JP2000095573A - Production of powder-formed body and production of sintered body from the formed body - Google Patents

Production of powder-formed body and production of sintered body from the formed body

Info

Publication number
JP2000095573A
JP2000095573A JP10288846A JP28884698A JP2000095573A JP 2000095573 A JP2000095573 A JP 2000095573A JP 10288846 A JP10288846 A JP 10288846A JP 28884698 A JP28884698 A JP 28884698A JP 2000095573 A JP2000095573 A JP 2000095573A
Authority
JP
Japan
Prior art keywords
powder
slurry
curing agent
mixing
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10288846A
Other languages
Japanese (ja)
Inventor
Koichi Imura
浩一 井村
Hideo Uemoto
英雄 上本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP10288846A priority Critical patent/JP2000095573A/en
Publication of JP2000095573A publication Critical patent/JP2000095573A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production method of a powder-formed body, which enables uniformization of carbon distribution in the product. SOLUTION: This production method of a powder-formed body comprises: a slurry preparation stage for preparing a slurry by mixing a powdery raw material consisting of powdery carbon or a powdery carbon mixture with a polyethylene-imine that is a crosslinkable polymer and water that is a vaporizable dispersion medium, wherein the powdery carbon mixture is obtained by mixing a powdery ceramic material, refractory material or metal with powdery carbon; a curing agent mixing stage for mixing a curing agent into the slurry; a forming stage for casting the slurry contg. the mixed curing agent into a mold and curing the slurry, to form a formed body; and a drying stage for withdrawing the formed body from the mold and drying the withdrawn formed body.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、セラミック、耐火
物又は金属の粉末に炭素粉末を混合した炭素混合粉末あ
るいは炭素粉末の成形体、その焼結体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a carbon mixed powder or a carbon powder compact obtained by mixing a carbon powder with a ceramic, refractory or metal powder, and a method for producing a sintered compact thereof.

【0002】[0002]

【従来の技術】従来、この種の粉末成形体の製造方法と
しては、特許第2592288号の特許掲載公報記載の
焼結を前提にした粉末成形体の緻密化方法が知られてい
る。この方法は、炭化珪素粉末に炭素粉末を混合した炭
素混合粉末からなる原料粉末に、架橋重合性樹脂として
ポリビニルアルコール、分散剤であるポリカルボン酸ア
ンモニウム、及び樹脂と相溶性のある水を混合してスラ
リーを調製するスラリー調製工程と、スラリーに硬化剤
であるホルムアルデヒドを混合する硬化剤混合工程と、
硬化剤を混合したスラリーを型に注入して硬化させる成
形工程と、成形体を脱型して乾燥させる(水を気散させ
る)乾燥工程とを経て粉末成形体を得、又、粉末成形体
をアルゴンガス雰囲気において脱脂し、焼成する脱脂・
焼成工程を施して焼結体を得るものである。この方法に
おいては、型に注入された、硬化剤を混合したスラリー
に架橋重合による自硬硬化反応が起こり、成形体が得ら
れる、というものである。
2. Description of the Related Art Conventionally, as a method for producing a powder compact of this type, there is known a method for densifying a powder compact on the premise of sintering described in Japanese Patent Publication No. 2592288. In this method, a raw material powder composed of a carbon mixed powder obtained by mixing a carbon powder with a silicon carbide powder is mixed with polyvinyl alcohol as a crosslinkable polymerizable resin, ammonium polycarboxylate as a dispersant, and water compatible with the resin. A slurry preparation step of preparing a slurry, and a curing agent mixing step of mixing the slurry with formaldehyde as a curing agent,
A molding step of injecting the slurry mixed with the curing agent into a mold to cure the molded article; and a drying step of removing the molded article and drying (spraying water) to obtain a powder molded article. Degreasing and firing in an argon gas atmosphere
A sintered body is obtained by performing a firing step. In this method, a self-hardening reaction by cross-linking polymerization occurs in a slurry mixed with a curing agent injected into a mold, and a molded article is obtained.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来の粉末成
形体、その焼結体の製造方法では、樹脂としてポリビニ
ルアルコールを用い、分散媒として水を用いる場合、分
散剤としてポリカルボン酸アンモニウムやフミン酸アン
モニウムを混合しても、これらの分散剤では、炭素粉末
を分散させる能力が低く、炭素粉末をスラリー内に均一
に分散させることができず、炭素粉末がスラリー内に局
部的に集中してしまう。このため、成形体中の炭素分布
にむらができ易く、その成形体を焼成して得られる焼結
体中の炭素分布にもむらができ易く、製品の品質にばら
つきを生ずる不具合がある。かかる不具合は、原料粉末
における炭素量が多くなると顕著となる。一方、ポリビ
ニルアルコール以外の樹脂として、エポキシ樹脂、フェ
ノール系樹脂、メラニン系樹脂、ウレタン系樹脂等を用
い、分散媒として水を用いることも考えられるが、この
場合、それらの樹脂は親油性が高いため、親油性の高い
炭素粉末を選択的に取り込み、水から分離し、スラリー
混合容器の内面やスラリーを注入する型の内面に付着し
てしまったり、炭素粉末がスラリー内に局部的に集中し
てしまう。このため、成形体中や焼結体中の炭素粉末量
が減少したり、成形体中や焼結体中の炭素分布にむらが
でき易く、製品の品質にばらつきを生ずる不具合があ
る。そこで、本発明は、製品における炭素分布を均質に
し得る粉末成形体、その焼結体の製造方法を提供するこ
とを目的とする。
However, in a conventional method for producing a powder compact and a sintered compact thereof, when polyvinyl alcohol is used as a resin and water is used as a dispersion medium, ammonium polycarboxylate or humic acid is used as a dispersant. Even if ammonium acid is mixed, these dispersants have a low ability to disperse carbon powder, cannot disperse carbon powder uniformly in slurry, and cause carbon powder to concentrate locally in slurry. I will. For this reason, the carbon distribution in the molded body tends to be uneven, and the carbon distribution in the sintered body obtained by firing the molded body tends to be uneven, and there is a problem that the quality of the product varies. Such a problem becomes remarkable when the amount of carbon in the raw material powder increases. On the other hand, as a resin other than polyvinyl alcohol, an epoxy resin, a phenol resin, a melanin resin, a urethane resin, or the like may be used, and water may be used as a dispersion medium. In this case, those resins have high lipophilicity. Therefore, carbon powder with high lipophilicity is selectively taken in, separated from water, and adheres to the inner surface of the slurry mixing container or the inner surface of the mold for pouring the slurry, or the carbon powder concentrates locally in the slurry. Would. For this reason, the amount of carbon powder in the compact and the sintered body is reduced, and the carbon distribution in the compact and the sintered body is likely to be uneven, which causes a problem that the quality of the product varies. Therefore, an object of the present invention is to provide a powder compact capable of making carbon distribution uniform in a product, and a method for producing a sintered compact thereof.

