JPH09255435A - Forming of sintered precursor of powder - Google Patents

Forming of sintered precursor of powder

Info

Publication number
JPH09255435A
JPH09255435A JP8090145A JP9014596A JPH09255435A JP H09255435 A JPH09255435 A JP H09255435A JP 8090145 A JP8090145 A JP 8090145A JP 9014596 A JP9014596 A JP 9014596A JP H09255435 A JPH09255435 A JP H09255435A
Authority
JP
Japan
Prior art keywords
mold
powder
slip
sintering
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8090145A
Other languages
Japanese (ja)
Inventor
Masaaki Takeshita
昌章 竹下
Sumihiko Kurita
澄彦 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koransha Co Ltd
Original Assignee
Koransha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koransha Co Ltd filed Critical Koransha Co Ltd
Priority to JP8090145A priority Critical patent/JPH09255435A/en
Publication of JPH09255435A publication Critical patent/JPH09255435A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To product a complex formed body having thick wall by mixing a polymer coagulating agent to a slip consisting of dispersed powder, pouring the mixture into a mold and allowing to coagulate and cure the mixture. SOLUTION: A slip (high density dispersion) is prepared by mixing and dispersing 100wt.% of ceramic powder such as alumina powder, about 12-50wt.% of a dispersing medium such as water and optionally 0.05-2wt.% of a dispersing agent such as an acrylic acid monomer in a ball mill, etc. Subsequently, about 0.15wt.% of an acrylic amide polymer coagulating agent such as a polyacrylic amide is mixed to the obtained slip under stirring, the resultant mixture is poured into a mold, it has been cured within about 5min after pouring, and the formed sintered precursor is taken out from the mold. Subsequently, the sintering precursor is allowed to stand for a time at a normal temperature to dry it, and then further heated at about 300-600 deg.C to degrease. The degreased precursor is burned at about 1300 deg.C in the air to obtain a dense sintered body.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、粉体を成形した
後、焼結工程を経て製造されるセラミックス、金属、有
機製品の焼結前駆体の成形方法に関わるものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for molding a sintering precursor of ceramics, metals or organic products, which is manufactured through a sintering process after molding a powder.

【0002】[0002]

【従来の技術】従来から粉体を成形した後、焼結工程を
経て製造するセラミックス、金属、金属間化合物、有機
製品の形状取得に関しては、各種の成形方法が用いられ
ている。例えば、乾式プレス法、湿式プレス法、ラバー
プレス法、押し出し法、鋳込み成形法、ドクターブレー
ド法、射出成形法、ホットプレス法などがある。これら
成形方法のうち、鋳込み成形法は、粉体を水などの分散
媒中に分散させた高濃度の懸濁液(スリップ)を作製
し、吸水性を有する鋳型(石膏型、樹脂型)に注型し、
吸水性鋳型の毛細管力によって鋳型面に粉体を着肉させ
る方法である。この方法の特徴は、鋳型の形状を適当に
設計することで複雑形状を有する成形体を容易に取得で
きる点にある。鋳込み成形法による成形体の一例として
は、セラミックス業界における花瓶、人形、皿、タイ
ル、耐火物、衛生陶器をはじめ、曲がり管、ターボロー
ターなどがある。この成形法は、複雑形状を容易に製造
できる特徴を有するが、反面、鋳型から距離が遠くなる
に従い、成形体の密度が低下しやすく、また鋳型形状に
よっては、鋳造と同様に引き巣が発生する。さらに肉厚
物を成形するには長時間を要するなどの欠点がある。
2. Description of the Related Art Conventionally, various molding methods have been used for obtaining the shapes of ceramics, metals, intermetallic compounds, and organic products which are manufactured through a sintering process after molding a powder. For example, there are a dry pressing method, a wet pressing method, a rubber pressing method, an extrusion method, a casting method, a doctor blade method, an injection molding method and a hot pressing method. Of these molding methods, the cast molding method is to prepare a high-concentration suspension (slip) in which powder is dispersed in a dispersion medium such as water, and to prepare a water-absorbing mold (gypsum mold, resin mold). Cast,
This is a method in which the powder is deposited on the surface of the mold by the capillary force of the water-absorbent mold. The feature of this method is that a molded product having a complicated shape can be easily obtained by appropriately designing the shape of the mold. As an example of the molded body by the casting method, there are vases, dolls, plates, tiles, refractories, sanitary ware, bent pipes, turbo rotors, etc. in the ceramics industry. This molding method has the characteristic that complicated shapes can be easily manufactured, but on the other hand, the density of the molded body tends to decrease as the distance from the mold increases, and depending on the mold shape, porosity occurs like casting. To do. Further, there is a defect that it takes a long time to mold a thick product.

