JPH0693983B2 - Ethylene-tetrafluoroethylene copolymer porous membrane - Google Patents

Ethylene-tetrafluoroethylene copolymer porous membrane

Info

Publication number
JPH0693983B2
JPH0693983B2 JP24417285A JP24417285A JPH0693983B2 JP H0693983 B2 JPH0693983 B2 JP H0693983B2 JP 24417285 A JP24417285 A JP 24417285A JP 24417285 A JP24417285 A JP 24417285A JP H0693983 B2 JPH0693983 B2 JP H0693983B2
Authority
JP
Japan
Prior art keywords
film
ethylene
porous membrane
porous
tetrafluoroethylene copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24417285A
Other languages
Japanese (ja)
Other versions
JPS62106808A (en
Inventor
善比古 武藤
司和 三浦
Original Assignee
旭化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成工業株式会社 filed Critical 旭化成工業株式会社
Priority to JP24417285A priority Critical patent/JPH0693983B2/en
Publication of JPS62106808A publication Critical patent/JPS62106808A/en
Publication of JPH0693983B2 publication Critical patent/JPH0693983B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、エチレン−テトラフルオロエチレン共重合体
からなる優れた耐薬品性、優れた耐熱性、優れた過性
能、優れた機械的物性を備え、かつ微細な孔からなる均
一多孔構造を有する多孔膜に関するものである。特に本
発明は優れた耐熱性と優れた過性能を備えたミクロフ
イルターに適する多孔膜、さらには優れた耐薬品性を活
かして、強酸,強アルカリ等の薬品精製用ミクロフイル
ターに好適な多孔膜に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention provides excellent chemical resistance consisting of ethylene-tetrafluoroethylene copolymer, excellent heat resistance, excellent overperformance, and excellent mechanical properties. The present invention relates to a porous membrane which has a uniform porous structure including fine pores. In particular, the present invention is a porous film suitable for a microfilter having excellent heat resistance and excellent overperformance, and a porous film suitable for a microfilter for chemical purification of strong acids, strong alkalis, etc. by utilizing its excellent chemical resistance. It is about.

(従来技術とその問題点) フツ素樹脂は耐薬品性、耐熱性に優れた樹脂であるが、
さらに、優れた機械的物性をも兼ねそなえたフツ素樹脂
として、エチレン−テトラフルオロエチレン共重合体が
選ばれる。このフツ素樹脂からなる多孔膜は、耐熱性、
耐薬品性、耐久性の優れた多孔膜として期待される。
(Prior art and its problems) Fluorocarbon resin is a resin with excellent chemical resistance and heat resistance,
Furthermore, an ethylene-tetrafluoroethylene copolymer is selected as a fluorine resin that also has excellent mechanical properties. This porous film made of fluorine resin has heat resistance,
Expected as a porous film with excellent chemical resistance and durability.

エチレン−テトラフルオロエチレン共重合体からなる多
孔膜として、既に特開昭50−136354号公報、特開昭54−
158465号公報、特開昭59−147030号公報が知られてい
る。特開昭50−136354号公報は、エチレン−テトラフル
オロエチレン共重合体微粉末をスチレンモノマーとスラ
リー混合液を作りスチレン重合後膜化してスチレン重合
体を溶出して多孔膜を作る方法であるが、この方法で得
られた多孔膜は孔径が10μと大きい上、透過性が非常に
低くミクロフイルターに適さない。特開昭54−158465号
公報は、エチレン−テトラフルオロエチレン共重合体フ
イルムを荷電粒子照射した後苛性ソーダ水溶液でエツチ
ングして多孔膜を作る方法であるが、得られた多孔膜は
三次元網状構造を有しないので過性能が不良な上機械
的物性にも劣り、均一な中空糸状多孔膜が得られず、さ
らに原子炉を用いるので大量生産に向かない問題があ
る。特開昭59−147030号公報は、エチレン−テトラフル
オロエチレン共重合体フイルムにレジストを塗布して有
孔レジストパターンを形成した後スパツタエツチング処
理してレジストパターンに対応する貫通孔を形成して多
孔膜を作る方法であるが、この多孔膜も次元網状構造を
有しないので過性能が不良な上、機械的物性にも劣
り、均一な中空糸状多孔膜を得ることが困難で、さらに
長時間のスパツタエツチング処理を必要とするので生産
性にも問題がある。以上の問題点を改善する方法とし
て、特開昭55−79011号公報、特開昭56−159128号公
報、特開昭57−28139号公報、特開昭58−93798号公報、
特開昭58−179297号公報等、エチレン−テトラフルオロ
エチレン共重合体、微粉珪酸、ジオクチルフタレートを
混合後溶融成形し、ついで該成形物より微粉珪酸、ジオ
クチルフタレートを抽出して多孔膜を作る方法が知られ
ている。
As a porous film made of an ethylene-tetrafluoroethylene copolymer, there have already been disclosed in JP-A-50-136354 and JP-A-54-1354.
JP-A-158465 and JP-A-59-147030 are known. Japanese Unexamined Patent Publication No. 50-136354 discloses a method in which a fine powder of an ethylene-tetrafluoroethylene copolymer is mixed with a styrene monomer to prepare a slurry mixture, and after styrene polymerization, a film is formed and the styrene polymer is eluted to form a porous film. The porous membrane obtained by this method has a large pore size of 10 μm and has a very low permeability and is not suitable for a microfilter. JP-A-54-158465 discloses a method of irradiating an ethylene-tetrafluoroethylene copolymer film with charged particles and then etching the film with a caustic soda aqueous solution to form a porous film. The obtained porous film has a three-dimensional network structure. Since it does not have such properties, there is a problem that it is not suitable for mass production because it is inferior in overperformance and inferior in mechanical properties, a uniform hollow fiber-like porous membrane cannot be obtained, and a reactor is used. In JP-A-59-147030, an ethylene-tetrafluoroethylene copolymer film is coated with a resist to form a perforated resist pattern, and then a sputtering process is performed to form a through hole corresponding to the resist pattern. Although it is a method of making a porous membrane, this porous membrane also has poor dimensional performance because it does not have a dimensional network structure, and also has poor mechanical properties, and it is difficult to obtain a uniform hollow fiber-like porous membrane, and it takes a long time. Therefore, there is a problem in productivity as well, since it requires a spatula etching process. As a method for improving the above problems, JP-A-55-79011, JP-A-56-159128, JP-A-57-28139, JP-A-58-93798,
JP-A-58-179297 and the like, a method of forming a porous film by mixing ethylene-tetrafluoroethylene copolymer, finely divided silicic acid and dioctyl phthalate and then melt-molding the mixture, and then extracting finely-divided silicic acid and dioctyl phthalate from the molded product. It has been known.

しかしこの方法で得られる多孔膜は、多孔構造の均一性
が十分なものでなく、平均孔径に比べ桁ちがいに大きな
空孔(void)が多く存在する。従つて、この多孔膜は三
次元網状構造を有する膜ではあるが網を構成する繊維の
本数が膜の厚さ方向で少なく、ミクロフイルターとして
用いたとき微粒子の除去性が劣る。さらにこの多孔膜は
ピンホール(異常粗大連通孔)発生頻度が大きく、又、
膜の品質が不安定(性能のバラツキ大)で生産性(良品
の収率)が劣る問題もあつた。
However, the porous membrane obtained by this method does not have sufficient uniformity in the porous structure, and has many voids that are orders of magnitude larger than the average pore size. Therefore, although this porous membrane is a membrane having a three-dimensional network structure, the number of fibers constituting the network is small in the thickness direction of the membrane, and when used as a microfilter, the removability of fine particles is poor. Furthermore, this porous membrane has a high frequency of pinholes (abnormally large communicating holes), and
There was also a problem that the quality of the film was unstable (the performance varied greatly) and the productivity (yield of good products) was poor.

