の圧力は約
60kg/cm2 で、給水流量調整弁12にて排熱回収
ボイラ7への給水流量を制御しており、節炭器9の入り
口温度は約30〜60℃と低いが、節炭器9の出口温度
は約220℃とかなり高く運転される。
Next, the operation of the present invention having the above configuration will be described. In the first embodiment, the pressure of the economizer 9 is about 60 kg / cm 2 , and the feedwater flow rate to the exhaust heat recovery boiler 7 is controlled by the feedwater flow control valve 12. Although the inlet temperature is as low as about 30 to 60 ° C., the outlet temperature of the economizer 9 is operated as much as about 220 ° C.

【0013】一方、ガス化設備4の高圧機器の冷却水用
としては、圧力は炉内圧力より高く、温度は機器の低温
腐食を防止するため、約160℃より高い方がよい。し
たがって、節炭器9の出口より少し上流で給水温度が約
180℃程度の所に節炭器中間管寄20を設け、ガス化
設備4の高圧機器冷却水用として節炭器9から抽水し、
ガス化設備4のバーナノズル等を冷却後、約220℃程
度に過熱された後、冷却水圧力調整弁6を介し排熱回収
ボイラ7の蒸気ドラム13に回収する。この時、ガス化
設備4の高圧機器冷却水は、排熱回収ボイラ7にとって
は、いかにも節炭器9の一部として作用し、高圧機器冷
却水の回収は、そのままで排熱回収ボイラ7への給水と
して作用する。
On the other hand, for cooling water for high-pressure equipment in the gasification facility 4, the pressure is preferably higher than the pressure in the furnace, and the temperature is preferably higher than about 160 ° C. in order to prevent low-temperature corrosion of the equipment. Therefore, an intermediate economizer 20 is provided slightly upstream of the outlet of the economizer 9 at a feedwater temperature of about 180 ° C., and water is extracted from the economizer 9 for high-pressure equipment cooling water of the gasification facility 4. ,
After cooling the burner nozzle and the like of the gasification facility 4, it is superheated to about 220 ° C. and then recovered to the steam drum 13 of the exhaust heat recovery boiler 7 through the cooling water pressure regulating valve 6. At this time, the high-pressure equipment cooling water of the gasification facility 4 acts as a part of the economizer 9 for the exhaust heat recovery boiler 7, and the high-pressure equipment cooling water is recovered as it is to the exhaust heat recovery boiler 7. Acts as a water supply.

【0014】すなわち、本発明によれば、節炭器9の途
中から抽水した高圧機器冷却水は、ガス化設備4にとっ
ては、低温腐食を防止する高温の冷却水であり、排熱回
収ボイラ7にとっては、節炭器9の一部として作用し、
熱の回収も行い、一挙両得の発明である。
That is, according to the present invention, the high-pressure equipment cooling water extracted from the middle of the economizer 9 is high-temperature cooling water for the gasification equipment 4 to prevent low-temperature corrosion. For, it acts as a part of economizer 9,
It also recovers heat and is an invention of both advantages.

【0015】高圧冷却水流量調整弁21は、ガス化設備
4のバーナノズル等の各機器に所要な冷却水流量に調整
し、冷却水圧力調整弁6は蒸気ドラム13の圧力に拘ら
ず、仮に、冷却水管が漏洩しても、炉内ガスが冷却水系
統に逆流しないように、ガス化設備4の炉内圧力より高
い圧力に制御する。
The high-pressure cooling water flow control valve 21 adjusts the cooling water flow required for each device such as the burner nozzle of the gasification facility 4, and the cooling water pressure control valve 6 irrespective of the pressure of the steam drum 13, Even if the cooling water pipe leaks, the pressure in the furnace is controlled to be higher than the pressure in the furnace of the gasification facility 4 so that the gas in the furnace does not flow back into the cooling water system.