【0003】鋳込み成形法の欠点を改善する一つの手段
として特公平7−22931号には、粉体に熱硬化性樹
脂と該樹脂の硬化剤および気散性の液体を混合して自硬
硬化させて、液体の気散処理を行うことで緻密な成形体
を得られ、これを焼結すると優れた特性を有する焼結体
が得られる自硬硬化型の鋳込み成形法が記載されてい
る。
As one means for improving the drawbacks of the casting method, Japanese Examined Patent Publication No. 7-22931 discloses self-hardening by mixing a powder with a thermosetting resin, a curing agent for the resin and a vaporizable liquid. Then, a self-hardening cast molding method is described in which a dense molded body is obtained by subjecting the liquid to an air diffusion treatment, and a sintered body having excellent characteristics can be obtained by sintering this.

【0004】この発明では液体中に均一分散している粒
子と液体をそのままの状態で硬化させる。硬化機構は、
熱硬化性樹脂の3次元的な硬化反応である。この作用に
よって複雑形状で肉厚物の成形体が得られるというもの
である。ここで使用される熱硬化性樹脂は、実施例にも
示されているように硬化剤の併用が不可欠であって硬化
反応が進むとスリップ粘性が上昇しゲル化する。硬化性
樹脂が熱硬化性であるためにスリップ温度の高低が硬化
時間に影響を与える。すなわちスリップの温度管理が必
要である。また硬化反応が10数分以上要すること、荒
い粒子から成る粉体の場合は、硬化反応中にスリップ中
の荒い粒子が沈澱しやすく、注型高さ方向での密度分布
むらが発生しやすい、ゲル化(硬化)した成形体に残存
する液体分を除去するのに手間がかかるなどの問題が残
されている。このように複雑形状で肉厚物で、しかも均
一体が短時間で得られる成形法は未だ開発されていな
い。
In the present invention, the particles uniformly dispersed in the liquid and the liquid are cured as they are. The curing mechanism is
It is a three-dimensional curing reaction of the thermosetting resin. By this action, a thick molded article having a complicated shape can be obtained. The thermosetting resin used here is indispensable to use a curing agent together as shown in Examples, and slip viscosity increases and gels as the curing reaction proceeds. Since the curable resin is thermosetting, the level of the slip temperature affects the curing time. That is, it is necessary to control the slip temperature. Further, the curing reaction requires 10 minutes or more, and in the case of powder composed of coarse particles, the coarse particles in the slip easily precipitate during the curing reaction, and uneven density distribution in the casting height direction easily occurs. There remains a problem that it takes time to remove the liquid component remaining in the gelled (cured) molded body. As described above, no molding method has yet been developed which can obtain a uniform shape in a short time in a complicated shape and a thick material.

【0005】[0005]

【発明が解決しようとする課題】本発明は、かかる問題
点に鑑みてなされたもので、その目的とする所は、複雑
で肉厚形状体でかつ均一体を短時間に容易に成形するこ
とができる粉体の焼結前駆体の成形法を提供することに
ある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to easily form a complex, thick-walled and uniform body in a short time. Another object of the present invention is to provide a method for forming a powdery sintering precursor capable of achieving the above.

【0006】[0006]

【課題を解決するための手段】本発明は、上記問題に関
して鋭意研究を行った結果、次の様な新しい知見を見出
した。即ち、 1.粉体が分散したスリップに高分子凝集剤を混合し、
これを鋳型に注入、硬化せしめること。 2.上記高分子凝集剤の中でアクリルアミド系が好まし
いことを見出した。
As a result of intensive studies on the above problems, the present invention has found the following new findings. That is, 1. Mix a polymer flocculant into the slip in which the powder is dispersed,
Pour this into a mold and let it cure. 2. It has been found that acrylamide type is preferable among the above polymer flocculants.

【0007】[0007]

【発明の実施の形態】粉体が分散したスリップを作製
し、これに高分子凝集剤(例えばアクリルアミド系)を
混合し、吸水性の無い鋳型へ注型すると高分子凝集作用
によってスリップの流動性は消失し、注型されたスリッ
プ全体が一種の硬化現象を生じる。硬化現象が生じると
スリップは固化した状態に変化し、容易に脱型、硬化体
(成形体)の取り扱いが可能となる。
BEST MODE FOR CARRYING OUT THE INVENTION When a slip in which powder is dispersed is prepared, and a polymer flocculant (for example, acrylamide) is mixed and cast into a mold having no water absorption, the fluidity of the slip is caused by the polymer flocculation action. Disappears and the entire cast slip undergoes a kind of hardening phenomenon. When the curing phenomenon occurs, the slip changes to a solidified state, and it becomes possible to easily remove the mold and handle the cured body (molded body).