以上のように、エチレン−テトラフルオロエチレン共重
合体からなる多孔膜として満足できるものが従来なかつ
た。
As described above, there has been no satisfactory porous membrane made of an ethylene-tetrafluoroethylene copolymer.

(問題点を解決するための手段) 本発明者らは、エチレン−テトラフルオロエチレン共重
合体からなる優れた耐薬品性、優れた耐熱性、優れた
過特性、優れた機械的物性を備え、かつ微細な孔からな
る均一多孔構造を有する多孔膜について鋭意検討した結
果、本発明を完成するに至つた。
(Means for Solving Problems) The inventors of the present invention have excellent chemical resistance composed of an ethylene-tetrafluoroethylene copolymer, excellent heat resistance, excellent over-characteristics, excellent mechanical properties, As a result of extensive studies on a porous membrane having a uniform porous structure composed of fine pores, the present invention has been completed.

即ち本発明は、特許請求の範囲に記載の多孔膜を提供す
る。
That is, the present invention provides the porous membrane described in the claims.

以下に、まず本発明多孔膜の特徴について説明する。The features of the porous membrane of the present invention will be described below.

本発明において、多孔膜素材として、耐薬品性、耐熱
性、機械的物性にすぐれることからエチレン−テトラフ
ルオロエチレン共重合体が選ばれる。
In the present invention, an ethylene-tetrafluoroethylene copolymer is selected as the porous membrane material because it has excellent chemical resistance, heat resistance and mechanical properties.

本発明の多孔膜において、平均孔径0.01〜5μが好まし
く、0.05〜1μがさらに好ましい。0.01μ未満では透過
性が低すぎ又、5μを超えると微粒子の除去性が悪くい
ずれも好ましくない。気孔率は40〜90%が好ましく、40
%未満では透過性が低すぎ、又、90%を超えると機械的
物性の低下が著しくいずれも好ましくない。
In the porous membrane of the present invention, the average pore size is preferably 0.01 to 5 µ, more preferably 0.05 to 1 µ. If it is less than 0.01 μ, the permeability is too low, and if it exceeds 5 μ, the removability of fine particles is poor and neither is preferable. Porosity is preferably 40-90%, 40
If it is less than 100%, the permeability is too low, and if it exceeds 90%, the mechanical properties are remarkably deteriorated, and neither is preferable.

本発明の多孔膜は三次元網状構造を有する。この三次元
網状構造とは、多孔膜の表面及び各方向の断面におい
て、樹脂から成る網状構造が観測される多孔構造のこと
であつて、連通孔を有する。いわゆるスポンジ構造を指
す。このような三次元網状構造は、多孔膜として強度的
に優れ、かつこの多孔膜をフイルター用に使用する場合
は、スクリーンを多数枚積層したのと同じ効果により微
粒子除去性に優れている。また、網状構造を構成する繊
維とは、孔を取り囲む網状樹脂部のことであり、便宜上
繊維と表現しているが、その形状については特に制限は
なく、三次元網状構造を形成するものであれば、繊維状
以外に薄膜状、結節状、さらに不定形なものでも差しつ
かえない。
The porous membrane of the present invention has a three-dimensional network structure. The three-dimensional network structure is a porous structure in which a network structure made of resin is observed on the surface of the porous film and the cross section in each direction, and has a communicating hole. Refers to the so-called sponge structure. Such a three-dimensional network structure is excellent in strength as a porous film, and when this porous film is used for a filter, it is excellent in fine particle removability due to the same effect as that of laminating a large number of screens. Further, the fiber constituting the network structure is a network resin portion surrounding the hole, and is expressed as a fiber for convenience, but its shape is not particularly limited, and it may form a three-dimensional network structure. For example, in addition to fibrous materials, thin films, nodules, and irregular shapes can be used.

本発明において、網状構造を構成する繊維の本数Nが膜
の厚さ方向1mm当りN≧2P/D、好ましくはN≧5P/Dなる
ことが必要である。但し、Pは気孔率(%)、Dは平均
孔径(μ)である。N<2P/Dではフイルターとして使用
したとき微粒子除去効果に劣り好ましくない。
In the present invention, it is necessary that the number N of fibers constituting the network structure is N ≧ 2 P / D, preferably N ≧ 5 P / D per 1 mm in the thickness direction of the film. However, P is the porosity (%) and D is the average pore diameter (μ). When N <2P / D, it is not preferable because it is inferior in the effect of removing fine particles when used as a filter.

さらに、最大孔径と平均孔径の比は4以下が好ましい、
4を超えると微粒子除去効果に劣る傾向が出てくる。な
お、最大孔径はバブルポイント法(ASTM F316−70)に
より測定する。
Further, the ratio of the maximum pore diameter to the average pore diameter is preferably 4 or less,
If it exceeds 4, the fine particle removing effect tends to be poor. The maximum pore size is measured by the bubble point method (ASTM F316-70).

多孔膜の膜厚は、0.025〜2.5mmが好ましく、0.025mm未
満では機械的物性に劣り、又、2.5mmを超えると透過性
が劣る傾向でいずれも好ましくないことがある。
The thickness of the porous film is preferably 0.025 to 2.5 mm, and if it is less than 0.025 mm, the mechanical properties are poor, and if it exceeds 2.5 mm, the permeability tends to be poor, which is not preferable in some cases.

膜の形状としては中空糸状、チユーブ状、平膜状等が可
能であるが、ミクロフイルター用途において、モジユー
ル化した際の装置のコンパクト性等の理由で中空糸状が
好ましい。
The shape of the membrane may be a hollow fiber shape, a tube shape, a flat membrane shape or the like, but in a microfilter application, a hollow fiber shape is preferable because of the compactness of the device when it is modularized.

次に、本発明多孔膜の製法の特徴について説明する。Next, the features of the method for producing the porous membrane of the present invention will be described.

本発明において、エチレン−テトラフルオロエチレン共
重合体、無機微粉体、クロロトリフルオロエチレンオリ
ゴマー又はクロロトリフルオロエチレンオリゴマーとク
ロロトリフルオロエチレンオリゴマーを除くsp値5〜11
の耐熱性有機物質の混合物が使用される。
In the present invention, ethylene-tetrafluoroethylene copolymer, inorganic fine powder, chlorotrifluoroethylene oligomer or sp value excluding chlorotrifluoroethylene oligomer and chlorotrifluoroethylene oligomer 5-11
A mixture of the above heat-resistant organic substances is used.

無機微粉体は比表面積50〜500m2/gかつ平均一次粒子径
が0.005〜0.5μの範囲にある微小粒子が好ましく、材質
は珪酸、珪酸カルシウム、珪酸アルミニウム、酸化マグ
ネシウム、アルミナ、炭酸カルシウム、カオリン、クレ
ー、珪酸土等が用いられる。これらのうち微粉珪酸が特
に好ましい。なお、平均一次粒子径とは微粉体単粒子の
径の平均値のことであり、単粒子の凝集体(二次粒子)
の径ではない。平均一次粒子径は電子顕微鏡により測定
できる。
The inorganic fine powder is preferably fine particles having a specific surface area of 50 to 500 m 2 / g and an average primary particle diameter of 0.005 to 0.5 μ, and the material is silicic acid, calcium silicate, aluminum silicate, magnesium oxide, alumina, calcium carbonate, kaolin. , Clay, silicate and the like are used. Of these, finely divided silicic acid is particularly preferable. The average primary particle diameter is the average value of the diameters of fine powder single particles, and is an aggregate of single particles (secondary particles).
Is not the diameter of. The average primary particle diameter can be measured by an electron microscope.