【0016】蒸気ドラム13の水位は給水流量調整弁1
2にて制御され、高圧機器冷却水の抽水開始、終了時等
の一時的なドラム水位の急変に対応できるように急速ブ
ロー弁17を設けている。急速ブロー弁17の排出先は
復水器1にして水を回収してもよく、一時的なものであ
るので、フラッシュパイプ等へ捨てても構わない。
The water level of the steam drum 13 is controlled by the feed water flow control valve 1.
2, a rapid blow valve 17 is provided so as to cope with a temporary sudden change in the drum water level at the start and end of the extraction of the high-pressure equipment cooling water. The discharge destination of the quick blow valve 17 may be the condenser 1 to collect water, and since it is temporary, it may be discarded into a flash pipe or the like.

【0017】次に、図2は本発明の第2の実施の形態を
示したもので、ガス化複合発電設備のガス化炉の炉底冷
却水系統を示す系統図である。この場合、図1と同一部
分には同符号を付してその説明を省略して示す。
Next, FIG. 2 shows a second embodiment of the present invention, and is a system diagram showing a bottom cooling water system of a gasification furnace of an integrated gasification combined cycle facility. In this case, the same parts as those in FIG. 1 are denoted by the same reference numerals, and description thereof is omitted.

【0018】この実施の形態のガス化炉26はガス化炉
圧力容器25の熱遮蔽のため、冷却水を循環する缶水循
環系31を有するが、排熱回収ボイラ7の節炭器9で加
熱される給水の一部をガス化炉26の一部分を構成する
炉底27の冷却水として使用するものである。この実施
の形態では、節炭器9の途中に節炭器中間管寄20を設
け、この節炭器中間管寄20から給水の一部を抽水し、
ガス化設備4の炉底の給水する管路501に設けられた
高圧冷却水流量調整弁21を介して、ガス化設備4の炉
底27に冷却水を供給するものである。ガス化設備4の
炉底27を冷却した冷却水は、炉底27から蒸気ドラム
13に戻る管路502に設けられた冷却水圧力調整弁6
で圧力を調整された後、蒸気ドラム13に給水される。
管路501には、流量計測手段として炉底冷却水流量計
30が設けられ、この炉底冷却水流量計30で炉底冷却
水の流量を計測する。また、管路501のガス化設備4
の炉底27近くには、温度計測手段として冷却水入口温
度検出器28が設けられ、冷却水の炉底27入口側の温
度が計測される。冷却水出口側の管路502には冷却水
出口温度検出器29が設けられ、ガス化設備4の炉底2
7出口温度を検出するものである。缶水循環系31を構
成する管路601には気水分離ドラム32が設けられて
おり、この気水分離ドラム32で分離された蒸気は蒸気
管33を通して蒸気タービンまたは排熱回収ボイラ等へ
送られる。この蒸気は、高圧給水ポンプ18から送られ
る蒸気と同じガス化設備の熱交換器に供給される。
The gasification furnace 26 of this embodiment has a still water circulation system 31 for circulating cooling water to shield the gasification furnace pressure vessel 25 from heat, but is heated by the economizer 9 of the exhaust heat recovery boiler 7. A part of the supplied water is used as cooling water for the furnace bottom 27 which constitutes a part of the gasification furnace 26. In this embodiment, a middle part 20 of the economizer 9 is provided in the middle of the economizer 9.
The cooling water is supplied to the furnace bottom 27 of the gasification facility 4 through the high-pressure cooling water flow control valve 21 provided in the pipe 501 for supplying water at the bottom of the gasification facility 4. The cooling water that has cooled the furnace bottom 27 of the gasification facility 4 is supplied to a cooling water pressure regulating valve 6 provided in a pipe 502 returning from the furnace bottom 27 to the steam drum 13.
After the pressure is adjusted by the above, water is supplied to the steam drum 13.
A furnace bottom cooling water flow meter 30 is provided in the pipe 501 as a flow rate measuring means, and the furnace bottom cooling water flow meter 30 measures the flow rate of the furnace bottom cooling water. In addition, the gasification equipment 4 of the pipeline 501
A cooling water inlet temperature detector 28 is provided near the furnace bottom 27 as a temperature measuring means to measure the temperature of the cooling water on the furnace bottom 27 inlet side. A cooling water outlet temperature detector 29 is provided in a pipe 502 on the cooling water outlet side.
7 detects the outlet temperature. A steam / water separation drum 32 is provided in a pipeline 601 constituting the canned water circulation system 31, and the steam separated by the steam / water separation drum 32 is sent to a steam turbine or an exhaust heat recovery boiler through a steam pipe 33. . This steam is supplied to the same heat exchanger of the gasification facility as the steam sent from the high-pressure water supply pump 18.