【0008】本発明の最大の特徴は、この凝集作用であ
る。高分子凝集剤を添加しないスリップを吸水性の無い
鋳型へ注型すると、スリップ中の粉体粒子は、ストーク
スの粒子沈降速度式に従い、鋳型低面に沈降し、鋳型上
部には上澄液が生じ、取り扱い可能な成形体を得ること
はできない。スリップに高分子凝集剤を添加すると、高
分子凝集剤を構成する高分子同士の絡み合いと、粒子表
面への吸着、あるいは、化学結合などの複雑な作用によ
って粒子および分散媒共々、強固にトラップすることで
その系全体が固化するものと考えられる。
The greatest feature of the present invention is this aggregation action. When a slip without adding a polymer flocculant was cast into a mold without water absorption, the powder particles in the slip settled on the lower surface of the mold according to the Stokes particle settling rate equation, and the supernatant liquid was on the upper part of the mold. Occurs, and it is impossible to obtain a handleable molded body. When a polymer coagulant is added to the slip, the particles and the dispersion medium are firmly trapped by the entanglement of the polymers that make up the polymer coagulant and the complex action such as adsorption on the particle surface or chemical bonding. It is thought that the whole system solidifies by that.

【0009】粉体は、焼結工程を経る材料ならばすべて
使用できる。代表的な例としては、セラミックス分野で
はアルミナ、ジルコニア、ムライト、アルミナ−ジルコ
ニア、ムライト−ジルコニアなどの酸化物系粉体、窒化
珪素、窒化硼素、窒化アルミニウムなどの非酸化物系粉
体、およびこれら2種以上の混合粉体、食器、碍子、衛
生陶器などの陶石、長石、粘土類、珪石などを含む粉
体、粉末冶金では、ステンレス粉体、純チタン粉体、チ
タン合金粉体などの金属粉体、さらに金属間化合物とし
て超硬系粉体、サーメット粉体、有機材料としては、フ
ッ素系樹脂粉体などが挙げられる。さらに本発明の成形
法は、短繊維と球状粒子、角張った粒子、扁平粒子など
が混在したスリップであっても、そのまま凝集硬化させ
るために複合組織を有する焼結体を得ることも可能であ
る。
Any powder can be used as long as it is a material that undergoes a sintering process. As typical examples, in the ceramics field, oxide powders such as alumina, zirconia, mullite, alumina-zirconia, and mullite-zirconia, non-oxide powders such as silicon nitride, boron nitride, and aluminum nitride, and these Powders containing two or more kinds of mixed powders, tableware, porcelain, porcelain stones such as sanitary ware, feldspar, clays, silica stones, etc. In powder metallurgy, stainless powder, pure titanium powder, titanium alloy powder, etc. Examples of the metal powder include cemented carbide powder and cermet powder as the intermetallic compound, and fluorine resin powder as the organic material. Furthermore, according to the molding method of the present invention, it is possible to obtain a sintered body having a composite structure in order to coagulate and harden the slip as it is, even if it is a slip in which short fibers and spherical particles, angular particles, flat particles and the like are mixed. .

【0010】粉体が分散したスリップを作製するには、
粉体を分散させるための分散媒を用いる。分散媒は、粉
体と湿潤性、漏れ性に優れ、粉体に悪影響を与えないよ
うな材種を適宜使用する。例えば最も代表的な分散媒は
水であり、その他エチルアルコール、トルエン、ヘキサ
ン、エチレングリコールなどが挙げられ、これらは、粉
体との湿潤性、漏れ性、成形体の乾燥性を改善する目的
で、2種以上を混合して使用することもできる。粉体に
対する分散媒の添加率は、粉体の比重、比表面積、粒度
分布、粒子形状によっても異なるが、概ね12重量%か
ら50重量%の範囲が一応の目安である。
To produce a slip in which powder is dispersed,
A dispersion medium for dispersing the powder is used. As the dispersion medium, a material that has excellent wettability and leakability with the powder and does not adversely affect the powder is appropriately used. For example, the most representative dispersion medium is water, and other examples include ethyl alcohol, toluene, hexane, ethylene glycol, etc., for the purpose of improving wettability with powder, leakage, and dryness of molded articles. Two or more kinds can be mixed and used. The addition ratio of the dispersion medium to the powder varies depending on the specific gravity, the specific surface area, the particle size distribution, and the particle shape of the powder, but is generally in the range of 12% by weight to 50% by weight.