本発明において、クロロトリフルオロエチレンオリゴマ
ーの使用が必須であり、これを用いることにより均一孔
構造を有する微粒子除去性にすぐれた多孔膜を、安定し
た膜品質で、生産性よく製造することが初めて可能とな
つた。クロロトリフルオロエチレンオリゴマーは、クロ
ロトリフルオロエチレンの4〜20量体が好ましく、8〜
15量体がさらに好ましく、9〜12量体が最も好ましい。
3量体以下では耐熱性が低くて溶融成形時の蒸散が大き
く、かつ多孔膜の透過性が小さくて好ましくなく、21量
体以上では混合作業性が悪く、かつ抽出性も悪くて好ま
しくない。なお、本発明におけるクロロトリフルオロエ
チレンオリゴマーの量体数は、各種量体数のクロロトリ
フルオロエチレンオリゴマーの混合物からなるクロロト
リフルオロエチレンオリゴマーにおいては平均の量体数
である。
In the present invention, the use of a chlorotrifluoroethylene oligomer is essential, and by using this, it is the first time to produce a porous film having a uniform pore structure and excellent in fine particle removal with stable film quality and high productivity. It was possible. The chlorotrifluoroethylene oligomer is preferably a 4- to 20-mer of chlorotrifluoroethylene, and 8 to
The 15-mer is more preferable, and the 9- to 12-mer is most preferable.
If it is a trimer or less, it is not preferable because the heat resistance is low, the evaporation at the time of melt molding is large, and the permeability of the porous membrane is small, and if it is 21 or more, the mixing workability is poor and the extractability is poor. The number of chlorotrifluoroethylene oligomers in the present invention is an average number of chlorotrifluoroethylene oligomers composed of a mixture of various chlorotrifluoroethylene oligomers.

本発明において、クロロトリフルオロエチレンオリゴマ
ーとクロロトリフルオロエチレンオリゴマーを除くsp値
5〜11の耐熱性有機物質との混合物を用いることにより
多孔膜の孔径調節が容易となる。即ち、耐熱性有機物質
の選定及び/又はクロロトリフルオロエチレンオリゴマ
ーと耐熱性有機物質との混合比を調節することにより望
みの孔径に容易に孔径のコントロールが可能となる。
In the present invention, the use of a mixture of a chlorotrifluoroethylene oligomer and a heat-resistant organic substance having an sp value of 5 to 11 excluding the chlorotrifluoroethylene oligomer makes it easy to control the pore diameter of the porous membrane. That is, the pore diameter can be easily controlled to a desired pore diameter by selecting the heat-resistant organic material and / or adjusting the mixing ratio of the chlorotrifluoroethylene oligomer and the heat-resistant organic material.

なお、クロロトリフルオロエチレンオリゴマーとsp値11
を超す耐熱性有機物質との混合物を用いると(sp値5未
満の耐熱性有機物質は現在見当らず)クロロトリフルオ
ロエチレンオリゴマーとsp値11を超す耐熱性有機物質と
の相溶性が悪く、得られた膜の孔径が大きすぎ不均一孔
構造を有しており好ましくない。
In addition, chlorotrifluoroethylene oligomer and sp value 11
When a mixture with a heat-resistant organic substance having a sp value of more than 11 is used (no heat-resistant organic substance having an sp value of less than 5 is presently found), the compatibility between the chlorotrifluoroethylene oligomer and the heat-resistant organic substance having an sp value of more than 11 is poor and The pore size of the obtained membrane is too large and has a non-uniform pore structure, which is not preferable.

本発明における耐熱性有機物質とは、1気圧における沸
点が少なくとも200℃以上好ましくは250℃以上なる耐熱
性を備え、本発明多孔膜の溶融成形時に液体である有機
物質である。sp値が5〜11の耐熱性有機物質として、シ
リコンオイル、パーフルオロポリエーテルオリゴマー、
フタル酸エステル、トリメリツト酸エステル、セバチン
酸エステル、アジピン酸エステル、アゼライン酸エステ
ル、リン酸エステル等が挙げられる。
The heat-resistant organic substance in the present invention is an organic substance having a heat resistance such that the boiling point at 1 atm is at least 200 ° C. or higher, preferably 250 ° C. or higher, and is a liquid when melt-molding the porous membrane of the present invention. Silicone oil, perfluoropolyether oligomer, as a heat-resistant organic substance with an sp value of 5 to 11,
Examples thereof include phthalic acid ester, trimellitic acid ester, sebacic acid ester, adipic acid ester, azelaic acid ester, and phosphoric acid ester.

これらの内、特にシリコンオイル、パーフルオロポリエ
ーテルオリゴマー、トリメリツト酸エステル、が好まし
い。
Of these, silicone oil, perfluoropolyether oligomer and trimellitate ester are particularly preferable.

特に、シリコンオイルが、溶融成形時の熱安定性、価格
等の点からより好ましい。シリコンオイルとはシロキサ
ン構造をもつた耐熱性有機物質で、ジメチルシリコン、
メチルフエニルシリコン、ジフエニルシリコン等であ
る。
In particular, silicone oil is more preferable from the viewpoints of thermal stability during melt molding, price, and the like. Silicon oil is a heat-resistant organic substance with a siloxane structure, dimethyl silicone,
Examples include methyl phenyl silicon and diphenyl silicon.

クロロトリフルオロエチレンオリゴマーとクロロトリフ
ルオロエチレンオリゴマーを除くsp値5〜11の耐熱性有
機物質との混合比は、耐熱性有機物質の種類により異な
るが、一般にクロロトリフルオロエチレンオリゴマー1
容量に対して耐熱性有機物質10容量以下が好ましく、さ
らに好ましくは4容量以下である。10容量を超すと得ら
れる膜の孔径が大きくなる傾向となり、かつ、不均一孔
構造を有し易くなり、ピンホール(異常粗大連続孔)が
発生する傾向が出てくる。耐熱性有機物質がシリコンオ
イルの場合は2容量以下が好ましい。
The mixing ratio of the chlorotrifluoroethylene oligomer and the heat-resistant organic substance having an sp value of 5 to 11 excluding the chlorotrifluoroethylene oligomer varies depending on the kind of the heat-resistant organic substance.
The volume of the heat-resistant organic substance is preferably 10 volumes or less, more preferably 4 volumes or less. If it exceeds 10 volumes, the pore size of the obtained film tends to be large, and the structure tends to have a non-uniform pore structure, and pin holes (abnormally large continuous pores) tend to occur. When the heat-resistant organic substance is silicone oil, it is preferably 2 volumes or less.

本発明の多孔膜を製造するに当つて、まずエチレン−テ
トラフルオロエチレン共重合体無機微粉体、クロロトリ
フルオロエチレンオリゴマー又はクロロトリフルオロエ
チレンオリゴマーとクロロトリフルオロエチレンオリゴ
マーを除くsp値5〜11の耐熱性有機物質の混合物を混合
する。その混合割合は、エチレン−テトラフルオロエチ
レン共重合体10〜60容量%、好ましくは15〜40容量%、
無機微粉体7〜42容量%、好ましくは10〜20容量%、ク
ロロトリフルオロエチレンオリゴマー又は耐熱性有機物
質との混合物30〜75容量%、好ましくは50〜70容量%で
ある。
In producing the porous membrane of the present invention, first of all, an ethylene-tetrafluoroethylene copolymer inorganic fine powder, a chlorotrifluoroethylene oligomer or a sp value of 5 to 11 excluding a chlorotrifluoroethylene oligomer and a chlorotrifluoroethylene oligomer is used. Mix the mixture of refractory organic materials. The mixing ratio is ethylene-tetrafluoroethylene copolymer 10 to 60% by volume, preferably 15 to 40% by volume,
The inorganic fine powder is 7 to 42% by volume, preferably 10 to 20% by volume, and the mixture with the chlorotrifluoroethylene oligomer or the heat-resistant organic substance is 30 to 75% by volume, preferably 50 to 70% by volume.