【0019】この第2の実施の形態では、節炭器9の圧
力は約60kg/cm2 で、給水流量調整弁12にて排
熱回収ボイラ7への給水流量を制御しており、節炭器9
の入り口温度は約30〜60℃と低いが、節炭器9の出
口温度は約220℃とかなり高く運転される。
In the second embodiment, the pressure of the economizer 9 is about 60 kg / cm 2 , and the flow rate of the water supplied to the exhaust heat recovery boiler 7 is controlled by the water supply flow rate regulating valve 12. Table 9
The inlet temperature is as low as about 30 to 60 ° C., but the outlet temperature of the economizer 9 is operated at a considerably high level of about 220 ° C.

【0020】一方、ガス化設備4の高圧機器の冷却水用
としては、圧力は炉内圧力より高く、温度は機器の低温
腐食を防止するため、約160℃より高い方がよく、ま
た、水平部が多いため固気二相流を伴う蒸発管でなく、
蒸発を含まない圧縮水の範囲で冷却する方がよい。即
ち、蒸発を伴う場合、炉底管の加熱面側である管の上方
に蒸気が滞留し、加熱面側の熱伝達を著しく悪化させ、
炉底冷却管を焼損し易いからである。したがって、節炭
器9の出口より少し上流で給水温度が約180℃程度の
所に節炭器中間管寄20を設け、ガス化設備4の炉底冷
却水用として節炭器9から抽水し、ガス化設備4の炉底
を冷却後、約220℃程度に過熱された後、冷却水圧力
調整弁6を介し排熱回収ボイラ7の蒸気ドラム13に回
収する。
On the other hand, for cooling water for high-pressure equipment in the gasification facility 4, the pressure is preferably higher than the pressure in the furnace, and the temperature is preferably higher than about 160 ° C. in order to prevent low-temperature corrosion of the equipment. Because there are many parts, instead of evaporating tubes with gas-solid two-phase flow,
It is better to cool in the range of compressed water that does not include evaporation. That is, when accompanied by evaporation, the steam stays above the tube on the heating surface side of the furnace bottom tube, significantly deteriorating heat transfer on the heating surface side,
This is because the furnace bottom cooling tube is easily burned. Therefore, an intermediate pipe 20 for the economizer is provided slightly upstream of the outlet of the economizer 9 at a feedwater temperature of about 180 ° C., and water is extracted from the economizer 9 for cooling the bottom of the gasification facility 4. After cooling the furnace bottom of the gasification facility 4, it is superheated to about 220 ° C., and then recovered to the steam drum 13 of the exhaust heat recovery boiler 7 via the cooling water pressure regulating valve 6.

【0021】この時、ガス化設備4の炉底冷却水は、排
熱回収ボイラ7にとっては、いかにも節炭器9の一部と
して作用し、炉底冷却水の回収はそのままで排熱回収ボ
イラ7への給水として作用する。また、炉底冷却水とし
て缶水等の蒸発を伴う飽和水を使用する場合、缶水の温
度は一定であるため、炉底での吸熱量を缶水温度から計
測することはできない。しかし、この実施の形態による
蒸発を含まない圧縮水の範囲で冷却する場合、炉底冷却
水流量計30にて冷却水流量を計測し、冷却水入口温度
検出器28および冷却水出口温度検出器29にて温度を
計測することにより、炉底での吸収熱量を容易に計測す
ることができる。
At this time, the furnace bottom cooling water of the gasification facility 4 acts as a part of the economizer 9 for the exhaust heat recovery boiler 7, and the recovery of the furnace bottom cooling water is performed as it is. Acting as a water supply to 7. Further, when using saturated water accompanied by evaporation of boiler water or the like as furnace bottom cooling water, the amount of heat absorbed at the furnace bottom cannot be measured from the boiler water temperature because the boiler water temperature is constant. However, when cooling in the range of compressed water that does not include evaporation according to this embodiment, the flow rate of the cooling water is measured by the furnace bottom cooling water flow meter 30, and the cooling water inlet temperature detector 28 and the cooling water outlet temperature detector are measured. By measuring the temperature at 29, the amount of heat absorbed at the furnace bottom can be easily measured.

【0022】すなわち、本発明によれば、節炭器9の途
中から抽水した炉底冷却水は、ガス化設備4にとっては
低温腐食を防止し、冷却管焼損に対し、より安全な冷却
水であり、炉底の吸熱量をも計測できる。また、排熱回
収ボイラ7にとっては節炭器9の一部として作用し、プ
ラント全体としても、熱の回収を行い、機器の信頼性を
高めるのみならず、経済性にも優れている。なお、上記
実施の形態では、設備内の被冷却機器の冷却に利用する
冷却水を排熱回収ボイラの節炭器の出口より少し上流で
給水温度が約180℃程度の所に節炭器中間管寄20を
設けて抽水したが、冷却水温度によっては、節炭器の中
間または出口から抽水してもよい。
That is, according to the present invention, the furnace bottom cooling water extracted from the middle of the economizer 9 prevents low-temperature corrosion for the gasification facility 4 and provides more safe cooling water against cooling pipe burnout. Yes, it can measure the amount of heat absorbed at the furnace bottom. Further, the exhaust heat recovery boiler 7 acts as a part of the economizer 9 and recovers heat in the whole plant, thereby improving not only reliability of the equipment but also economy. In the above embodiment, the cooling water used to cool the equipment to be cooled in the facility is placed at a location where the feedwater temperature is about 180 ° C. slightly upstream of the outlet of the economizer of the exhaust heat recovery boiler. Although water is extracted by providing the pipe 20, water may be extracted from the middle or the outlet of the economizer depending on the cooling water temperature.

【0023】[0023]

【発明の効果】以上述べたように、本発明によるガス化
複合発電設備によれば次のような効果を奏することがで
きる。節炭器の中間または出口から抽水した炉底冷却水
を利用して、被冷却機器を冷却するので、ガス化設備に
とっては低温腐食を防止することができる。節炭器の節
炭器の中間または出口から抽水した冷却水を利用するの
で、冷却管焼損に対し、より安全な冷却水である。ま
た、排熱回収ボイラにとっては節炭器の一部として作用
し、プラント全体としても、熱の回収を行い、機器の信
頼性を高めるのみならず、経済性にも優れている。流量
計測手段と温度計測手段によって被冷却機器を通過する
冷却水の流量および出入口温度を計測するので、冷却部
の吸熱量を計測することができる。排熱回収ボイラの水
系に急速ブロー弁を設けているので、高圧機器冷却水の
抽水開始、終了時等の一時的なドラム水位の急変に対応
することができる。
As described above, according to the integrated gasification combined cycle system of the present invention, the following effects can be obtained. Since the equipment to be cooled is cooled by using the furnace bottom cooling water extracted from the middle or outlet of the economizer, low temperature corrosion can be prevented for the gasification facility. Since the cooling water extracted from the middle or outlet of the economizer of the economizer is used, the cooling water is safer against burnout of the cooling pipe. In addition, the waste heat recovery boiler acts as a part of the economizer, and the entire plant recovers heat, not only improving the reliability of the equipment, but also has excellent economic efficiency. The flow rate measuring means and the temperature measuring means measure the flow rate of the cooling water passing through the equipment to be cooled and the inlet / outlet temperature, so that the heat absorption of the cooling section can be measured. Since the rapid blow valve is provided in the water system of the exhaust heat recovery boiler, it is possible to cope with a temporary sudden change in the drum water level at the start and end of the extraction of the high-pressure equipment cooling water.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明によるガス化複合発電設備の第1の実施
の形態を示す系統図である。
FIG. 1 is a system diagram showing a first embodiment of an integrated gasification combined cycle facility according to the present invention.

【図2】本発明によるガス化複合発電設備の第2の実施
の形態を示す系統図である。
FIG. 2 is a system diagram showing a second embodiment of the integrated gasification combined cycle system according to the present invention.

【図3】従来のガス化複合発電設備を示す系統図であ
る。
FIG. 3 is a system diagram showing a conventional integrated gasification combined cycle facility.

【符号の説明】[Explanation of symbols]

1 復水器 3 高圧冷却水供給母管 4 ガス化設備 5 高圧冷却水戻り母管 6 冷却水圧力調整弁 7 排熱回収ボイラ 8 排熱回収ボイラ用給水ポンプ 9 節炭器 10 節炭器入口管寄 11 節炭器出口管寄 12 給水流量調整弁 13 蒸気ドラム 14 排熱回収ボイラ循環ポンプ 15 蒸発器 16 蒸気管 17 急速ブロー弁 18 高圧給水ポンプ 20 節炭器中間管寄 21 高圧冷却水流量調整弁 25 ガス化炉圧力容器 26 ガス化炉 27 炉底 28 冷却水入口温度検出器 29 冷却水出口温度検出器 30 炉底冷却水流量計 31 缶水循環系 DESCRIPTION OF SYMBOLS 1 Condenser 3 High-pressure cooling water supply main pipe 4 Gasification equipment 5 High-pressure cooling water return main pipe 6 Cooling water pressure control valve 7 Waste heat recovery boiler 8 Water supply pump for waste heat recovery boiler 9 Energy saving device 10 Energy saving device inlet Near pipe 11 Conservation unit outlet pipe 12 Feed water flow control valve 13 Steam drum 14 Exhaust heat recovery boiler circulation pump 15 Evaporator 16 Steam pipe 17 Rapid blow valve 18 High pressure water supply pump 20 Middle pipe of coal saver 21 High pressure cooling water flow rate Control valve 25 Gasification furnace pressure vessel 26 Gasification furnace 27 Furnace bottom 28 Cooling water inlet temperature detector 29 Cooling water outlet temperature detector 30 Furnace bottom cooling water flow meter 31 Can water circulation system

フロントページの続き (51)Int.Cl.6 識別記号 FI C10J 3/72 C10J 3/72 F F22B 1/18 F22B 1/18 H Continued on the front page (51) Int.Cl. 6 Identification code FI C10J 3/72 C10J 3/72 F F22B 1/18 F22B 1/18 H

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ガス化炉、ガスタービンの排熱回収ボイ
ラ、および蒸気タービンの復水器を有するガス化複合発
電設備において、前記排熱回収ボイラの節炭器の中間ま
たは出口から抽水し、これを設備内の被冷却機器の冷却
に利用し、冷却後の前記抽水を前記排熱回収ボイラに回
収するように構成したことを特徴とするガス化複合発電
設備。
1. In a gasification combined cycle power plant having a gasification furnace, a gas turbine exhaust heat recovery boiler, and a steam turbine condenser, water is extracted from an intermediate or outlet of the economizer of the exhaust heat recovery boiler, This is used for cooling equipment to be cooled in the equipment, and the extracted water after cooling is recovered in the exhaust heat recovery boiler.
【請求項2】 前記被冷却機器がガス化炉の炉を構成す
る冷却管であることを特徴とする請求項1に記載のガス
化複合発電設備。
2. The integrated gasification combined cycle system according to claim 1, wherein the equipment to be cooled is a cooling pipe constituting a furnace of a gasification furnace.
【請求項3】 前記被冷却機器を通過する冷却水の流量
および出入口温度を計測する手段を設けたことを特徴と
する請求項1に記載のガス化複合発電設備。
3. The integrated gasification combined cycle system according to claim 1, further comprising means for measuring a flow rate and a temperature of an inlet / outlet of the cooling water passing through the equipment to be cooled.
【請求項4】 ガス化炉、ガスタービンの排熱回収ボイ
ラ、および蒸気タービンの復水器を有するガス化複合発
電設備において、前記排熱回収ボイラから水または蒸気
を抽水または抽気し、他の用途に使用後、再び前記排熱
回収ボイラに回収する系統を有するとともに、前記排熱
回収ボイラの水系に急速ブロー弁を設けたことを特徴と
するガス化複合発電設備。
4. In a gasification combined cycle power plant having a gasifier, a gas turbine exhaust heat recovery boiler, and a steam turbine condenser, water or steam is extracted or extracted from the exhaust heat recovery boiler, An integrated gasification combined cycle facility comprising a system for recovering the waste heat recovery boiler after use for a purpose, and a rapid blow valve provided in a water system of the waste heat recovery boiler.
JP13658797A 1997-05-27 1997-05-27 Gasification combined power generation facility Expired - Lifetime JP3746591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13658797A JP3746591B2 (en) 1997-05-27 1997-05-27 Gasification combined power generation facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13658797A JP3746591B2 (en) 1997-05-27 1997-05-27 Gasification combined power generation facility

Publications (2)

Publication Number Publication Date
JPH10325505A true JPH10325505A (en) 1998-12-08
JP3746591B2 JP3746591B2 (en) 2006-02-15

Family

ID=15178779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13658797A Expired - Lifetime JP3746591B2 (en) 1997-05-27 1997-05-27 Gasification combined power generation facility

Country Status (1)

Country Link
JP (1) JP3746591B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153799A (en) * 2010-01-28 2011-08-11 Babcock Hitachi Kk Once-through exhaust heat recovery boiler
JP2014136791A (en) * 2013-01-18 2014-07-28 Mitsubishi Heavy Ind Ltd Gasification furnace, and method for operating gasification furnace
JP2020091041A (en) * 2018-12-03 2020-06-11 川崎重工業株式会社 Burner cooling device
CN115948184A (en) * 2022-12-28 2023-04-11 山西阳煤化工机械(集团)有限公司 Water-cooling circulation gasification furnace

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104232167A (en) * 2014-09-22 2014-12-24 清华大学 Coal gasification circulating water system
KR101634594B1 (en) * 2015-08-25 2016-06-29 두산중공업 주식회사 An apparatus for cooling gasification burner using circulation water system cooling facilities of integrated gasification combined cycle by circulating boiler feed water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153799A (en) * 2010-01-28 2011-08-11 Babcock Hitachi Kk Once-through exhaust heat recovery boiler
JP2014136791A (en) * 2013-01-18 2014-07-28 Mitsubishi Heavy Ind Ltd Gasification furnace, and method for operating gasification furnace
JP2020091041A (en) * 2018-12-03 2020-06-11 川崎重工業株式会社 Burner cooling device
CN115948184A (en) * 2022-12-28 2023-04-11 山西阳煤化工机械(集团)有限公司 Water-cooling circulation gasification furnace

Also Published As

Publication number Publication date
JP3746591B2 (en) 2006-02-15

Similar Documents

Publication Publication Date Title
JP3976857B2 (en) Combined power plant with forced once-through steam generator as a gas turbine cooling air cooler
JP4676284B2 (en) Waste heat recovery equipment for steam turbine plant
JPH0758043B2 (en) Method and apparatus for heat recovery from exhaust gas and heat recovery steam generator
US20080289313A1 (en) Direct heating organic rankine cycle
KR100367919B1 (en) Heat recovery steam generator
KR101135686B1 (en) Control method of Organic Rankine Cycle System flowemeter
JP4794229B2 (en) Gas turbine power generator and gas turbine combined power generation system
JPH03124902A (en) Combined cycle power plant and operating method therefor
US6052997A (en) Reheat cycle for a sub-ambient turbine system
RU2152521C1 (en) Condensate degassing method and device
KR20110079446A (en) Control method of organic rankine cycle system pump
JPH10325505A (en) Gasification compound power generation equipment
JP4999992B2 (en) Gas turbine combined power generation system
JP2593197B2 (en) Thermal energy recovery method and thermal energy recovery device
JP2624891B2 (en) Pressurized fluidized bed boiler power plant
JPH0821210A (en) Power generating facility in incinerator
CN103836606A (en) Sewerage waste heat recovery device
JPH112105A (en) Combined cycle power generation plant
CN212157107U (en) Take heat supply function's once-through boiler to start hydrophobic waste heat utilization equipment
RU2144994C1 (en) Combined-cycle plant
JPH09170405A (en) Pressurized fluidized bed compound power generation facility
JP2002371807A (en) Turbine equipment and steam converting device
WO2024130921A1 (en) Pressurized water reactor-high-temperature gas cooled reactor integrated nuclear power generation system and method
RU2067668C1 (en) Combined-cycle plant operation process
JPS5922043B2 (en) Cold energy power generation plant

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050302

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050810

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051124

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091202

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101202

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111202

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121202

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131202

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term