【0011】粉体が分散したスリップを作製する場合、
粉体の分散性が悪い時、あるいは分散媒量を減らす必要
がある時は、分散剤の添加を行う。分散剤は焼結後、焼
結体に悪影響を与えない材種ならば、粉体の分散性、分
散媒量の減量効果を考慮して選択できる。例えば、アル
ミナなどの酸化物セラミックスでは、ポリカルボン酸ア
ンモニウム塩、アクリル酸オリゴマーなどが使用でき
る。また非酸化物系セラミックスでは、アミン系分散剤
などが使用できる。分散剤は、スリップ中の分散媒量を
減少させ、かつ粒子の沈降を防ぐ役割を果たす。なお、
食器、碍子などの原料粉体においては、水ガラスなどの
無機系分散剤を使用しても良い。分散剤の添加率は、粉
体の材種、分散媒量によって異なるが、概ね固形分量と
して0.05重量%から2重量%程度の範囲で添加でき
る。
When making a slip in which powder is dispersed,
When the dispersibility of the powder is poor, or when it is necessary to reduce the amount of dispersion medium, a dispersant is added. The dispersant can be selected in consideration of the dispersibility of the powder and the effect of reducing the amount of the dispersion medium, as long as it is a material type that does not adversely affect the sintered body after sintering. For example, for oxide ceramics such as alumina, polycarboxylic acid ammonium salt, acrylic acid oligomer, etc. can be used. For non-oxide ceramics, an amine dispersant can be used. The dispersant serves to reduce the amount of dispersion medium in the slip and prevent settling of particles. In addition,
Inorganic dispersants such as water glass may be used in raw material powders such as tableware and insulators. The addition rate of the dispersant varies depending on the type of powder and the amount of dispersion medium, but it can be added in the range of about 0.05 to 2% by weight as the solid content.

【0012】高分子凝集剤は、できるだけ少量で強力な
凝集作用を起こすものが好ましく、単なる高分子鎖によ
る増粘剤、例えばポリエチレングリコール、メチルセル
ロース、カルボキシメチルセルロースでは、スリップ系
の粘性を著しく高めることは可能であっても脱型できる
ような強力な凝集硬化作用には乏しい。本発明に必要な
高分子凝集剤とは、スリップ自体を強固に凝集硬化でき
るようなものを指す。
It is preferable that the polymer flocculant exerts a strong flocculating action in a small amount as much as possible, and a thickener based on a mere polymer chain, such as polyethylene glycol, methyl cellulose or carboxymethyl cellulose, does not significantly increase the viscosity of the slip system. Even if it is possible, it does not have a strong coagulative hardening action that allows demolding. The polymer coagulant necessary for the present invention refers to a compound that can firmly coagulate and cure the slip itself.

【0013】代表的な材種は、アクリルアミド系であ
る。本発明で呼ぶアクリルアミド系とは、ポリアクリル
アミドをはじめ、これを加水分解あるいはスルホメチル
化したアニオン系アクリルアミド系、マンニッヒ反応あ
るいはホフマン反応により得れたカチオン系アクリルア
ミド系、ポリアクリルアミド部分鹸化物などの高分子凝
集剤の分子骨格にアクリルアミド分子構造を有するもの
を指す。これらアクリルアミド系凝集剤の粉体に対する
添加率は、粉体の種類、分散媒種、分散剤の有無と添加
率、凝集剤の分子構造、分子量、pHなどによって異な
るが、概ね0.1重量%から5重量%の範囲内で添加で
きる。添加率が0.1重量%未満と極端に少ない場合
は、スリップ全体を鋳型内で凝集硬化させる硬化が不足
し、また脱型後の取り扱いが困難となる。逆に添加率が
5重量%を越える場合は、成形体の焼結工程前の脱脂工
程で長時間を要し、また肉厚物の中心部まで完全脱脂で
きない、あるいは焼結後の機械的特性に悪影響を与える
などの問題が生じやすい。これらを考慮すると上記範囲
で粉体に合わせて添加率を設定することが好ましい。高
分子凝集剤の添加によってスリップは直ちに増粘現象を
生じ、最終的には強固に固化する。
A typical material is an acrylamide type. The acrylamide system referred to in the present invention is a polymer such as polyacrylamide, anion system acrylamide system obtained by hydrolyzing or sulfomethylating it, cationic system acrylamide system obtained by Mannich reaction or Hoffmann reaction, and polyacrylamide partially saponified polymer. It refers to a flocculant having an acrylamide molecular structure in its molecular skeleton. The addition rate of these acrylamide-based flocculants to the powder varies depending on the type of powder, the type of dispersion medium, the presence or absence of the dispersant and the addition rate, the molecular structure of the flocculant, the molecular weight, the pH, etc. It can be added within the range of 5 wt%. If the addition ratio is extremely low, less than 0.1% by weight, the entire slip will be insufficiently hardened by coagulation and hardening in the mold, and handling after demolding will be difficult. On the other hand, if the addition rate exceeds 5% by weight, it takes a long time in the degreasing process before the sintering process of the molded body, and it is not possible to completely degrease the central portion of the thick product, or the mechanical properties after sintering. Problems such as adversely affecting In consideration of these, it is preferable to set the addition rate in the above range according to the powder. The addition of the polymeric coagulant causes the slip to immediately undergo a thickening phenomenon and finally solidify.