エチレン−テトラフルオロエチレン共重合体が10容量%
未満では樹脂が少なすぎて強度が小さく成形性も悪く、
60容量%を超えると気孔率の大きい多孔膜が得られず好
ましくない。無機微粉体が7容量%未満では、成形が困
難となり、42容量%を超えると溶融時の流動性が悪く、
かつ得られる成形品は脆く実用に供することが出来な
い。クロロトリフルオロエチレンオリゴマー又はこのも
のと耐熱性有機物質との混合物が30容量%未満では、得
られる多孔膜の気孔率は40%を下まわり、透過性のすぐ
れた多孔膜が得られず、75容量%を超えると成形が困難
となり、機械的強度の高い多孔膜が得られない。
10% by volume of ethylene-tetrafluoroethylene copolymer
If it is less than, the resin is too small and the strength is small and the moldability is poor,
If it exceeds 60% by volume, a porous film having a large porosity cannot be obtained, which is not preferable. If the inorganic fine powder is less than 7% by volume, molding becomes difficult, and if it exceeds 42% by volume, the fluidity at the time of melting is poor.
Moreover, the obtained molded product is brittle and cannot be put to practical use. If the content of the chlorotrifluoroethylene oligomer or a mixture of the chlorotrifluoroethylene oligomer and the heat-resistant organic substance is less than 30% by volume, the porosity of the obtained porous membrane is less than 40%, and a porous membrane having excellent permeability cannot be obtained. If it exceeds the capacity%, molding becomes difficult and a porous film having high mechanical strength cannot be obtained.

前記各成分の混合は、ヘンシエルミキサー、V−ブレン
ダー、リボンブレンダー等の混合機で実施される。混合
順序は、各成分を同時に混合するよりも、まず無機微粉
体とクロロトリフルオロエチレンオリゴマー又は耐熱性
有機物質との混合物を混合し、次いでエチレン−テトラ
フルオロエチレン共重合体を配合して混合するのが好ま
しい。この混合物はさらに押出機等の溶融混練装置によ
り混練されることが好ましい。得られた混練物は必要に
応じて粉砕機で粉砕したのち、押出機等により平膜状、
中空膜状等に溶融成形される。又、混合物をニーダール
ーダー等の混練押出両機能を有する装置により直接成形
することも可能である。
The mixing of the above components is carried out by a mixer such as a Henschel mixer, a V-blender, a ribbon blender, or the like. The mixing order is as follows. First, the mixture of the inorganic fine powder and the chlorotrifluoroethylene oligomer or the heat-resistant organic substance is mixed, and then the ethylene-tetrafluoroethylene copolymer is mixed and mixed, rather than mixing the respective components at the same time. Is preferred. It is preferable that this mixture is further kneaded by a melt-kneading device such as an extruder. The obtained kneaded product is crushed by a crusher as necessary, and then flat film-shaped by an extruder or the like.
It is melt-molded into a hollow film shape or the like. It is also possible to directly mold the mixture with a device having both functions of kneading and extrusion, such as a kneader ruder.

次いで、成形された膜状物から溶剤を用いてクロロトリ
フルオロエチレンオリゴマー又は耐熱性有機物質との混
合物の抽出を行なう。抽出は回分法や向流多段法等の膜
状物の一般的な抽出方法により行なわれる。抽出に用い
られる溶剤としては1,1,1−トリクロロエタン、テトラ
クロルエチレン等のハロゲン系炭化水素が好ましい。
Then, the mixture of the chlorotrifluoroethylene oligomer or the heat-resistant organic substance is extracted from the formed film-like substance with a solvent. The extraction is performed by a general method for extracting a membranous material such as a batch method or a countercurrent multistage method. The solvent used for the extraction is preferably a halogenated hydrocarbon such as 1,1,1-trichloroethane or tetrachloroethylene.

クロロトリフルオロエチレンオリゴマー又は耐熱性有機
物質との混合物の抽出が完了した半抽出多孔膜は次いで
無機微粉体の溶剤にて、無機微粉体の抽出を行なう。抽
出は回分法、向流多段法等の一般的な抽出方法により数
秒ないし数十時間の内に終了する。無機微粉体の抽出に
用いられる溶剤としては炭酸カルシウム、炭酸マグネシ
ウム、酸化マグネシウム、珪酸カルシウム、珪酸マグネ
シウム等には塩酸、硫酸、弗酸等の酸が、珪酸等には苛
性ソーダ、苛生カリのようなアルカリ水溶液が用いられ
る。その他エチレン−テトラフルオロエチレン共重合体
を実質的に溶解せず、無機微粉体を溶解するものであれ
ば特に限定されるものではない。
The semi-extracted porous membrane on which the extraction of the mixture with the chlorotrifluoroethylene oligomer or the heat-resistant organic substance has been completed is then subjected to extraction of the inorganic fine powder with a solvent for the inorganic fine powder. The extraction is completed within a few seconds to a few tens of hours by a general extraction method such as a batch method or a countercurrent multistage method. Solvents used for extracting inorganic fine powder include calcium carbonate, magnesium carbonate, magnesium oxide, calcium silicate, magnesium silicate, and other acids such as hydrochloric acid, sulfuric acid, hydrofluoric acid, and silicic acid such as caustic soda and caustic potash. An aqueous alkaline solution is used. There is no particular limitation as long as it does not substantially dissolve the ethylene-tetrafluoroethylene copolymer and dissolves the inorganic fine powder.

本発明において、高度な耐熱性を有する多孔膜を望むと
き、無機微粉体が膜中に存在する半抽出多孔膜の状態で
アニール処理したのち無機微粉体を抽出除去することが
以下に説明する如く有効である。
In the present invention, when a porous film having a high degree of heat resistance is desired, the inorganic fine powder is annealed in the state of a semi-extracting porous film present in the film and then the inorganic fine powder is extracted and removed as described below. It is valid.

多孔膜をモジユール化するさいに高温下にさらされた
り、また高温下での過を行う場合、多孔膜の孔径変化
および透過性の低下が認められることが多い。
When the porous membrane is exposed to a high temperature when it is subjected to a module, or when it is subjected to a high temperature, a change in the pore diameter of the porous membrane and a decrease in the permeability are often observed.