【0004】[0004]

【課題を解決するための手段】前記課題を解決するた
め、本発明の粉末成形体の製造方法は、セラミック、耐
火物又は金属の粉末に炭素粉末を混合した炭素混合粉末
あるいは炭素粉末からなる原料粉末に、架橋重合性ポリ
マーであるポリエチレンイミン、及び気散性分散媒であ
る水を混合してスラリーを調製するスラリー調製工程
と、スラリーに硬化剤を混合する硬化剤混合工程と、硬
化剤を混合したスラリーを型に注入して硬化させる成形
工程と、成形体を脱型して乾燥させる乾燥工程とを備え
ることを特徴とする。前記ポリエチレンイミンの数平均
分子量が、2000以上であることが好ましい。又、前
記硬化剤は、水溶性多官能基エポキシ化合物であること
が好ましい。一方、焼結体の製造方法は、セラミック、
耐火物又は金属の粉末に炭素粉末を混合した炭素混合粉
末あるいは炭素粉末からなる原料粉末に、架橋重合性ポ
リマーであるポリエチレンイミン、及び気散性分散媒で
ある水を混合してスラリーを調製するスラリー調製工程
と、スラリーに硬化剤を混合する硬化剤混合工程と、硬
化剤を混合したスラリーを型に注入して硬化させる成形
工程と、成形体を脱型して乾燥させる乾燥工程と、乾燥
した成形体を脱脂し、非酸化性雰囲気において焼成する
脱脂・焼成工程とを備えることを特徴とする。前記ポリ
エチレンイミンの数平均分子量が、2000以上である
ことが好ましい。又、前記硬化剤は、水溶性多官能基エ
ポキシ化合物であることが好ましい。
In order to solve the above-mentioned problems, a method for producing a powder compact according to the present invention is directed to a method of producing a powder mixture of carbon, which is obtained by mixing carbon powder with ceramic, refractory or metal powder. A slurry preparation step of mixing the powder with polyethyleneimine that is a cross-linkable polymerizable polymer and water that is a gas-dispersing dispersion medium to prepare a slurry, a curing agent mixing step of mixing a curing agent with the slurry, and a curing agent It is characterized by comprising a molding step of injecting the mixed slurry into a mold and curing, and a drying step of removing and drying the molded body. The number average molecular weight of the polyethylene imine is preferably 2000 or more. Further, the curing agent is preferably a water-soluble polyfunctional epoxy compound. On the other hand, the manufacturing method of the sintered body is ceramic,
A slurry is prepared by mixing polyethyleneimine, which is a cross-linkable polymerizable polymer, and water, which is a gas-dispersible dispersion medium, with a carbon mixed powder obtained by mixing a carbon powder with a refractory or metal powder, or a raw material powder made of a carbon powder. A slurry preparation step, a curing agent mixing step of mixing a curing agent into the slurry, a molding step of injecting and curing the slurry mixed with the curing agent into a mold, a drying step of removing the molded body and drying, and drying. And a degreasing / firing step of degreased and fired in a non-oxidizing atmosphere. The number average molecular weight of the polyethylene imine is preferably 2000 or more. Further, the curing agent is preferably a water-soluble polyfunctional epoxy compound.

【0005】スラリー調製工程に関して:ポリエチレン
イミンは、架橋重合性を持ち、炭素粉末やその他の原料
粉末に対して非常に高い分散性を示し、又、気散性分散
媒である水に対して任意の比率で溶解可能である。この
ため、炭素粉末をスラリー内に均質に分散させることが
できる。その結果、得られる成形体中の炭素分布が均質
になり、その形成体を焼成して得られる焼結体中の炭素
分布も均質にすることができる。ポリエチレンイミンと
しては、一般的な線状のポリマーや分枝状のポリマー、
分枝状ポリマーを架橋重合したポリマー、他の高分子化
合物にポリエチレンイミンを修飾的に付加したポリマー
を用いることができる。ポリエチレンイミンは、いかな
る分子量のものも用いることができるが、保形性のよ
い、つまり、十分な強度を有する成形体を得るために
は、数平均分子量が2000以上のものが好ましく、よ
り好ましくは数平均分子量が8000以上である。な
お、可撓性に富む成形体、例えばシート状のものを得た
いときは、数平均分子量の小さいものを用いる。又、ポ
リエチレンイミンは、原料粉末に対して高い分散性を示
すため、分散剤を添加しなくともよいが、適宜添加して
も構わない。
[0005] Regarding the slurry preparation process: Polyethyleneimine has cross-linking polymerizability, exhibits extremely high dispersibility in carbon powder and other raw material powders, and is optional in water as a gas-dispersible dispersion medium. Can be dissolved in the ratio of Therefore, the carbon powder can be uniformly dispersed in the slurry. As a result, the carbon distribution in the obtained molded body becomes uniform, and the carbon distribution in the sintered body obtained by firing the formed body can be made uniform. As polyethyleneimine, general linear polymers and branched polymers,
A polymer obtained by cross-linking a branched polymer or a polymer obtained by modifying another polymer compound with polyethyleneimine can be used. Polyethyleneimine can be used with any molecular weight, but has good shape retention, that is, in order to obtain a molded article having sufficient strength, the number average molecular weight is preferably 2000 or more, more preferably The number average molecular weight is 8000 or more. When it is desired to obtain a molded product having a high flexibility, for example, a sheet-shaped product, a product having a small number average molecular weight is used. In addition, since polyethyleneimine has high dispersibility in the raw material powder, it is not necessary to add a dispersant, but it may be added as appropriate.