【0014】本発明の成形法では、まず上記粉体と分散
媒、必要に応じて分散剤を所定の割合で混合、分散させ
てスリップを作製する。分散法は、ボールミル、微粒分
散機などの湿式分散混合機ならば適時使用できる。この
分散工程で粉体粒子の表面は分散媒に覆われ、かつ分散
剤の吸着およびpH値によって粒子間の静電斥力と分散
剤吸着に伴う立体障害作用によって高濃度の安定したス
リップが作製できる。分散工程でのスリップ中に気泡の
巻き込みが生じた場合は、気泡が焼結後の機械的強度に
影響を及ぼすような製品においては、減圧脱泡や消泡剤
の添加を行う。なお、分散混合時に予め抑泡剤、破泡剤
を少量添加しても良い。
In the molding method of the present invention, first, the powder, the dispersion medium, and, if necessary, the dispersant are mixed and dispersed at a predetermined ratio to prepare a slip. As the dispersion method, a wet dispersion mixer such as a ball mill or a fine particle disperser can be used at any time. In this dispersion step, the surface of the powder particles is covered with the dispersion medium, and the electrostatic repulsion between the particles due to the adsorption of the dispersant and the pH value and the steric hindrance effect due to the adsorption of the dispersant can produce a stable slip of high concentration. . If air bubbles are caught during slippage in the dispersion process, defoaming under reduced pressure or addition of a defoaming agent is carried out for products in which the air bubbles affect the mechanical strength after sintering. A small amount of a defoaming agent or a defoaming agent may be added in advance during dispersion and mixing.

【0015】次に高分子凝集剤をスリップに添加する。
高分子凝集剤は、スリップの入った容器に攪拌しながら
添加して直ちに注型するか、スリップを鋳型に自動注型
する直前に自動定量装置を有する2液混合機、例えばラ
インミキサーなどを使用すれば、高分子凝集剤を均一に
スリップに混合できるため、スムーズな注型が可能であ
る。高分子凝集剤の効果があまりにも迅速で注型できな
い場合は、遅延効果を有する凝集調整剤なども添加でき
る。
The polymeric flocculant is then added to the slip.
The polymer flocculant is added to the container containing the slip while stirring and immediately cast, or a two-liquid mixer having an automatic metering device immediately before the slip is automatically cast into the mold, for example, a line mixer is used. By doing so, the polymer coagulant can be uniformly mixed in the slip, so that smooth casting is possible. When the effect of the polymer flocculant is too quick to cast, a coagulation regulator having a delaying effect can be added.

【0016】鋳型は、吸水性が無く寸法安定性に優れる
材種であれば適宜使用できる。鋳型材の代表的な例で
は、金型、樹脂型、目止めを施した石膏型あるいは崩壊
性鋳型などがある。注型は、通常の常圧注型法が簡便で
あるが、高粘性のスリップの場合は、圧力注型、注型口
に対してキャビティー内に逆テーパがあるような場合
は、減圧注型を行う。
The mold can be appropriately used as long as it is a material type having no water absorption and excellent dimensional stability. Typical examples of the mold material include a mold, a resin mold, a gypsum mold with a seal, and a collapsible mold. The normal atmospheric pressure casting method is simple, but in the case of highly viscous slip, pressure casting, and when there is an inverse taper in the cavity with respect to the casting port, reduced pressure casting I do.

【0017】注型されたスリップは迅速にスリップ全体
を硬化する。硬化した時点で鋳型から脱型する。鋳型と
硬化体との離型性が悪い場合は、鋳型表面にシリコン
系、フッ素系、ワセリン、グリースなどの離型剤を塗布
しておくとスムーズに離型できる。脱型した硬化体(成
形体)は、残存する水分を常温または加熱乾燥操作によ
って除去する。この乾燥は先の熱硬化性樹脂を使用した
硬化成形体の場合と異なり、粒子間に残存する水分は容
易に成形体外へ除去することが可能である。これによっ
て短時間で、かつ割れ、変形なく乾燥が終了する。当然
ながらスリップ中の分散媒量が少ないほど乾燥時間は短
くなる。
The cast slip quickly cures the entire slip. When it is cured, it is released from the mold. When the mold release property between the mold and the cured product is poor, a mold release agent such as silicon-based, fluorine-based, petrolatum, or grease may be applied to the surface of the mold for smooth mold release. The cured product (molded product) that has been demolded removes the residual water content at room temperature or by heating and drying. This drying is different from the case of the cured molded body using the thermosetting resin, and the water remaining between the particles can be easily removed to the outside of the molded body. As a result, the drying is completed in a short time without cracking or deformation. Naturally, the smaller the amount of dispersion medium in the slip, the shorter the drying time.