本発明者らは、多孔膜の高温時の性能低下の原因とし
て、多孔膜を構成する樹脂内部に多孔膜成形加工時に生
じる“ひずみ”が存在し、熱時にその“ひずみ”の解消
がおこることが主たる要因であると考え、その“ひず
み”を最小限をおさえ、高温下での性能低下の少ない多
孔膜の製法を鋭意検討した。通常、上記のような“ひず
み”を解消するにはアニール処理が行われるが、通常の
方法である樹脂のみよりなる多孔膜に対しアニール処理
を行つた場合、物性は大きく変化するし、また、膜の各
部位において均一に物性が変化するわけではなく、膜形
状が変化する結果、得られた膜は不均一となり、また、
再現性を得られない場合が多い。この様な不均一な物性
変化をおこさない様、何らかの方法で膜形状を変化しな
いように拘束してやればよいわけであるが、一般に、外
部より膜を拘束することは難しく、たとえ平膜であつて
も縦横方向の拘束は可能であるが、膜の厚み方向の拘束
は困難である。まして、中空糸状多孔膜においては長さ
方向以外の拘束は難しく、アニール処理を施し均一な膜
を得ることは難しい。
As a cause of the performance deterioration of the porous membrane at high temperature, the inventors have found that "strain" generated during the porous membrane molding process exists inside the resin forming the porous membrane, and the "strain" is eliminated when heated. It was thought that this was the main factor, and we studied earnestly a method for producing a porous membrane that minimizes the "strain" and has little performance degradation at high temperatures. Usually, an annealing treatment is performed to eliminate the above-mentioned “strain”, but when the annealing treatment is performed on a porous film made only of a resin, which is a usual method, the physical properties change greatly, and The physical properties do not change uniformly at each part of the film, but the film shape changes, and the resulting film becomes non-uniform.
In many cases, reproducibility cannot be obtained. In order to prevent such non-uniform changes in physical properties, it is sufficient to restrain the shape of the membrane so that it does not change, but it is generally difficult to restrain the membrane from the outside, and even if it is a flat membrane. Although it is possible to restrain in the vertical and horizontal directions, it is difficult to restrain in the thickness direction of the film. Furthermore, in the hollow fiber porous membrane, it is difficult to constrain it in a direction other than the length direction, and it is difficult to perform an annealing treatment to obtain a uniform membrane.

本発明者らは、無機微粉体を充填した状態の多孔膜をア
ニール処理することにより、無機微粉体自体が内部より
多孔膜の形状を拘束し、その結果、均一な膜が再現性よ
く得られることを見い出した。アニール処理温度として
は、樹脂のガラス転移点以上の温度であればよいが、ア
ニール処理にかかる時間等、生産性を考え、樹脂の融点
から、融点マイナス100℃の範囲であることが好まし
い。また、予想される使用温度(モジユール組立て工程
等での加熱条件を含む)より高い温度で処理する方が、
より効果的であり、好ましい。処理時間は、処理温度と
の兼ね合いとなるが、通常、数分から数日の範囲であ
る。
The present inventors annealed the porous film filled with the inorganic fine powder, whereby the inorganic fine powder itself restrains the shape of the porous film from the inside, and as a result, a uniform film can be obtained with good reproducibility. I found a thing. The annealing temperature may be a temperature equal to or higher than the glass transition point of the resin, but it is preferably in the range of the melting point of the resin to the melting point minus 100 ° C. in consideration of productivity such as the time required for the annealing treatment. In addition, it is better to process at a temperature higher than the expected operating temperature (including heating conditions in the module assembly process, etc.)
It is more effective and preferable. The treatment time depends on the treatment temperature, but is usually in the range of several minutes to several days.

アニール処理は、通常、熱風オーブン中でバツチ処理も
しくは連続処理される。
The annealing treatment is usually a batch treatment or a continuous treatment in a hot air oven.

先記の方法により多孔膜の耐熱性が向上するが、これで
も不十分なとき、アニール処理後無機微粉体を抽出除去
し、これを再アニール処理することによりさらに改善さ
れる。
Although the heat resistance of the porous film is improved by the above-mentioned method, when this is still insufficient, it is further improved by extracting and removing the inorganic fine powder after annealing and reannealing it.

本発明において、多孔膜の孔径を大きくしたり、気孔率
を高めたり、機械的物性を向上させたりするために、ク
ロロトリフルオロエチレンオリゴマー又はこのものと耐
熱性有機物質との混合物、無機微粉体の一方または両方
を抽出した多孔膜を公知の条件で一軸または二軸に延伸
を行なうことができる。
In the present invention, in order to increase the pore size of the porous membrane, increase the porosity, and improve the mechanical properties, a chlorotrifluoroethylene oligomer or a mixture of this and a heat-resistant organic substance, an inorganic fine powder The porous membrane obtained by extracting one or both of them can be uniaxially or biaxially stretched under known conditions.

なお、本願明細書中に示されている諸物性は、次の測定
方法による。
The various physical properties shown in the present specification are based on the following measuring methods.

・平均孔径(μ) 試料の表面及び断面について電子顕微鏡により孔径を測
定し、平均化(数平均)した。平均化は、同一条件で製
造された多孔膜よりランダムに採取した10点以上の試料
について各々膜表表面、膜表裏面、膜断面の電子顕微鏡
写真をとり、各電子顕微鏡写真からそれぞれランダムに
選択した10点以上の孔について平均直径を実測し、その
結果、測定点数計300点以上の孔径を平均化することに
より実施される。孔構造の不均一な多孔膜については測
定点数を多くする必要がある。電子顕微鏡写真からの平
均孔径の算出は、写真を画像処理装置にかけてコンピユ
ーター処理することにより算出することも可能である。
-Average pore diameter (μ) The pore diameters of the surface and cross section of the sample were measured by an electron microscope and averaged (number average). Averaging is carried out by taking electron micrographs of the film surface, the film front and back, and the film cross section for 10 or more samples randomly sampled from the porous film manufactured under the same conditions, and randomly selecting from each electron micrograph. It is carried out by actually measuring the average diameter of the 10 or more holes, and averaging the diameters of the measurement points of 300 or more. It is necessary to increase the number of measurement points for a porous film having a non-uniform pore structure. The average pore size can be calculated from the electron microscope photograph by subjecting the photograph to an image processing device and subjecting it to a computer process.

・気孔率(%) 次式により求めた。-Porosity (%) Obtained by the following formula.

ただし、空孔容積は、多孔体孔中に水を満たした多孔体
の重量より多孔体のみの重量を差し引くことによつて求
めた。
However, the pore volume was obtained by subtracting the weight of only the porous body from the weight of the porous body in which the pores were filled with water.

・網状構造を構成する繊維の本数N(本/mm) 同一条件で製造された多孔膜よりランダムに採取した10
点以上の試料について、膜断面の電子顕微鏡写真をと
り、各電子顕微鏡写真からそれぞれランダムに選択した
30点以上の箇所について膜の厚さ方向における繊維の本
数を数え膜厚1mm長における繊維の本数に換算して、測
定点数計300点以上の繊維の本数を平均化する。電子顕
微鏡写真からの繊維の本数の平均値は、写真を画像処理
装置にかけてコンピユーター処理することにより算出す
ることも可能である。
・ Number of fibers that make up the network structure N (pieces / mm) Randomly sampled from porous membranes manufactured under the same conditions 10
Electron micrographs of the cross-section of the film were taken for the samples above the points, and were randomly selected from each electron micrograph.
The number of fibers in the thickness direction of the film is counted at 30 or more points, converted into the number of fibers in a film thickness of 1 mm, and the number of fibers of 300 or more measurement points is averaged. The average value of the number of fibers from the electron micrograph can be calculated by subjecting the photograph to an image processing device and subjecting it to a computer process.

・ピンホール発生頻度(ケ/m) 異常に粗大な孔の数を評価する、多孔構造の均一性の1
つの評価項目である。150mの連続状中空糸状多孔膜をエ
チルアルコール中に浸漬して該多孔膜のバブルポイント
圧力より0.5kg/cm2低い圧力を中空糸の片側内部にかけ
た(もう一方の片側は閉じる)状態に於ける気泡の発生
した数をチエツクし以下から算出 ・三次元網状構造 電子顕微鏡観察により判定 ・微粒子除去率(%) ダウケミカル社UNIFORM LATEX PARTIC LESを固型分濃度
0.01重量%に希釈した液を多孔膜で過し、LATEX PART
ICLESの除去される割合より求める。
・ Frequency of pinholes (ke / m) One of the uniformity of the porous structure, which evaluates the number of unusually coarse holes.
It is one evaluation item. A continuous hollow fiber porous membrane of 150 m was immersed in ethyl alcohol and a pressure lower than the bubble point pressure of the porous membrane by 0.5 kg / cm 2 was applied to one side of the hollow fiber (the other side was closed). Check the number of bubbles generated and calculate from the following ・ Three-dimensional network structure Determined by electron microscope observation ・ Particle removal rate (%) Dow Chemical Company UNIFORM LATEX PARTIC LES solid concentration
The solution diluted to 0.01% by weight is passed through a porous membrane and LATEX PART
Calculated from the percentage of ICLES removed.