【0006】原料粉末に対するポリエチレンイミンの添
加量は、所望の保形性の程度に合わせて設定され、通
常、添加量が多いほど保形性は向上するが、保形性は、
前述したように、用いるポリエチレンイミンの数平均分
子量に左右されるため、ポリエチレンイミンの数平均分
子量を考慮して設定する。ポリエチレンイミンの添加量
は、原料粉末100重量部に対し0.5〜50重量部で
あることが望ましい。ポリエチレンイミンの添加量が、
原料粉末100重量部に対し、0.5重量部未満である
と、得られる成形体の強度が低下する。一方、50重量
部を超えると、脱脂工程において割れが生じたり、又、
それを防ぐために脱脂速度を遅くする必要が生じる。こ
のため、ポリエチレンイミンの添加量は、可能な限り少
量とすることが望ましい。又、水100重量部に対しポ
リエチレンイミンの添加量が100重量部を超える場合
にも、脱脂工程において同様の不具合が生じるため、1
00重量部未満とすることが望ましい。
[0006] The amount of polyethyleneimine to be added to the raw material powder is set in accordance with the desired degree of shape retention. Generally, the larger the amount of addition, the more the shape retention is improved.
As described above, since it depends on the number average molecular weight of polyethyleneimine used, the number is set in consideration of the number average molecular weight of polyethyleneimine. The amount of polyethyleneimine added is desirably 0.5 to 50 parts by weight based on 100 parts by weight of the raw material powder. The amount of polyethyleneimine added is
If the amount is less than 0.5 part by weight based on 100 parts by weight of the raw material powder, the strength of the obtained molded body is reduced. On the other hand, if it exceeds 50 parts by weight, cracks may occur in the degreasing step,
In order to prevent this, it is necessary to reduce the degreasing speed. Therefore, it is desirable that the amount of polyethyleneimine added is as small as possible. Also, when the amount of polyethyleneimine added exceeds 100 parts by weight with respect to 100 parts by weight of water, the same problem occurs in the degreasing step.
It is desirable to use less than 00 parts by weight.

【0007】原料粉末に対する水の添加量は、多量であ
ると乾燥工程において乾燥収縮が大きくなり成形体が割
れてしまったり、乾燥時間が長くなったりするため、ス
ラリーの型への注入やスラリーの脱泡処理が可能な流動
性を確保できる範囲で少量とすることが望ましい。一
方、前述したように、ポリエチレンイミンが原料粉末に
対して高い分散性を示すため、他の架橋重合性樹脂を用
いる場合に比べ、水の添加量を減らしてもスラリーの流
動性を確保することができる(他の樹脂を用いる場合
は、スラリーの流動性を水の添加量を増やすことによっ
て確保している)。その結果、乾燥工程における乾燥収
縮を小さくできて成形体の割れを防止でき、かつ、乾燥
時間を短縮できる。又、原料粉末に対する水の添加量
は、原料粉末の粒径、比重等によってスラリーの粘性
(流動性)が変化してしまうため、一概には規定できな
いが、原料粉末100重量部に対し5〜100重量部で
あることが望ましい。水の添加量が、原料粉末100重
量部に対し、5重量部未満であると、スラリーの流動性
が低下し、型への注入や脱泡処理が困難となる一方、1
00重量部を超えると、成形体の乾燥工程における乾燥
収縮が大きくなり、割れてしまったり、乾燥時間が長く
なったりする。
If the amount of water added to the raw material powder is too large, drying shrinkage increases in the drying step, which breaks the molded body or prolongs the drying time. It is desirable to use a small amount as long as fluidity capable of defoaming can be ensured. On the other hand, as described above, since polyethyleneimine exhibits high dispersibility in the raw material powder, the fluidity of the slurry can be ensured even when the amount of added water is reduced, as compared with the case where other crosslinked polymerizable resins are used. (When another resin is used, the fluidity of the slurry is ensured by increasing the amount of water added.) As a result, drying shrinkage in the drying step can be reduced, cracking of the molded body can be prevented, and the drying time can be shortened. Further, the amount of water to be added to the raw material powder cannot be unequivocally specified because the viscosity (fluidity) of the slurry changes depending on the particle size, specific gravity, etc. of the raw material powder. Desirably 100 parts by weight. If the amount of water added is less than 5 parts by weight with respect to 100 parts by weight of the raw material powder, the fluidity of the slurry decreases, making it difficult to inject into a mold and remove bubbles.
If the amount is more than 00 parts by weight, drying shrinkage in the drying step of the molded article becomes large, resulting in cracks and a long drying time.

【0008】硬化剤混合工程に関して:ポリエチレンイ
ミンに対する硬化剤の添加量は、添加する硬化剤の官能
基数や分子量、反応性を考慮し、ポリエチレンイミンと
の反応相当量とされる。硬化剤としては、ポリエチレン
イミンと架橋重合反応を起こして硬化するものであれ
ば、水溶性エポキシ化合物、ジアルデヒド化合物、ハロ
ゲン化合物等のいかなるものも用いることができるが、
保形性のよい成形体を得るためには、特にエポキシ基を
2個以上もつ水溶性多官能基エポキシ化合物が好まし
く、より好ましくは、エポキシ基を4個以上もつ水溶性
多官能基エポキシ化合物が有効である。
[0008] Regarding the curing agent mixing step: The amount of the curing agent to be added to polyethyleneimine is considered to be an amount equivalent to the reaction with polyethyleneimine in consideration of the number of functional groups, molecular weight and reactivity of the added curing agent. As the curing agent, any one of a water-soluble epoxy compound, a dialdehyde compound, a halogen compound and the like can be used as long as the curing agent causes a cross-linking polymerization reaction with polyethyleneimine.
In order to obtain a molded article having good shape retention, a water-soluble polyfunctional epoxy compound having two or more epoxy groups is particularly preferable, and a water-soluble polyfunctional epoxy compound having four or more epoxy groups is more preferable. It is valid.

【0009】成形工程に関して:硬化剤を添加し、混合
したスラリーは、流動性が失われる前に型に注入され、
型内で架橋重合による硬化が起こり、気散性分散媒であ
る水を含んだままの成形体となる。硬化は、室温で放置
して行うことができるが、乾燥が起こらないように密封
するか、加湿環境において行うことが望ましい。又、硬
化速度を制御する目的で、加温若しくは冷却することも
できる。
Regarding the molding process: The slurry mixed with the curing agent is poured into a mold before fluidity is lost,
Curing due to cross-linking polymerization occurs in the mold, and a molded article containing water as a gas-dispersing dispersion medium is obtained. Curing can be carried out at room temperature, but it is preferable to carry out sealing in such a manner that drying does not occur or to carry out in a humid environment. In addition, heating or cooling can be performed for the purpose of controlling the curing speed.

【0010】乾燥工程に関して:乾燥は、室温での放置
や一般的な温風乾燥機を用いた乾燥が可能であるが、特
に肉厚の成形体や肉厚変化の大きい成形体は、加湿環境
において乾燥を行うことが望ましい。又、乾燥温度は、
100℃以下が望ましく、60℃以下がより望ましい。
Regarding the drying step: Drying can be left at room temperature or using a general hot air drier. Particularly, a molded article having a large thickness or a molded article having a large change in thickness is preferably used in a humid environment. It is desirable to carry out drying. The drying temperature is
100 ° C. or less is desirable, and 60 ° C. or less is more desirable.

【0011】脱脂・焼成工程に関して:脱脂は、非酸化
性雰囲気、酸化性雰囲気のいずれでも行うことができる
が、酸化性雰囲気で行う場合には、炭素粉末が酸化除去
されないように、600℃以下の温度で行う必要があ
る。又、成形体を原料粉末と同様の粉末や炭素粉末、一
般的に用いられる詰め粉等に埋めて脱脂を行うことも可
能である。上記脱脂工程及び焼成工程の非酸酸化性雰囲
気としては、アルゴンや窒素ガス、水素ガス等の不活性
ガス雰囲気、真空雰囲気が挙げられる。又、焼成温度
は、原料粉末の種類によって適宜設定される。
Regarding the degreasing / firing step: Degreasing can be performed in either a non-oxidizing atmosphere or an oxidizing atmosphere. However, when performed in an oxidizing atmosphere, the degreasing is performed at 600 ° C. or lower so that the carbon powder is not oxidized and removed. Temperature. It is also possible to degrease the molded body by burying the same in a powder similar to the raw material powder, a carbon powder, a commonly used filling powder, or the like. Examples of the non-acid oxidizing atmosphere in the degreasing step and the firing step include an inert gas atmosphere such as argon, nitrogen gas, and hydrogen gas, and a vacuum atmosphere. The firing temperature is appropriately set according to the type of the raw material powder.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て具体的な実施例、比較例を参照して説明する。 実施例1 先ず、炭素粉末としてカーボンブラック5重量部と、セ
ラミック粉末として炭化珪素粉末100重量部とからな
る原料粉末に、数平均分子量8000〜10500の架
橋重合性ポリマーであるポリエチレンイミン3重量部、
及び気散性分散媒であるイオン交換水15重量部を添加
し、ボールミルにて一昼夜混合してスラリーを調製し
た。次に、得られたスラリーに、硬化剤として水溶性エ
ポキシ樹脂であるソルビトールポリグリシジルエーテル
(官能基数約4)1重量部を添加し、真空脱泡撹拌して
混合した。次いで、硬化剤を混合したスラリーを、その
流動性が失われる前に、ポリエチレン製の型に注入し、
室温で放置し、型内での架橋重合による硬化後脱型し、
湿度90%、温度40℃の加湿乾燥機で1日、しかる後
温度40℃の温風乾燥機で1日乾燥して、図1、図2に
示すように、200mm角、厚み40mmの粉末成形体
1を2つ得た。得られた粉末成形体の一方を窒素ガス雰
囲気において600℃の温度で脱脂した後、脱脂体の中
央部における厚み方向の表面部分と中間部分、及び脱脂
体の周辺角部における厚み方向の表面部分と中間部分か
ら、試験片2a,2b及び3a,3b(20mm角、厚
み2mm)をそれぞれ切り出し、各試験片を空気雰囲気
において800℃の温度で熱処理して、その重量減少か
ら各試験片中の炭素含有量を測定したところ、表1に示
すようになった。なお、炭素含有量は、炭化珪素量に対
する外率で示した。又、他方の粉末成形体を一方のもの
と同様の方法で脱脂した後、アルゴンガス雰囲気におい
て1900℃の温度で焼成して、焼結体を得た。得られ
た焼結体から脱脂体と同様の方法で試験片を得ると共
に、熱処理して、炭素含有量を測定したところ、脱脂体
とほぼ同様の結果となった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to specific examples and comparative examples. Example 1 First, a raw material powder composed of 5 parts by weight of carbon black as carbon powder and 100 parts by weight of silicon carbide powder as ceramic powder was mixed with 3 parts by weight of polyethyleneimine, which is a crosslinkable polymer having a number average molecular weight of 8000 to 10500,
And 15 parts by weight of ion-exchanged water as an air-dispersing dispersion medium, and mixed all day and night with a ball mill to prepare a slurry. Next, 1 part by weight of sorbitol polyglycidyl ether (functional group: about 4), which is a water-soluble epoxy resin, was added as a curing agent to the obtained slurry and mixed by vacuum degassing and stirring. Then, the slurry mixed with the curing agent is poured into a polyethylene mold before its fluidity is lost,
Leave at room temperature, demold after curing by cross-linking polymerization in the mold,
Dried for 1 day in a humidifying dryer at a humidity of 90% and a temperature of 40 ° C. for 1 day, and then for 1 day in a hot air dryer at a temperature of 40 ° C. to form a 200 mm square, 40 mm thick powder as shown in FIGS. Two bodies were obtained. After degreasing one of the obtained powder compacts at a temperature of 600 ° C. in a nitrogen gas atmosphere, a surface portion and a middle portion in a thickness direction at a central portion of the degreased body, and a surface portion in a thickness direction at a peripheral corner portion of the degreased body From the intermediate portion, test pieces 2a, 2b and 3a, 3b (20 mm square, 2 mm thick) were cut out, and each test piece was heat-treated at a temperature of 800 ° C. in an air atmosphere, and the weight loss caused in each test piece was determined. When the carbon content was measured, it was as shown in Table 1. In addition, the carbon content was shown as an external ratio to the silicon carbide amount. After the other powder compact was degreased by the same method as that of the first powder compact, it was fired at a temperature of 1900 ° C. in an argon gas atmosphere to obtain a sintered body. A test piece was obtained from the obtained sintered body by the same method as that for the degreased body, and heat treatment was performed to measure the carbon content. As a result, the result was almost the same as that of the degreased body.