【0018】次に乾燥体中の全有機成分を脱脂除去す
る。この脱脂は、大気中または非酸化雰囲気中で行う。
おおよそ350℃以上に加熱するのが一応の目安であ
る。
Next, all organic components in the dried product are degreased and removed. This degreasing is performed in the air or a non-oxidizing atmosphere.
A good rule of thumb is to heat it above 350 ° C.

【0019】最後に脱脂体を焼結する。ここで呼ぶ焼結
とは、吸水率を残す半焼結、緻密化させる焼結の両方を
意味する。機械的強度、電気的特性などを要求される粉
体の焼結では、所定の焼結温度にて完全焼結させること
ができる。多孔化構造が必要な場合は、半焼結温度域で
焼結しても良い。いずれにしても本発明の成形法は、こ
の焼結工程を経ることを前提とした焼結前駆体を得るた
めのものである。
Finally, the degreased body is sintered. The term “sintering” as used herein means both semi-sintering that leaves water absorption and sintering that densifies. In the sintering of powder which is required to have mechanical strength and electrical characteristics, it can be completely sintered at a predetermined sintering temperature. When a porous structure is required, it may be sintered in the semi-sintering temperature range. In any case, the molding method of the present invention is for obtaining a sintering precursor on the premise that this sintering step is performed.

【0020】[0020]

【実施例】【Example】

実施例 粉体:アルミナ(純度99.99%、平均粒径0.2ミ
クロン) 100wt% 分散媒:蒸留水 25wt% 分散剤:アクリル酸オリゴマー 0.6wt% 高分子凝集剤:アクリルアミド系 0.5wt% 鋳型:50mm直径×150mmLのキャビティーを有
するステンレス製割型
Example Powder: Alumina (purity 99.99%, average particle size 0.2 micron) 100 wt% Dispersion medium: Distilled water 25 wt% Dispersant: Acrylic acid oligomer 0.6 wt% Polymer flocculant: Acrylamide type 0.5 wt % Mold: Stainless split mold having a cavity of 50 mm diameter x 150 mmL

【0021】アルミナと蒸留水および分散剤を上記割合
で秤量し、アルミナ製ボールミルにて12時間湿式混
合、分散を行いスリップを得た。これを容器に移し入
れ、スリップを機械攪拌機にて攪拌しながら高分子凝集
剤を所定量添加し、これを常圧下で鋳型へ注型した。注
型後スリップの粘性は著しく増加し、約5分後には強固
に硬化した。鋳型を分割した後、硬化体を取り出した。
硬化体は手で十分に取り扱える強度を有し、硬化体には
割れなどの欠陥は認められなかった。これを常温で約半
日放置して乾燥し、さらに80℃の乾燥機内で4時間乾
燥した。乾燥による割れ、変形は認めなかった。なお、
同じ粉体を用いた熱硬化性樹脂による鋳込み成形体は、
乾燥に2倍の時間を要した。
Alumina, distilled water and a dispersant were weighed in the above proportions, wet mixed and dispersed in an alumina ball mill for 12 hours to obtain a slip. This was transferred to a container, a predetermined amount of a polymer flocculant was added while stirring the slip with a mechanical stirrer, and this was cast into a mold under normal pressure. After casting, the viscosity of the slip increased remarkably, and after about 5 minutes, it was strongly cured. After dividing the mold, the cured product was taken out.
The cured product had sufficient strength to be handled by hand, and no defects such as cracks were observed in the cured product. This was left to dry at room temperature for about half a day, and further dried in a dryer at 80 ° C. for 4 hours. No cracking or deformation due to drying was observed. In addition,
The cast molding made of thermosetting resin using the same powder,
It took twice as long to dry.

【0022】これを箱形電気炉に入れて、300℃まで
12時間、350℃まで2時間で昇温し1時間保持後、
さらに600℃まで5時間で昇温し1時間保持後炉冷し
た。この工程でも割れは認めず完全に有機成分が除去さ
れていることを確認した。最後に大気中にて1300
℃、4時間保持、昇温時間8時間のスケジュールで焼結
を行った。得られた焼結体の理論密度に対する相対密度
は99.9%に達し、JISR1601に準拠した3点
曲げ強度値は平均760MPaを示し、熱硬化性樹脂に
よる鋳込み成形体を焼結して得られた曲げ強度値平均7
30MPaと同等以上の優れた機械的強度値を示した。
This was placed in a box-type electric furnace, heated to 300 ° C. for 12 hours, heated to 350 ° C. for 2 hours, and held for 1 hour.
Further, the temperature was raised to 600 ° C. in 5 hours, the temperature was maintained for 1 hour, and the furnace was cooled. No cracks were observed in this process, and it was confirmed that the organic components were completely removed. Finally in the air 1300
Sintering was performed according to a schedule of holding the temperature for 4 hours and raising the temperature for 8 hours. The relative density of the obtained sintered body with respect to the theoretical density reached 99.9%, the three-point bending strength value based on JISR1601 showed an average of 760 MPa, and it was obtained by sintering a cast molded body of a thermosetting resin. Bending strength value average 7
An excellent mechanical strength value equal to or higher than 30 MPa was exhibited.