・透水量(/m2,hr atm.25℃) 25℃、差圧1kg/cm2にて測定。・ Water permeability (/ m 2 , hr atm. 25 ℃) Measured at 25 ℃, differential pressure 1kg / cm 2 .

・sp値(溶解パラメーター) 次式(Smallの式)により算出する。-Sp value (dissolution parameter) Calculated by the following formula (Small formula).

d:比重、G:モル牽引定数、M:分子量 ただし、詳細は、「ジエー・ブランドラツプ、ポリマー
ハンドブツク、セクシヨン4,第344頁、1966年、インタ
ーサイエンスパブリイツシヤーズ、ア デイヴイジヨン
オブ ジヨンウイリイ・アンドサイズ(J・BRANDRUP
et al,Polymer Handbook,IV−344,1966,INTERSCIENCE
PUBLISHERS・a division of John Wiley & Sons)」に
記載されている。
d: Specific gravity, G: Molar traction constant, M: Molecular weight. J ・ BRANDRUP
et al, Polymer Handbook, IV-344, 1966, INTERSCIENCE
PUBLISHERS · a division of John Wiley & Sons) ”.

(実施例) 次に本発明を明らかにするために実施例を示すが本発明
はこれらの実施例によつて限定されるものではない。
(Examples) Next, examples will be shown to clarify the present invention, but the present invention is not limited to these examples.

実施例1 微粉珪酸〔アエロジルR−972(商品名)、比表面積120
m2/g、平均一次粒子径16mμ〕11.1容量%、クロロトリ
フルオロエチレンオリゴマー〔ダイフロイル#20(商品
名)、約8量体〕62.2容量%をヘンシエルミキサーで混
合し、これにエチレン−テトラフルオロエチレン共重合
体〔アフロンCOP Z−8820(商品名)〕26.7容量%を添
加し、再度ヘンシエルミキサーで混合した。
Example 1 Finely powdered silicic acid [Aerosil R-972 (trade name), specific surface area 120
m 2 / g, average primary particle size 16 mμ] 11.1% by volume, chlorotrifluoroethylene oligomer [Daifloyl # 20 (trade name), about 8 mer] 62.2% by volume were mixed with a Henschel mixer, and ethylene-tetra 26.7% by volume of a fluoroethylene copolymer [Aflon COP Z-8820 (trade name)] was added and mixed again with a Henschel mixer.

該混合物を30mmφ二軸押出機で260℃にて混合し、ペレ
ツトした。このペレツトを30mmφ二軸押出機に中空状紡
口を取付けた中空糸製造装置にて中空糸状に260℃にて
成形した。成形された中空糸を50℃の1,1,1−トリクロ
ルエタン中に1時間浸漬して、クロロトリフルオロエチ
レンオリゴマーを抽出した後、乾燥させた。
The mixture was mixed with a 30 mmφ twin-screw extruder at 260 ° C. and pelletized. This pellet was molded into a hollow fiber at 260 ° C. using a hollow fiber manufacturing apparatus in which a hollow spinneret was attached to a 30 mmφ twin-screw extruder. The molded hollow fiber was immersed in 1,1,1-trichloroethane at 50 ° C. for 1 hour to extract a chlorotrifluoroethylene oligomer, and then dried.

ついで、70℃、40%苛性ソーダ水溶液中に1時間浸漬し
て微粉珪酸を抽出した後、水洗し、乾燥した。
Then, the powdery silica was extracted by immersing it in a 40% caustic soda aqueous solution at 70 ° C. for 1 hour, washed with water, and dried.

得られたエチレン−テトラフルオロエチレン共重合体多
孔膜は三次元網状構造を有しており、その性能を表1に
記す。
The obtained ethylene-tetrafluoroethylene copolymer porous film has a three-dimensional network structure, and its performance is shown in Table 1.

実施例2〜4 クロロトリフルオロエチレンオリゴマーの代りにクロロ
トリフルオロエチレンオリゴマー〔ダイフロイル#20
(商品名)〕1容量と下記の容量のジメチルシリコン
〔信越シリコーンKF96(商品名)、sp値6.3〕とからな
る混合物を用いる以外は実施例1と同様にしてエチレン
−テトラフルオロエチレン共重合体多孔膜を得た。
Examples 2 to 4 Instead of chlorotrifluoroethylene oligomer, chlorotrifluoroethylene oligomer [Daifloyl # 20
(Trade name)] An ethylene-tetrafluoroethylene copolymer was prepared in the same manner as in Example 1 except that a mixture consisting of 1 volume and the following volume of dimethyl silicone [Shin-Etsu Silicone KF96 (trade name), sp value 6.3] was used. A porous film was obtained.

(ジメチルシリコン容量) 実施例 2 0.17 実施例 3 0.20 実施例 4 0.25 得られた多孔膜は、いずれも三次元網状構造を有してお
り性能を表1に記す。
(Dimethyl Silicon Capacity) Example 2 0.17 Example 3 0.20 Example 4 0.25 The obtained porous membranes all have a three-dimensional network structure, and the performance is shown in Table 1.

実施例5 微粉珪酸〔アエロジル R−972(商品名)〕13.3容量
%、クロロトリフルオロエチレンオリゴマー〔ダイフロ
イル#100(商品名)、約11量体〕60.0容量%をヘンシ
エルミキサーで混合し、これにエチレン−テトラフルオ
ロエチレン共重合体〔アフロンCOP Z−8820(商品
名)〕26.7容量%を添加し、再度ヘンシエルミキサーに
て混合した。
Example 5 13.3% by volume of finely divided silicic acid [Aerosil R-972 (trade name)] and 60.0% by volume of a chlorotrifluoroethylene oligomer [Daifloyl # 100 (trade name), about 11-mer] were mixed with a Henschel mixer, and mixed. 26.7% by volume of ethylene-tetrafluoroethylene copolymer [Aflon COP Z-8820 (trade name)] was added to and mixed again with the Henschel mixer.

以下実施例1と同様にしてエチレン−テトラフルオロエ
チレン多孔膜を得た。
Thereafter, an ethylene-tetrafluoroethylene porous film was obtained in the same manner as in Example 1.

得られた多孔膜は三次元網状構造を有しており、その性
能を表1に記す。
The obtained porous film has a three-dimensional network structure, and its performance is shown in Table 1.

実施例6 実施例5において、クロロトリフルオロエチレンオリゴ
マーを抽出し、乾燥させた後、200℃にて1時間のアニ
ール処理を施した。その後、70℃、40%苛性ソーダ水溶
液中に1時間浸漬して微粉珪酸を抽出した後、水洗し、
乾燥した。
Example 6 In Example 5, the chlorotrifluoroethylene oligomer was extracted, dried, and then annealed at 200 ° C. for 1 hour. After that, it was immersed in a 40% caustic soda aqueous solution at 70 ° C for 1 hour to extract fine silicic acid, and then washed with water,
Dried.

