JPH0339025B2 - - Google Patents

Info

Publication number
JPH0339025B2
JPH0339025B2 JP58173218A JP17321883A JPH0339025B2 JP H0339025 B2 JPH0339025 B2 JP H0339025B2 JP 58173218 A JP58173218 A JP 58173218A JP 17321883 A JP17321883 A JP 17321883A JP H0339025 B2 JPH0339025 B2 JP H0339025B2
Authority
JP
Japan
Prior art keywords
methylstyrene
poly
ceramic
molded
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58173218A
Other languages
Japanese (ja)
Other versions
JPS6065762A (en
Inventor
Ryuichi Sugimoto
Yukako Takahashi
Tadashi Asanuma
Shinryu Uchikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP58173218A priority Critical patent/JPS6065762A/en
Publication of JPS6065762A publication Critical patent/JPS6065762A/en
Publication of JPH0339025B2 publication Critical patent/JPH0339025B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はセラミツク焼結体の製造方法に関し、
詳しくは、焼結処理前の成形体の強度及び加工性
を向上させ、ついで脱脂工程において完全に脱脂
が行なわれるようにしたセラミツク焼結体の製造
方法に関する。 複雑な形状で高寸法精度のセラミツク製品の製
造方法としては、あらかじめ成形した成形体を焼
成するいわゆる常圧焼結法、あるいは反応焼結法
などの技術を利用することが工業的に行なわれて
いる。 前記成形体を成形する手段として、例えばアル
ミナやフエライトなどのセラミツク粉末に、必要
に応じて結合剤や、焼結促進剤を加えた組成物を
乾式あるいは湿式プレス法により所望の形状に成
形したり、押出成形や射出成形などにより未焼結
成形体を得る方法が行なわれている。 しかしながら、上記のような圧縮成形法によつ
て得られた未焼結セラミツク成形体は強度が低い
ため加工時に細部が割れてしまうといつた問題を
有しており、さらに搬送時の衝撃などにより、割
れたり、表面がくずれたりして、破損することも
多い。また射出成形法においては熱可塑性樹脂と
セラミツク原料粉末とのなじみが悪く、成形品に
流れむらが生じて脱脂処理時に成形体の割れやふ
くれが生じることがあつた。成形体自体の強度向
上はバインダー等の有機質材料の添加量を増加す
ることにより達成できるのであるが、成形体中の
有機質材料の量が多いと焼結時の収縮率が大きく
なり、焼結体の密度が低下したり、脱脂処理に要
する時間が著しく長くなる。さらに成形体の内部
の脱脂が完全に行なわれず、焼結時に残存した樹
脂分が炭化物として残り、焼結体に割れや膨れが
生じるという問題があり、実用的ではない。 本発明者らは、上記従来方法の欠点を解決する
方法について鋭意検討した結果、特定のポリ−α
−メチルスチレンをバインダーとして用いること
によつて解決できることを見い出し、本発明を完
成した。 本発明の目的は未焼結セラミツク粉末成形体の
強度及び加工性を高め、成形体の破損や流れむら
による不良品の発生といつた問題のないセラミツ
ク焼結体の製造法を提供することにある。 本発明は、セラミツク粉末に熱可塑性樹脂をバ
インダーとして混合し、所望の形に成形したのち
脱脂し、焼結するセラミツク焼結体の製造方法に
於て、熱可塑性樹脂として極性基を含有するポリ
−α−メチルスチレンを用いることを特徴とする
セラミツク焼結体の製造方法である。 本発明に使用する極性基を有するポリ−α−メ
チルスチレンとは、α−メチルスチレンの重合体
に通常の化学反応によつて水酸基やカルボキシル
基などの極性基を導入した重合体、およびα−メ
チルスチレンモノマーと極性基を有する核置換α
−メチルスチレン誘導体との共重合、又は、ポリ
−α−メチルスチレンの分解性を大きく低下させ
ない程度(通常20wt%以下)の範囲で他の極性
基を有するビニルモノマー(例えばヒドロキシス
チレン、メタクリル酸、アクリル酸等)とα−メ
チルスチレンの共重合などによつて得られる共重
合体である。 分子量については使用法によつて変わるが、通
常重量平均分子量で数百〜数十万程度のものが適
当である。 又、これらの極性基の含まれる割合はα−メチ
ルスチレンモノマー1分子当り0.1〜10モル%が
適当であり、これより少ないと充分な効果が得ら
れず、多くしてもさほど効果が大きくならない。 これらの極性基を有するポリ−α−メチルスチ
レンは、セラミツク粉末とのなじみが極めて良好
で、セラミツク粉末間の結合力が大きくなり、成
形体の強度向上に有効である。また比較的低温域
の酸化性雰囲気、非酸化性雰囲気中のどちらでも
速やかに完全に揮発分解させることができるた
め、とくに非酸化物セラミツク粉末を酸化させる
ことなく、容易に脱脂することができる。 以下、実施例により本発明を更に詳細に説明す
る。 参考例 1 α−メチルスチレンをn−ブチルリチウムを用
いたアニオン重合により、ポリ−α−メチルスチ
レンとし、重合反応をエチレンオキサイドを入れ
ることにより停止した。次いで、このポリ−α−
メチルスチレンを酸水溶液で処理してα−メチル
スチレン単位1モル当り0.5モル%の水酸基を有
する重量平均分子量11万の極性基を有するポリ−
α−メチルスチレンを得た。このものをポリ−α
−メチルスチレンAと呼ぶ。 参考例 2 α−メチルスチレンとp−メトキシ−α−メチ
ルスチレンをアニオン重合し、次いでピリジン中
で塩酸により加水分解して、α−メチルスチレン
単位1モル当り5モル%の水酸基を有する重量平
均分子量5万の極性基を有するポリ−α−メチル
スチレン(ポリ−α−メチルスチレンB)を得
た。 参考例1、2で造つた極性基を有するポリ−α
−メチルスチレンA、Bおよび水酸基を全く含ま
ないポリ−α−メチルスチレンCを夫々トルエ
ン/テトラヒドロフラン(1:1)に溶かした
10wt%の溶液に内径8mmのガラス管にアルミナ
粉末を充填し、下部をガラス繊維紙で固定した
ものの下端部をつけ、アルミナ粉がぬれる高さを
時間と共に測定した。結果を第1表に示す。
The present invention relates to a method for manufacturing a ceramic sintered body,
More specifically, the present invention relates to a method for producing a ceramic sintered body that improves the strength and workability of the molded body before sintering, and then completely degreases the body in a degreasing step. Industrial methods for producing ceramic products with complex shapes and high dimensional accuracy include the so-called pressureless sintering method, in which a pre-formed compact is fired, and the reaction sintering method. There is. As a means for forming the above-mentioned compact, for example, a composition prepared by adding a binder and a sintering accelerator to ceramic powder such as alumina or ferrite may be formed into a desired shape by dry or wet pressing. , a method of obtaining a green compact by extrusion molding, injection molding, etc. has been used. However, the unsintered ceramic molded bodies obtained by the above-mentioned compression molding method have problems such as cracking of small parts during processing due to low strength, and furthermore, they are susceptible to shocks during transportation. , they are often damaged due to cracking or deterioration of the surface. In addition, in the injection molding method, the thermoplastic resin and the ceramic raw material powder are not compatible with each other, resulting in uneven flow of the molded product and cracking or blistering of the molded product during degreasing. Improving the strength of the compact itself can be achieved by increasing the amount of organic material such as a binder added, but if the amount of organic material in the compact is large, the shrinkage rate during sintering will increase, and the strength of the sintered compact will increase. The density of the oil decreases, and the time required for degreasing becomes significantly longer. Furthermore, the interior of the molded body is not completely degreased, and the resin remaining during sintering remains as carbide, causing cracks and blisters in the sintered body, making it impractical. As a result of intensive study on methods to solve the drawbacks of the above conventional methods, the present inventors discovered that a specific poly-α
- It was discovered that the problem could be solved by using methylstyrene as a binder, and the present invention was completed. The purpose of the present invention is to provide a method for producing a ceramic sintered body that improves the strength and workability of an unsintered ceramic powder compact and is free from problems such as damage to the compact and generation of defective products due to uneven flow. be. The present invention relates to a method for producing a ceramic sintered body in which ceramic powder is mixed with a thermoplastic resin as a binder, molded into a desired shape, degreased, and sintered. - A method for producing a ceramic sintered body characterized by using α-methylstyrene. The poly-α-methylstyrene having polar groups used in the present invention refers to a polymer of α-methylstyrene into which polar groups such as hydroxyl groups and carboxyl groups are introduced through a normal chemical reaction, and α- Nuclear substitution α with methylstyrene monomer and polar group
- Copolymerization with methylstyrene derivatives, or vinyl monomers having other polar groups (e.g. hydroxystyrene, methacrylic acid, It is a copolymer obtained by copolymerizing α-methylstyrene (acrylic acid, etc.) and α-methylstyrene. Although the molecular weight varies depending on the method of use, a weight average molecular weight of several hundred to several hundred thousand is usually suitable. In addition, the appropriate proportion of these polar groups is 0.1 to 10 mol% per molecule of α-methylstyrene monomer; if it is less than this, a sufficient effect cannot be obtained, and if it is more than this, the effect will not be so great. . Poly-α-methylstyrene having these polar groups has extremely good compatibility with ceramic powder, increases the bonding force between the ceramic powders, and is effective in improving the strength of the molded product. Furthermore, since it can be quickly and completely volatilized and decomposed in either an oxidizing atmosphere or a non-oxidizing atmosphere at a relatively low temperature range, it can be easily degreased without oxidizing the non-oxide ceramic powder. Hereinafter, the present invention will be explained in more detail with reference to Examples. Reference Example 1 α-methylstyrene was anionically polymerized using n-butyllithium to produce poly-α-methylstyrene, and the polymerization reaction was stopped by adding ethylene oxide. Then, this poly-α-
Methylstyrene is treated with an acid aqueous solution to produce a polyester having polar groups with a weight average molecular weight of 110,000 and having 0.5 mol% of hydroxyl groups per mol of α-methylstyrene units.
α-methylstyrene was obtained. Poly-α
- called methylstyrene A. Reference Example 2 α-methylstyrene and p-methoxy-α-methylstyrene are anionically polymerized and then hydrolyzed with hydrochloric acid in pyridine to obtain a weight average molecular weight having 5 mol% of hydroxyl groups per mol of α-methylstyrene unit. Poly-α-methylstyrene (poly-α-methylstyrene B) having 50,000 polar groups was obtained. Poly-α having polar groups prepared in Reference Examples 1 and 2
-Methylstyrene A, B and poly-α-methylstyrene C, which does not contain any hydroxyl groups, were each dissolved in toluene/tetrahydrofuran (1:1).
A glass tube with an inner diameter of 8 mm was filled with alumina powder in a 10 wt % solution, and the lower end of the tube was fixed with glass fiber paper.The lower end of the tube was attached, and the height at which the alumina powder wetted was measured over time. The results are shown in Table 1.

【表】 実施例1及び比較例1 アルミナ粉末に5wt%のポリ−α−メチルスチ
レンを添加し、加圧プレスにより直径15mm高さ5
mmの円柱状成形体を得た。 この成形体を、α−メチルスチレン1モル当り
0.5wt%の水酸基を有する参考例1で作成したポ
リ−α−メチルスチレンAをトルエン/テトラヒ
ドロフラン(1:1)に10wt%溶解した溶液中
に5分間浸漬した。 次いでこの成形体を空気中で400℃で脱脂を行
なつたところ、すべての成形品について外見の異
常はみられなかつた。 更に、この脱脂成形品を1600℃で焼成したが、
脱脂後と同様全く欠陥は認められなかつた。 脱脂前の成形体の強度を成形体上に直径10mm重
量5.2gの鋼球を落とすことにより調べた。本実
施例1の成形体は75cmの高さよりの落下により破
壊した。 一方、ポリ−α−メチルスチレンAを浸漬する
前は2.5cmの高さからの落下で破壊した。 また、極性基を含まないポリ−α−メチルスチ
レンをポリ−α−メチルスチレンAに代えて用い
たものでは、50cm高さからの落下で破壊した。 実施例2及び比較例2 アルミナ5wt%を含む窒化硅素にα−メチルス
チレン1モル当り5モル%の水酸基を含む参考例
2で作成したポリ−α−メチルスチレンBを
20wt%添加し、混練後、通常の射出成形法によ
り5cm×10cm×0.5cmの成形体を得た。 この成形体を窒素気流下に400℃に加熱して脱
脂した後、続いて1750℃で焼結した。焼結体には
割れたり、ひび割れが生じたもの、焼結体中に炭
化物が残つているものは見られなかつた。 一方、ポリ−α−メチルスチレンBの代りにポ
リスチレンを用いたものでは、成形体10個のうち
8個は成形時に流れむら、脱脂処理時に割れある
いはふくれのいずれかが生じた。
[Table] Example 1 and Comparative Example 1 5 wt% poly-α-methylstyrene was added to alumina powder, and a diameter of 15 mm and a height of 5
A cylindrical molded body of mm was obtained. This molded product was added per mole of α-methylstyrene.
Poly-α-methylstyrene A prepared in Reference Example 1 having 0.5 wt % of hydroxyl groups was immersed for 5 minutes in a solution of 10 wt % dissolved in toluene/tetrahydrofuran (1:1). When the molded articles were then degreased in air at 400°C, no abnormality in appearance was observed in any of the molded articles. Furthermore, this degreased molded product was fired at 1600℃,
No defects were observed as after degreasing. The strength of the compact before degreasing was examined by dropping a steel ball with a diameter of 10 mm and a weight of 5.2 g onto the compact. The molded article of Example 1 was broken by falling from a height of 75 cm. On the other hand, before immersing poly-α-methylstyrene A, it broke when dropped from a height of 2.5 cm. Furthermore, a product in which poly-α-methylstyrene containing no polar groups was used instead of poly-α-methylstyrene A was destroyed by falling from a height of 50 cm. Example 2 and Comparative Example 2 Poly-α-methylstyrene B prepared in Reference Example 2 containing 5 mol% of hydroxyl groups per mol of α-methylstyrene in silicon nitride containing 5 wt% of alumina was used.
After adding 20 wt% and kneading, a molded article of 5 cm x 10 cm x 0.5 cm was obtained by a normal injection molding method. This molded body was heated to 400°C under a nitrogen stream to degrease it, and then sintered at 1750°C. No cracks or cracks were observed in the sintered body, and no carbide remained in the sintered body. On the other hand, when polystyrene was used instead of poly-α-methylstyrene B, 8 out of 10 molded products had uneven flow during molding and either cracked or blistered during degreasing.

Claims (1)

【特許請求の範囲】[Claims] 1 セラミツク粉末に熱可塑性樹脂をバインダー
として混合し、所望の形に成形したのち脱脂し、
焼結するセラミツク焼結体の製造方法において、
熱可塑性樹脂として極性基を含有するポリ−α−
メチルスチレンを用いることを特徴とするセラミ
ツク焼結体の製造方法。
1. Mix ceramic powder with thermoplastic resin as a binder, mold it into the desired shape, and then degrease it.
In a method for manufacturing a ceramic sintered body to be sintered,
Poly-α- containing polar groups as a thermoplastic resin
A method for producing a ceramic sintered body, characterized by using methylstyrene.
JP58173218A 1983-09-21 1983-09-21 Manufacture of ceramic sintered body Granted JPS6065762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58173218A JPS6065762A (en) 1983-09-21 1983-09-21 Manufacture of ceramic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58173218A JPS6065762A (en) 1983-09-21 1983-09-21 Manufacture of ceramic sintered body

Publications (2)

Publication Number Publication Date
JPS6065762A JPS6065762A (en) 1985-04-15
JPH0339025B2 true JPH0339025B2 (en) 1991-06-12

Family

ID=15956315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58173218A Granted JPS6065762A (en) 1983-09-21 1983-09-21 Manufacture of ceramic sintered body

Country Status (1)

Country Link
JP (1) JPS6065762A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832596B2 (en) * 1987-04-16 1996-03-29 三井東圧化学株式会社 Method for manufacturing ceramic molded body
JP2503024B2 (en) * 1987-09-07 1996-06-05 三井東圧化学株式会社 Method for manufacturing ceramic molded body
JP4947435B2 (en) * 2008-03-10 2012-06-06 富士ゼロックス株式会社 Fixing apparatus and image forming apparatus

Also Published As

Publication number Publication date
JPS6065762A (en) 1985-04-15

Similar Documents

Publication Publication Date Title
EP0577740B1 (en) Use of agar gel-forming agent in the production of shaded ceramic bodies
CN1257225C (en) Binding agent for inorganic material powders for producing metallic and ceramic moulded bodies
EP2514775A1 (en) Maleic anhydride copolymers as soluble support material for fused deposition modelling (FDM) printer
JPH0339025B2 (en)
JP2758907B2 (en) Thermosetting molding method
US2539446A (en) Process for producing dielectric sheets
US5240658A (en) Reaction injection molding of silicon nitride ceramics having crystallized grain boundary phases
CN113087501A (en) High-strength quartz ceramic roller and preparation process thereof
JPS591743B2 (en) Composition for injection molding or extrusion molding
JPH02290642A (en) Manufacture of ceramic core
JP2001278672A (en) Method for manufacturing ceramic material
JPH0925171A (en) Granulated powder for forming, its production and silicon nitride sintered body produced by using the same
JPH06287055A (en) Production of sintered article of ceramic
JPH0532349B2 (en)
JPH01239071A (en) Production of ceramic porous material
JPH0693983B2 (en) Ethylene-tetrafluoroethylene copolymer porous membrane
RU1838274C (en) Method to produce semifinished items of oxide ceramics
JPH0820803A (en) Production of sintered compact
JP2846260B2 (en) High performance binder / molding agent composition for manufacturing precision metal parts by powder injection molding
JPH04124203A (en) Binder for powder metallurgy and method for degreasing green compact
JPH01286975A (en) Production of porous sintered form
JPH10101437A (en) Forming of powder assuming sintering
JP3541445B2 (en) Powder molding method
JPH0445327B2 (en)
JP2000095573A (en) Production of powder-formed body and production of sintered body from the formed body