【0023】実施例 粉体:チタン粉末(平均粒径5ミクロン) 100wt
% 分散媒:水+エチルアルコール 20wt% 高分子凝集剤:アクリルアミド系 2.0wt% 鋳型:ゴルフヘッド形状を有する樹脂製割型
Example Powder: Titanium powder (average particle size 5 μm) 100 wt
% Dispersion medium: Water + ethyl alcohol 20 wt% Polymeric flocculant: Acrylamide type 2.0 wt% Mold: Resin split mold having a golf head shape

【0024】実施例と同様にスリップを作製した。こ
こでエチルアルコールは、チタン粉末との漏れ性を改善
する目的で添加したものであって、水/エチルアルコー
ル=98/2重量比の割合である。スリップの入った容
器と高分子凝集剤液が入った容器を別々に用意し、2液
混合型のラインミキサー内で所定の比率になるように両
液を自動混合しながら鋳型へ注型した。注型直後からス
リップ粘性が急激に増加し5分間で強固に固化した。鋳
型を分割し硬化体を脱型した。得られたゴルフヘッド形
状物を前例と同様に乾燥を行い、真空脱脂炉にて有機成
分を除去して真空炉にて1300℃、2時間保持、昇温
5時間の条件下で焼結した。焼結体はチタンの理論密度
に対する相対密度値で99.6%を示し、完全焼結した
ことを確認した。
A slip was prepared in the same manner as in the example. Here, ethyl alcohol was added for the purpose of improving the leakability with the titanium powder, and the ratio of water / ethyl alcohol was 98/2 by weight. A container containing a slip and a container containing a polymer coagulant liquid were separately prepared, and were cast into a mold while automatically mixing both liquids in a two-liquid mixing type line mixer so as to have a predetermined ratio. Immediately after casting, the slip viscosity rapidly increased and solidified in 5 minutes. The mold was divided and the cured product was demolded. The obtained golf head shaped article was dried in the same manner as in the previous example, the organic components were removed in a vacuum degreasing furnace, and the resultant was sintered in a vacuum furnace under conditions of 1300 ° C. for 2 hours and a temperature increase of 5 hours. The relative density value of the sintered body with respect to the theoretical density of titanium was 99.6%, and it was confirmed that the sintered body was completely sintered.

【0025】実施例 粉体:炭化タングステン+コバルト系超硬(平均粒径4
ミクロン)100wt% 分散媒:エタノール 12.5wt% 分散剤:フタル酸系共重合体 1.1wt% 高分子凝集剤:アクリルアミド系 0.3wt% 鋳型:外径15mm、200Lのドリルキャビティを有
するシリコーン樹脂型
Example Powder: Tungsten Carbide + Cobalt Carbide (Average Particle Size 4
Micron) 100 wt% Dispersion medium: Ethanol 12.5 wt% Dispersant: Phthalic acid type copolymer 1.1 wt% Polymeric flocculant: Acrylamide type 0.3 wt% Mold: Silicone resin having an outer diameter of 15 mm and a drill cavity of 200 L Type

【0026】実施例、と同様にスリップを作製後、
高分子凝集剤を加え鋳型へ注型した。なお鋳型形状が螺
旋形状を有し、鋳型のキャビティーが狭い部位があるた
め、鋳型は減圧器内に設置して約−700mHgの減圧
下で注型した。スリップは注型後に直ぐに凝集による増
粘現象を生じ、注型後約3分で強固に固化した。固化
後、成形体を鋳型から抜き取り、常温で5時間乾燥後、
80℃にて2時間加熱乾燥した。これを水素雰囲気下で
脱脂したのち、1260℃、2時間保持、昇温6時間、
水素雰囲気下条件にて焼結した。焼結体は完全に緻密化
し、螺旋形状を有する超硬ドリルを得た。
After the slip was prepared in the same manner as in the example,
A polymer flocculant was added and cast into a mold. Since the mold had a spiral shape and the mold had a narrow cavity, the mold was placed in a depressurizer and cast under a reduced pressure of about -700 mHg. The slip caused a thickening phenomenon due to aggregation immediately after casting, and solidified solidly in about 3 minutes after casting. After solidification, the molded body is removed from the mold and dried at room temperature for 5 hours,
It heat-dried at 80 degreeC for 2 hours. After degreasing this in a hydrogen atmosphere, holding at 1260 ° C. for 2 hours, heating for 6 hours,
Sintering was performed under a hydrogen atmosphere. The sintered body was completely densified, and a carbide drill having a spiral shape was obtained.