得られたエチレン−テトラフルオロエチレン共重合体多
孔膜は三次元網状構造を有しており、その性能を表1に
記す。
The obtained ethylene-tetrafluoroethylene copolymer porous film has a three-dimensional network structure, and its performance is shown in Table 1.

この膜を180℃の雰囲気に4時間放置した後に、物性評
価を行つたところ、もとの物性に対する変化率は、透水
量7%減、気孔率3%減、平均孔径0%と小さかつた。
When this film was left in an atmosphere of 180 ° C. for 4 hours and evaluated for its physical properties, the rate of change with respect to the original physical properties was as small as water permeability 7%, porosity 3% and average pore size 0%. .

比較の為、アニール処理をしていない実施例5の膜を同
様に180℃の雰囲気に4時間放置した後に、物性評価を
行つたところ、もとの物性に対する変化率は、透水量47
%減、気孔率13%減、平均孔径10%減と大きかつた。
For comparison, the film of Example 5 which was not annealed was similarly left in an atmosphere of 180 ° C. for 4 hours, and then the physical properties were evaluated. The rate of change from the original physical properties was 47%.
%, Porosity 13%, average pore size 10%.

実施例5,6の比較及び以上の事実より、無機微粉体を充
填した状態の多孔膜のアニール処理が、膜物性を大きく
変化させることなく耐熱性を向上できることがわかる。
From the comparison of Examples 5 and 6 and the above facts, it can be seen that the annealing treatment of the porous film filled with the inorganic fine powder can improve the heat resistance without largely changing the physical properties of the film.

実施例7 微粉珪酸〔アエロジルR−972(商品名)〕14.4容量
%、クロロトリフルオロエチレンオリゴマー〔ダイフロ
イル#100(商品名)〕58.9容量%をヘンシエルミキサ
ーで混合し、これにエチレン−テトラフルオロエチレン
共重合体〔ネオフロンETFE EP−540(商品名)〕26.7容
量%を添加し、再度ヘンシエルミキサーで混合した。
Example 7 14.4% by volume of finely divided silicic acid [Aerosil R-972 (trade name)] and 58.9% by volume of a chlorotrifluoroethylene oligomer [Daifloyl # 100 (trade name)] were mixed with a Henschel mixer, and ethylene-tetrafluoro was added thereto. 26.7% by volume of an ethylene copolymer [NEOFLON ETFE EP-540 (trade name)] was added and mixed again with a Henschel mixer.

該混合物を30mmφ二軸押出機で260℃にて混合し、ペレ
ツトにした。このペレツトを30mmφ二軸押出機に中空状
紡口を取付けた中空糸製造装置にて中空糸状に250℃に
て成形した。成形された中空糸を50℃の1,1,1−トリク
ロルエタン中に1時間浸漬して、クロロトリフルオロエ
チレンオリゴマーを抽出した後、乾燥させた。
The mixture was mixed with a 30 mmφ twin-screw extruder at 260 ° C. to form a pellet. This pellet was molded into a hollow fiber at 250 ° C. by a hollow fiber manufacturing apparatus in which a hollow spinneret was attached to a 30 mmφ twin-screw extruder. The molded hollow fiber was immersed in 1,1,1-trichloroethane at 50 ° C. for 1 hour to extract a chlorotrifluoroethylene oligomer, and then dried.

その後、200℃にて1時間のアニール処理を施し、つい
で、70℃、40%苛性ソーダ水溶液中に1時間浸漬して微
粉珪酸を抽出した後、水洗し、乾燥した。
After that, an annealing treatment was performed at 200 ° C. for 1 hour, and then the powder was immersed in a 40% caustic soda aqueous solution at 70 ° C. for 1 hour to extract fine silicic acid, washed with water and dried.

得られたエチレン−テトラフルオロエチレン共重合体多
孔膜は三次元網状構造を有しており、その性能を表1に
記す。
The obtained ethylene-tetrafluoroethylene copolymer porous film has a three-dimensional network structure, and its performance is shown in Table 1.

実施例8 実施例7で得られたエチレン−テトラフルオロエチレン
共重合体多孔膜を200℃にて2時間の再アニール処理を
施した。
Example 8 The ethylene-tetrafluoroethylene copolymer porous film obtained in Example 7 was reannealed at 200 ° C. for 2 hours.

得られた多孔膜は三次元網状構造を有しており、その性
能を表1に記す。
The obtained porous film has a three-dimensional network structure, and its performance is shown in Table 1.

この膜を200℃の雰囲気に2時間放置した後に物性評価
を行つたところ、もとの物性に対する変化率は透水量4
%減、気孔率0%、平均孔径0%と小さかつた。
When the physical properties of this film were evaluated after leaving it in an atmosphere of 200 ° C for 2 hours, the rate of change from the original physical properties was 4
%, The porosity was 0%, and the average pore size was 0%.

比較の為、再アニール処理していない実施例7の膜を同
様に200℃の雰囲気に2時間放置した後に物性評価を行
なつたところ、もとの物性に対する変化率は透水量24%
減、気孔率4%減、平均孔径5%減と大きかつた。
For comparison, when the film of Example 7 which had not been re-annealed was similarly left in an atmosphere of 200 ° C. for 2 hours and then subjected to physical property evaluation, the rate of change from the original physical property was 24% of water permeability.
The decrease was large, the porosity was 4%, and the average pore size was 5%.

以上の事実より、多孔膜の再アニール処理が膜の耐熱性
を向上させるのに有効であることがわかる。
From the above facts, it is understood that the reannealing treatment of the porous film is effective for improving the heat resistance of the film.

比較例1 微粉珪酸〔アエロジル200(商品名)、比表面積200m2/
g、平均一次粒子径16mμ〕13.3容量%、ジオクチルフタ
レート60.0容量%をヘンシエルミキサーで混合し、これ
にエチレン−テトラフルオロエチレン共重合体〔アフロ
ンCOP Z−8820(商品名)〕26.7容量%を添加し、再度
ヘンシエルミキサーで混合した。
Comparative Example 1 Finely powdered silicic acid [Aerosil 200 (trade name), specific surface area 200 m 2 /
g, average primary particle size 16 mμ] 13.3% by volume, dioctyl phthalate 60.0% by volume was mixed with a Henschel mixer, and ethylene-tetrafluoroethylene copolymer [Aflon COP Z-8820 (trade name)] 26.7% by volume Add and mix again with the Henschel mixer.

該混合物を30mmφ二軸押出機で300℃にて混合し、ペレ
ツトにした。このペレツトを30mmφ二軸押出機に中空状
紡口を取付けた中空糸製造装置にて中空糸状に290℃に
て成形した。成形された中空糸を50℃の1,1,1−トリク
ロルエタン中に1時間浸漬してジオクチルフタレートを
抽出した後、乾燥させた。
The mixture was mixed with a 30 mmφ twin-screw extruder at 300 ° C. to form a pellet. This pellet was molded into a hollow fiber at 290 ° C. by a hollow fiber manufacturing apparatus in which a hollow spinneret was attached to a 30 mmφ twin-screw extruder. The molded hollow fiber was immersed in 1,1,1-trichloroethane at 50 ° C. for 1 hour to extract dioctyl phthalate, and then dried.

ついで、70℃、40%苛性ソーダ水溶液中に1時間浸漬し
て微粉珪酸を抽出した後、水洗し、乾燥した。
Then, the powdery silica was extracted by immersing it in a 40% caustic soda aqueous solution at 70 ° C. for 1 hour, washed with water, and dried.

得られたエチレン−テトラフルオロエチレン共重合体多
孔膜の性能を表1に記す。
The performance of the obtained ethylene-tetrafluoroethylene copolymer porous membrane is shown in Table 1.