【0013】[0013]

【表1】 [Table 1]

【0014】比較例1 先ず、炭素粉末としてカーボンブラック5重量部と、セ
ラミック粉末として炭化珪素粉末100重量部からなる
原料粉末に、架橋重合性樹脂として水溶性エポキシ樹脂
であるソルビトールポリグリシジルエーテル3重量部、
及び気散性分散媒であるイオン交換水15重量部を添加
し、ボールミルにて一昼夜混合してスラリーを調製し
た。次に、得られたスラリーに、硬化剤としてイミノビ
スプロピルアミン0.8重量部を添加し、真空脱泡撹拌
して混合した。次いで、硬化剤を混合したスラリーを、
その流動性が失われる前に、ポリエチレン製の型に注入
し、型内での架橋重合による硬化後脱型し、乾燥して実
施例1と同様に200mm角、厚み40mmの粉末成形
体を2つ得た。得られた粉末成形体の一方を実施例1と
同様の方法で脱脂し、試験片を得ると共に、熱処理し
て、炭素含有量を測定したところ、表1に示すようにな
った。又、他方の粉末成形体と実施例1と同様の方法で
脱脂し、焼成して焼結体を得、試験片を得ると共に、熱
処理して、炭素含有量測定したところ、脱脂体とほぼ同
様の結果となった。表1から、本発明に係る実施例1の
ようにすることにより、粉末成形体及び焼結体における
炭素分布を均質にし得ることがわかる。
Comparative Example 1 First, a raw material powder composed of 5 parts by weight of carbon black as a carbon powder and 100 parts by weight of a silicon carbide powder as a ceramic powder, and 3 parts by weight of a water-soluble epoxy resin, sorbitol polyglycidyl ether, as a cross-linkable polymerizable resin. Department,
And 15 parts by weight of ion-exchanged water as an air-dispersing dispersion medium, and mixed all day and night with a ball mill to prepare a slurry. Next, 0.8 parts by weight of iminobispropylamine as a curing agent was added to the obtained slurry, and the mixture was mixed by vacuum degassing and stirring. Next, the slurry mixed with the curing agent is
Before the fluidity is lost, the mixture is poured into a polyethylene mold, cured by cross-linking polymerization in the mold, demolded, and dried to obtain a 200 mm square, 40 mm thick powder compact in the same manner as in Example 1. I got one. One of the obtained powder compacts was degreased in the same manner as in Example 1 to obtain a test piece, heat-treated, and measured for the carbon content. The results are shown in Table 1. In addition, the other powder compact was degreased and fired in the same manner as in Example 1 to obtain a sintered body, obtain a test piece, heat-treat, and measure the carbon content. Was the result. From Table 1, it can be seen that the distribution of carbon in the powder compact and the sintered compact can be homogenized by performing Example 1 according to the present invention.

【0015】実施例2〜23 先ず、炭素粉末としてカーボンブラック5重量部と、セ
ラミック粉末として炭化珪素粉末100重量部とからな
る原料粉末に、表2に示すように数平均分子量の異なる
架橋重合性ポリマーであるポリエチレンイミンをそれぞ
れ表2に示す重量部、及び気散性分散媒であるイオン交
換水15重量部を添加し、ボールミルにて一昼夜混合し
て各スラリーを調製した。次に、得られた各スラリー
に、硬化剤として水溶性エポキシ樹脂であるソルビトー
ルポリグリシジルエーテル(官能基数約4)を表2に示
す重量部添加し、真空脱泡撹拌して混合した。次いで、
硬化剤を混合した各スラリーを、それぞれの流動性が失
われる前に、ポリエチレン製の型に注入し、室温で放置
し、型内での架橋重合による硬化後脱型し、湿度90
%、温度40℃の加湿乾燥機で1日、しかる後温度40
℃の温風乾燥機で1日乾燥して、図3、図4に示すよう
に、200mm角、厚み10mmの各粉末成形体4を得
た。得られた各粉末成形体4を、図3、図4に示すよう
に、成形体4の一辺と平行に中央を通る中央線から等距
離にあり、中央線と平行な2本の支持棒5により150
mmの間隔で支持し、撓み量を測定し、保形性を調査し
たところ、表2に示すようになった。保形性は、撓み量
が2mm以下を良好とし、2mmを超える場合を可撓性
とした。
Examples 2 to 23 First, as shown in Table 2, cross-linking polymerizable materials having different number average molecular weights were mixed with a raw material powder composed of 5 parts by weight of carbon black as carbon powder and 100 parts by weight of silicon carbide powder as ceramic powder. The respective parts by weight of polyethyleneimine as a polymer and 15 parts by weight of ion-exchanged water as an air-dispersible dispersion medium were added to each other in a ball mill to prepare respective slurries. Next, sorbitol polyglycidyl ether (functional group: about 4), which is a water-soluble epoxy resin, was added as a curing agent to each of the obtained slurries by weight as shown in Table 2, followed by vacuum defoaming and mixing. Then
Each of the slurries mixed with the curing agent is poured into a polyethylene mold before the fluidity of each is lost, left at room temperature, cured by cross-linking polymerization in the mold, and demolded.
%, 1 day in a humidifying dryer at a temperature of 40 ° C.
It dried for one day with the warm air dryer of ° C, and each powder compact 4 of 200 mm square and 10 mm in thickness was obtained as shown in Drawing 3 and Drawing 4. As shown in FIGS. 3 and 4, each of the obtained powder compacts 4 is equidistant from a center line passing through the center parallel to one side of the compact 4 and is equidistant from two support rods 5 parallel to the center line. By 150
It was supported at intervals of mm, the amount of flexure was measured, and the shape retention was investigated. The shape retention was defined as good when the amount of deflection was 2 mm or less, and flexible when the amount exceeded 2 mm.

【0016】[0016]

【表2】 [Table 2]

【0017】表2からわかるように、粉末成形体の保形
性は、ポリエチレンイミンの数平均分子量が2000未
満の場合、その添加量を増やしても改善されず、可撓性
を示す。又、ポリエチレンイミンの数平均分子量が20
00以上の場合、その添加量により保形性を良好にする
ことができる。
As can be seen from Table 2, when the number average molecular weight of the polyethyleneimine is less than 2,000, the shape retention of the powder compact is not improved even when the amount thereof is increased, and the powder shows flexibility. The polyethyleneimine has a number average molecular weight of 20.
In the case of 00 or more, the shape retention can be improved by the addition amount.

【0018】実施例24〜35 先ず、炭素粉末としてカーボンブラック5重量部と、セ
ラミック粉末として炭化珪素粉末100重量部とからな
る原料粉末に、数平均分子量8000〜10500の架
橋重合性ポリマーであるポリエチレンイミン3重量部、
及び気散性分散媒であるイオン交換水15重量部を添加
し、ボールミルにて一昼夜混合してスラリーを調製し
た。次に、得られたスラリーに、硬化剤として官能基数
が異なる水溶性エポキシ樹脂をそれぞれ表3に示す重量
部添加し、真空脱泡撹拌して混合した。次いで、それぞ
れの硬化剤を混合した各スラリーを、その流動性が失わ
れる前に、ポリエチレン製の型に注入し、室温で放置
し、型内での架橋重合による硬化後脱型し、湿度90
%、温度40℃の加湿乾燥機で1日、しかる後に温度4
0℃の温風乾燥機で1日乾燥して、実施例2〜23と同
様に200mm角、厚み10mmの各粉末成形体を得
た。得られた各粉末成形体を、実施例2〜23と同様に
成形体の一辺と平行に中央を通る中央線から等距離にあ
り、中央線と平行な2本の支持棒により150mmの間
隔で支持し、撓み量を測定し、保形性を調査したとこ
ろ、表3に示すようになった。保形性は、撓み量が2m
m以下を良好とし、2mmを超える場合を可撓性とし
た。
Examples 24 to 35 First, a raw material powder consisting of 5 parts by weight of carbon black as carbon powder and 100 parts by weight of silicon carbide powder as ceramic powder was mixed with polyethylene as a crosslinkable polymer having a number average molecular weight of 8000 to 10500. 3 parts by weight of imine,
And 15 parts by weight of ion-exchanged water as an air-dispersing dispersion medium, and mixed all day and night with a ball mill to prepare a slurry. Next, a water-soluble epoxy resin having a different number of functional groups as a curing agent was added to each of the obtained slurries by weight as shown in Table 3 and mixed by vacuum defoaming and stirring. Then, each slurry obtained by mixing the respective curing agents was poured into a polyethylene mold before the fluidity was lost, left at room temperature, cured by cross-linking polymerization in the mold, and then released from the mold.
%, 1 day in a humidifying dryer at a temperature of 40 ° C, and then a temperature of 4%
It was dried with a hot air drier at 0 ° C. for one day to obtain each powder compact of 200 mm square and 10 mm thickness in the same manner as in Examples 2 to 23. Each of the obtained powder compacts was equidistant from a center line passing through the center in parallel with one side of the compact in the same manner as in Examples 2 to 23, and was spaced at an interval of 150 mm by two support rods parallel to the center line. Table 3 shows the results obtained by supporting and measuring the amount of deflection and examining the shape retention. As for shape retention, the deflection amount is 2m
m or less was defined as good, and the case exceeding 2 mm was defined as flexibility.

【0019】[0019]

【表3】 [Table 3]

【0020】表3からわかるように、粉末成形体の保形
性は、硬化剤としての水溶性エポキシ化合物の官能基数
が4以上の場合に良好であり、官能基数が2〜3の場
合、その添加量により保形性を良好にすることができ
る。そして、官能基数が4以上の場合、硬化剤の添加量
を減らしても十分な保形性が得られるため、硬化剤を減
らして脱脂し易くなる。
As can be seen from Table 3, the shape retention of the powder compact is good when the number of functional groups of the water-soluble epoxy compound as a curing agent is 4 or more, and when the number of functional groups is 2 or 3, Shape retention can be improved by the amount added. When the number of functional groups is 4 or more, sufficient shape retention can be obtained even if the amount of the curing agent is reduced, so that the amount of the curing agent is reduced and degreasing is facilitated.

【0021】なお、上述した実施の形態においては、原
料粉末としてセラミック粉末に炭素粉末を混合した炭素
混合粉末を用いる場合について説明したが、これに限定
されるものではなく、原料粉末として炭素粉末のみ、耐
火物粉末に炭素粉末、又は金属粉末に炭素粉末を混合し
た炭素混合粉末を用いても同様の作用効果が得られるこ
とがわかった。
In the above-described embodiment, the case where the carbon powder mixed with the ceramic powder and the carbon powder is used as the raw material powder has been described. However, the present invention is not limited to this. It was also found that the same function and effect can be obtained by using carbon powder as refractory powder or carbon powder mixed with metal powder.

【0022】[0022]

【発明の効果】以上説明したように、本発明の粉末成形
体、その焼結体の製造方法によれば、架橋重合性を持つ
ポリエチレンイミンが炭素粉末やその他の原料粉末に対
して非常に高い分散性を示し、かつ、気散性分散媒であ
る水に対して任意の比率で溶解可能であるので、炭素粉
末をスラリー内に均質に分散させることができ、粉末成
形体又は焼結体における炭素分布を均質にすることがで
きる。
As described above, according to the method for producing a powder compact and a sintered compact of the present invention, polyethyleneimine having cross-linking polymerizability is very high relative to carbon powder and other raw material powders. Shows dispersibility, and can be dissolved at an arbitrary ratio in water as a gas-dispersing dispersion medium, so that the carbon powder can be uniformly dispersed in the slurry, and in the powder compact or sintered compact The carbon distribution can be homogenized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る粉末成形体の実施の形態の一例を
示す平面図である。
FIG. 1 is a plan view showing an example of an embodiment of a powder compact according to the present invention.

【図2】図1の粉末成形体の側面図である。FIG. 2 is a side view of the powder compact of FIG. 1;

【図3】本発明に係る粉末成形体の実施の形態の他の例
を示す平面図である。
FIG. 3 is a plan view showing another example of the embodiment of the powder compact according to the present invention.

【図4】図3の粉末成形体の側面図である。FIG. 4 is a side view of the powder compact of FIG. 3;

【符号の説明】[Explanation of symbols]

1 粉末成形体 2a 試験片 2b 試験片 3a 試験片 3b 試験片 4 粉末成形体 5 支持棒 DESCRIPTION OF SYMBOLS 1 Powder compact 2a Test piece 2b Test piece 3a Test piece 3b Test piece 4 Powder compact 5 Support rod

フロントページの続き Fターム(参考) 4G030 AA47 AA60 GA14 GA20 PA21 4J002 CD002 CM011 DA017 DA037 DA066 DM006 EB008 EE018 FD142 FD148 GT00 HA07 4J036 AB03 FA02 FA06 FB14 Continued on the front page F term (reference) 4G030 AA47 AA60 GA14 GA20 PA21 4J002 CD002 CM011 DA017 DA037 DA066 DM006 EB008 EE018 FD142 FD148 GT00 HA07 4J036 AB03 FA02 FA06 FB14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 セラミック、耐火物又は金属の粉末に炭
素粉末を混合した炭素混合粉末あるいは炭素粉末からな
る原料粉末に、架橋重合性ポリマーであるポリエチレン
イミン、及び気散性分散媒である水を混合してスラリー
を調製するスラリー調製工程と、スラリーに硬化剤を混
合する硬化剤混合工程と、硬化剤を混合したスラリーを
型に注入して硬化させる成形工程と、成形体を脱型して
乾燥させる乾燥工程とを備えることを特徴とする粉末成
形体の製造方法。
Claims 1. To a carbon mixed powder obtained by mixing a carbon powder with a ceramic, refractory or metal powder or a raw material powder composed of a carbon powder, polyethyleneimine which is a cross-linkable polymerizable polymer and water which is a gas-dispersible dispersion medium are mixed. A slurry preparation step of mixing and preparing a slurry, a curing agent mixing step of mixing a curing agent into the slurry, a molding step of injecting the slurry mixed with the curing agent into a mold and curing, and demolding the molded body. A method for producing a powder compact, comprising: a drying step of drying.
【請求項2】 前記ポリエチレンイミンの数平均分子量
が、2000以上であることを特徴とする請求項1記載
の粉末成形体の製造方法。
2. The method according to claim 1, wherein the polyethyleneimine has a number average molecular weight of 2,000 or more.
【請求項3】 前記硬化剤が、水溶性多官能基エポキシ
化合物であることを特徴とする請求項1又は2記載の粉
末成形体の製造方法。
3. The method according to claim 1, wherein the curing agent is a water-soluble polyfunctional epoxy compound.
【請求項4】 セラミック、耐火物又は金属の粉末に炭
素粉末を混合した炭素混合粉末あるいは炭素粉末からな
る原料粉末に、架橋重合性ポリマーであるポリエチレン
イミン、及び気散性分散媒である水を混合してスラリー
を調製するスラリー調製工程と、スラリーに硬化剤を混
合する硬化剤混合工程と、硬化剤を混合したスラリーを
型に注入して硬化させる成形工程と、成形体を脱型して
乾燥させる乾燥工程と、乾燥した成形体を脱脂し、非酸
化性雰囲気において焼成する脱脂・焼成工程とを備える
ことを特徴とする焼結体の製造方法。
4. A crosslinked polymerizable polymer, polyethyleneimine, and water, which is a gas-dispersible dispersion medium, are mixed with a carbon mixed powder obtained by mixing a carbon powder with a ceramic, refractory or metal powder, or a raw material powder made of a carbon powder. A slurry preparation step of mixing and preparing a slurry, a curing agent mixing step of mixing a curing agent into the slurry, a molding step of injecting the slurry mixed with the curing agent into a mold and curing, and demolding the molded body. A method for producing a sintered body, comprising: a drying step of drying; and a degreasing / firing step of degreasing the dried molded body and firing in a non-oxidizing atmosphere.
【請求項5】 前記ポリエチレンイミンの数平均分子量
が、2000以上であることを特徴とする請求項4記載
の焼結体の製造方法。
5. The method for producing a sintered body according to claim 4, wherein the number average molecular weight of the polyethyleneimine is 2,000 or more.
【請求項6】 前記硬化剤が、水溶性多官能基エポキシ
化合物であることを特徴とする請求項4又は5記載の焼
結体の製造方法。
6. The method according to claim 4, wherein the curing agent is a water-soluble polyfunctional epoxy compound.
JP10288846A 1998-09-25 1998-09-25 Production of powder-formed body and production of sintered body from the formed body Pending JP2000095573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10288846A JP2000095573A (en) 1998-09-25 1998-09-25 Production of powder-formed body and production of sintered body from the formed body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10288846A JP2000095573A (en) 1998-09-25 1998-09-25 Production of powder-formed body and production of sintered body from the formed body

Publications (1)

Publication Number Publication Date
JP2000095573A true JP2000095573A (en) 2000-04-04

Family

ID=17735514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10288846A Pending JP2000095573A (en) 1998-09-25 1998-09-25 Production of powder-formed body and production of sintered body from the formed body

Country Status (1)

Country Link
JP (1) JP2000095573A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173784A (en) * 2009-12-23 2011-09-08 General Electric Co <Ge> Process for producing ceramic matrix composite article and article formed thereby
JP2011174045A (en) * 2009-12-23 2011-09-08 General Electric Co <Ge> Precursor slurry composition of ceramic matrix composite and sheet molding compound
CN116835987A (en) * 2023-07-19 2023-10-03 东北大学 Preparation method of low-cost boron carbide-nano SiC ceramic composite material

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011173784A (en) * 2009-12-23 2011-09-08 General Electric Co <Ge> Process for producing ceramic matrix composite article and article formed thereby
JP2011174045A (en) * 2009-12-23 2011-09-08 General Electric Co <Ge> Precursor slurry composition of ceramic matrix composite and sheet molding compound
US8899939B2 (en) 2009-12-23 2014-12-02 General Electric Company Process for producing a ceramic matrix composite article and article formed thereby
CN116835987A (en) * 2023-07-19 2023-10-03 东北大学 Preparation method of low-cost boron carbide-nano SiC ceramic composite material

Similar Documents

Publication Publication Date Title
CN108748611B (en) Method for forming ceramic body
EP0428719B1 (en) Method of forming shaped components from mixtures of thermosetting binders and powders having a desired chemistry
CN1041178C (en) Method of preparing a durable air-permeable mold
JPH02172852A (en) Production of ceramics
JP2000095573A (en) Production of powder-formed body and production of sintered body from the formed body
CN111792928A (en) Preparation method of 3D printing ceramic and product thereof
EP3169640B1 (en) Production of a slip and component composed of the slip
CN111138203A (en) Preparation method and application of in-situ cured high-solid-content ceramic slurry
KR100434830B1 (en) Method for Manufacturing Homogeneous Green Bodies from the Powders of Multimodal Particle Size Distribution Using Centrifugal Casting
JP3692682B2 (en) Manufacturing method of ceramic molded body
JPS60171269A (en) Manufacture of complicated shape silicon nitride sintered body
JPH05186280A (en) Production of ceramic porous body
JPH0663684A (en) Production of ceramic core for casting
JP5099658B2 (en) Manufacturing method of large thin ceramic body
JP3541445B2 (en) Powder molding method
JPH0723248B2 (en) Method for manufacturing ceramic molded body
Sato et al. A new near net-shape forming process for alumina
JP4470407B2 (en) Manufacturing method of ceramic molded body
JPH07187852A (en) Ceramic porous body and its production
JPH1112043A (en) Casting of ceramic powder
JPH0339403A (en) Method for sintering metal powder
JPH09255435A (en) Forming of sintered precursor of powder
KR19980077534A (en) Injection molding method of silicon carbide-carbon black system for the production of reaction-sintered silicon carbide
JPS61158403A (en) Method of molding ceramic
JPS612507A (en) Porous durable mold and manufacture thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041026