【0027】[0027]

【発明の効果】本発明の粉体の焼結前駆体の成形法は、
セラミックス業界では、和洋飲食器、美術陶磁器、碍
子、耐火物、構造用セラミックス部材用各種粉体、粉末
冶金業界では、鉄、ステンレス、チタン系焼結体用各種
粉体、金属間化合物焼結用粉体、有機材料業界における
フッ素系樹脂用粉体などを用いた焼結を前提とした成形
法として極めて有用であり、以下のような利点がある。
The method for molding the powdery sintering precursor of the present invention comprises:
In the ceramics industry, Japanese and Western food and drink, art porcelain, insulators, refractories, various powders for structural ceramic members, in the powder metallurgy industry, various powders for iron, stainless steel, titanium-based sintered bodies, and intermetallic compound sintering It is extremely useful as a molding method on the premise of sintering using powder, powder for fluorine resin in the organic material industry, etc., and has the following advantages.

【0028】(1)複雑形状が取得できる。 (2)肉厚物が取得できる。 (3)短時間で成形が可能である。 (4)自動化による製造コストが安価である。 (5)焼結工程を伴う殆どの製造業に対応できる。(1) A complex shape can be acquired. (2) Thick products can be obtained. (3) Molding is possible in a short time. (4) The manufacturing cost by automation is low. (5) Applicable to most manufacturing industries that involve a sintering process.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 粉体が分散したスリップに高分子凝集剤
を混合し、鋳型へ注入、凝集硬化せしめることを特徴と
する粉体の焼結前駆体の成形方法。
1. A method of molding a powdery sintering precursor, which comprises mixing a polymer coagulant with a slip in which powder is dispersed, injecting it into a mold, and coagulating and curing it.
【請求項2】 上記高分子凝集剤がアクリルアミド系で
あることを特徴とする特許請求の範囲第一項に記載の成
形方法。
2. The molding method according to claim 1, wherein the polymer flocculant is an acrylamide type.
JP8090145A 1996-03-18 1996-03-18 Forming of sintered precursor of powder Pending JPH09255435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8090145A JPH09255435A (en) 1996-03-18 1996-03-18 Forming of sintered precursor of powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8090145A JPH09255435A (en) 1996-03-18 1996-03-18 Forming of sintered precursor of powder

Publications (1)

Publication Number Publication Date
JPH09255435A true JPH09255435A (en) 1997-09-30

Family

ID=13990342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8090145A Pending JPH09255435A (en) 1996-03-18 1996-03-18 Forming of sintered precursor of powder

Country Status (1)

Country Link
JP (1) JPH09255435A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1125794C (en) * 1999-02-05 2003-10-29 北京航空材料研究院 Process for synthesizing composite ceramic powder body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1125794C (en) * 1999-02-05 2003-10-29 北京航空材料研究院 Process for synthesizing composite ceramic powder body

Similar Documents

Publication Publication Date Title
CN105669205B (en) The method that fine and close solid-phase sintered silicon carbide is prepared using grain composition powder as raw material
JPH09202673A (en) Forming of shaped material
JP4589491B2 (en) Silicon carbide powder, method for producing green body, and method for producing silicon carbide sintered body
CN1041178C (en) Method of preparing a durable air-permeable mold
CN101348376B (en) Double-component monomer system for ceramic material gel pouring moulding and use method thereof
JP4014256B2 (en) Powder molding method
JPH09255435A (en) Forming of sintered precursor of powder
CN1092168C (en) Non-oxygen polymerization-inhibiting gel injection process for preparing ceramic parts
JPH06227854A (en) Production of formed ceramic article
KR20000040417A (en) Method for producing silica sleeve for hearth roll
JP2001247367A (en) Silicon carbide sintered compact and method for producing the same
JPH0663684A (en) Production of ceramic core for casting
Sato et al. A new near net-shape forming process for alumina
JP4701494B2 (en) Method for producing sintered boron carbide
KR20030013542A (en) Method for Manufacturing Homogeneous Green Bodies from the Powders of Multimodal Particle Size Distribution Using Centrifugal Casting
JPH10101437A (en) Forming of powder assuming sintering
Cao et al. Study on Molding of Fused-Silica Material by Pressure Slip-Casting from Alcohol-Based Slurry
JP2005008482A (en) Yttrium oxide sintered compact and its producing method
JP3463885B2 (en) Ceramic porous body and method of manufacturing the same
JPH01261251A (en) Forming of powder
JPS61158403A (en) Method of molding ceramic
JPH11114403A (en) Molding method for ceramic powder
JPH038534A (en) Rare earth oxide slurry
JP3933329B2 (en) Ceramic composition, ceramic molded body and method for producing the same
JP3036830B2 (en) Sialon casting method