この多孔膜は大きな空孔が多く存在する不均一な膜で網
を構成する繊維の本数が少なく、0.085μ微粒子除去率
を測定したところ95%と小さく、ほぼ同じ平均孔径を有
する実施例4の本発明膜の100%に比べ劣つていた。
又、多孔膜のピンホール発生頻度が多く良品収率は非常
に低かつた。さらに、同一条件で5回多孔膜製造を実施
したところ、得られた多孔膜の平均孔径は0.3〜0.8μ、
透水量は650〜3000/m2・hr・atm・25℃と膜性能が大
きく変動し、膜の品質が不安定であつた。
This porous membrane is an inhomogeneous membrane with many large pores and has a small number of fibers constituting the net, and the removal rate of 0.085μ fine particles was measured to be as small as 95%. It was inferior to 100% of the film of the present invention.
Moreover, pinholes were frequently generated in the porous film, and the yield of non-defective products was very low. Furthermore, when the porous membrane was manufactured 5 times under the same conditions, the average pore diameter of the obtained porous membrane was 0.3 to 0.8 μ,
The permeation rate was 650-3000 / m 2 · hr · atm · 25 ° C, and the membrane performance fluctuated greatly, resulting in unstable membrane quality.

実施例9〜11 微粉珪酸〔アエロジルR−972(商品名)〕、クロロト
リフルオロエチレンオリゴマー〔ダイフロイル#100
(商品名)〕、エチレン−テトラフルオロエチレン共重
合体〔ネオフロン ETFE EP−540(商品名)〕を下表に
示す組成とする化は実施例1を同様にしてエチレン−テ
トラフルオロエチレン共重合体多孔膜を得た。
Examples 9 to 11 Finely powdered silicic acid [Aerosil R-972 (trade name)], chlorotrifluoroethylene oligomer [Daifloyl # 100]
(Commercial name)], ethylene-tetrafluoroethylene copolymer [Neoflon ETFE EP-540 (commercial name)] having the composition shown in the table below is the same as in Example 1 except that ethylene-tetrafluoroethylene copolymer is used. A porous film was obtained.

得られた多孔膜は、いずれも三次元網状構造を有してお
り性能を第1表に記す。
Each of the obtained porous membranes has a three-dimensional network structure, and the performance is shown in Table 1.

(発明の効果) 本発明により、優れた耐薬品性、優れた耐熱性、優れた
過性能、優れた耐久性を備えた均一多孔構造を有する
エチレン−テトラフルオロエチレン共重合体多孔膜が得
られるようになり、この多孔膜を用いることにより、熱
濃硫酸過等の耐熱的、耐薬品的にきびしい条件の高精
度過精製が可能となつた。
(Effects of the Invention) According to the present invention, an ethylene-tetrafluoroethylene copolymer porous membrane having a uniform porous structure having excellent chemical resistance, excellent heat resistance, excellent overperformance, and excellent durability can be obtained. As a result, by using this porous membrane, it is possible to carry out highly precise overpurification under severe heat and chemical resistance conditions such as hot concentrated sulfuric acid.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】エチレン−テトラフルオロエチレン共重合
体よりなり、平均孔径0.01〜5μ、気孔率40〜90%であ
って、網状構造を構成する繊維の本数Nが膜の厚さ方向
1mm当りN≧2P/Dなる三次元網状構造を有するエチレン
−テトラフルオロエチレン共重合体多孔膜。 但し、Pは気孔率(%)、Dは平均孔径(μ)である。
1. An ethylene-tetrafluoroethylene copolymer, having an average pore diameter of 0.01 to 5 μm and a porosity of 40 to 90%, wherein the number N of fibers constituting the network structure is the thickness direction of the membrane.
An ethylene-tetrafluoroethylene copolymer porous membrane having a three-dimensional network structure with N ≧ 2 P / D per 1 mm. However, P is the porosity (%) and D is the average pore diameter (μ).
JP24417285A 1985-11-01 1985-11-01 Ethylene-tetrafluoroethylene copolymer porous membrane Expired - Fee Related JPH0693983B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24417285A JPH0693983B2 (en) 1985-11-01 1985-11-01 Ethylene-tetrafluoroethylene copolymer porous membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24417285A JPH0693983B2 (en) 1985-11-01 1985-11-01 Ethylene-tetrafluoroethylene copolymer porous membrane

Publications (2)

Publication Number Publication Date
JPS62106808A JPS62106808A (en) 1987-05-18
JPH0693983B2 true JPH0693983B2 (en) 1994-11-24

Family

ID=17114837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24417285A Expired - Fee Related JPH0693983B2 (en) 1985-11-01 1985-11-01 Ethylene-tetrafluoroethylene copolymer porous membrane

Country Status (1)

Country Link
JP (1) JPH0693983B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6434407A (en) * 1987-07-30 1989-02-03 Toray Industries Porous membrane of polytetrafluoroethylene-base resin and production thereof
JP4978829B2 (en) * 2006-07-04 2012-07-18 旭硝子株式会社 Method for producing fluororesin porous body
CN102186909B (en) * 2008-10-16 2013-04-10 旭硝子株式会社 Process for producing porous ethylene/tetrafluoroethylene copolymer and porous ethylene/tetrafluoroethylene copolymer
JP5895359B2 (en) * 2011-04-28 2016-03-30 東レ株式会社 Method for producing porous body

Also Published As

Publication number Publication date
JPS62106808A (en) 1987-05-18

Similar Documents

Publication Publication Date Title
US4623670A (en) Porous fluorine resin membrane and process for preparing the same
JP3401726B2 (en) Polymer body for separation process and method for producing the same
Landry et al. In situ polymerization of tetraethoxysilane in poly (methyl methacrylate): morphology and dynamic mechanical properties
US20120323339A1 (en) Porous peek article as an implant
JP5058827B2 (en) Method for producing polymer microporous material, polymer microporous material and separation membrane
JPS5893734A (en) Production of porous membrane of hydrophilic polyvinylidene fluoride resin
CA2322855A1 (en) Microporous membrane
JPS63278943A (en) Production of porous body
CN106318093B (en) A kind of multifunctional nano self-cleaning composition and its product
KR100889910B1 (en) Method for preparing porous polyimide film using polymer nano-particles and porous polyimide film prepared by the same method
JPH0693983B2 (en) Ethylene-tetrafluoroethylene copolymer porous membrane
Wang et al. Preparation of hydrophilic poly (vinylidene fluoride) membrane by in‐situ grafting of N‐vinyl pyrrolidone via a reactive vapor induced phase separation procedure
JPH0693982B2 (en) Polychlorotrifluoroethylene-based porous membrane and method for producing the same
JPH0433302B2 (en)
JP3006049B2 (en) Method for removing low molecular weight polymer from melt-processable tetrafluoroethylene copolymer
KR20070105759A (en) Pvdf membrane with high porosity and permeation and method for manufacturing the same
JPS6311370B2 (en)
JPS62192431A (en) Production of porous membrane of ethylene-containing copolymer fluororesin
JPS614504A (en) Polychlorotrifluoroethylene porous membrane and its manufacture
Ren et al. Macroporous Titania Monolith Prepared via Sol‐gel Process with Polymer Foam as the Template
Mark et al. Reinforcement of elastomers by the in-situ generation of filler particles
Qian et al. Porogen incorporation and phase inversion
JP4010853B2 (en) Aromatic polyamide whisker and method for producing the same
Narkis et al. PVC modification through polymerization of a monomer absorbed in porous suspension‐type PVC particles
JP2003020356A (en) Method for manufacturing porous film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees