JPH0338255A - Honeycomb-shaped exhaust gas purification structure and exhaust gas purification method using the same - Google Patents

Honeycomb-shaped exhaust gas purification structure and exhaust gas purification method using the same

Info

Publication number
JPH0338255A
JPH0338255A JP1171095A JP17109589A JPH0338255A JP H0338255 A JPH0338255 A JP H0338255A JP 1171095 A JP1171095 A JP 1171095A JP 17109589 A JP17109589 A JP 17109589A JP H0338255 A JPH0338255 A JP H0338255A
Authority
JP
Japan
Prior art keywords
exhaust gas
honeycomb
gas purification
carrier
purification structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1171095A
Other languages
Japanese (ja)
Other versions
JP2788494B2 (en
Inventor
Makoto Horiuchi
真 堀内
Koichi Saito
斉藤 皓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15916896&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH0338255(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP17109589A priority Critical patent/JP2788494B2/en
Publication of JPH0338255A publication Critical patent/JPH0338255A/en
Application granted granted Critical
Publication of JP2788494B2 publication Critical patent/JP2788494B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Landscapes

  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a honeycomb-shaped exhaust gas purification structure suitable for purifying the exhaust emissions of a diesel engine by depositing a fire resisting inorg. oxide having a designated specific surface area on a honeycomb carrier in predetermined proportions. CONSTITUTION:A fire resisting inorg. oxide such as alumina and zirconia having a specific surface area of 50-400m<2>/g is deposited on a honeycomb-shaped carrier such as cordierite and mullite in an amt. of 50-400g per liter of this carrier. The honeycomb-shaped exhaust gas purification structure thus formed is effec tive in such purification and particularly that of the exhaust gas contg. a harm ful component such as a carcinogenic substance and capable of an efficient removal of SOF from the exhaust emissions of a diesel engine.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はハニカム状排ガス浄化構造体および該構造体を
用いた排ガスの浄化方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a honeycomb-like exhaust gas purification structure and an exhaust gas purification method using the structure.

(従来の技術) 近年、ディーゼルエンジンから排出される、主として固
体状の炭素微粒子および液状ないし固体状の高分子量炭
化水素微粒子からなる微粒子状物質(以下、 「パティ
キスレート」という)が環境衛生上問題になっている。
(Prior art) In recent years, particulate matter (hereinafter referred to as "patchy slate"), which is mainly composed of solid carbon particles and liquid or solid high molecular weight hydrocarbon particles, emitted from diesel engines has become a problem for environmental health. It's becoming a problem.

それは、これらパティキュレートが発ガン性物質などの
有害成分を含有し、またその粒子径が殆ど1μm以下で
あるため大気中で浮遊しやすく、呼吸器官から人体内に
取り込まれやすいからである。
This is because these particulates contain harmful components such as carcinogenic substances, and because most of their particle diameters are less than 1 μm, they easily float in the atmosphere and are easily taken into the human body through the respiratory tract.

このため、これらパティキュレートのディーゼルエンジ
ンからの排出を厳しく規制していく方向で検討が進めら
れている。
For this reason, studies are underway to strictly control the emission of these particulates from diesel engines.

パティキュレートの浄化方法としては、(1)耐熱性ガ
スフィルター(例えば、セラミックフオーム、ワイヤー
メツシュ、金属発泡体、目封じタイプのセラミックハニ
カムなど)を用い、ディーゼルエンジン排ガスをろ過し
て、パティキュレートを捕捉し、圧損が上昇すれば、バ
ーナまたは電気ヒーターなどの加熱手段を用いて蓄積し
た炭素系微粒子を燃焼させ、フィルターを再生し、繰り
返して使用する方法、(2)上記(1)の方法の改良で
あって、フィルターに触媒物質を担持させ、フィルター
の燃焼、再生の頻度を少なくする方法、(3)通常の走
行条件で得られる排出条件(ガス■成および温度)にお
いて燃焼・浄化する、いわゆるフィルタ一方法などが提
案されている。
To purify particulates, (1) use a heat-resistant gas filter (e.g., ceramic foam, wire mesh, metal foam, sealed ceramic honeycomb, etc.) to filter diesel engine exhaust gas and remove particulates. (2) method of (1) above by burning the accumulated carbon-based particulates using a heating means such as a burner or electric heater to regenerate the filter and use it repeatedly. (3) A method for reducing the frequency of combustion and regeneration of the filter by supporting a catalyst substance on the filter; (3) combustion and purification under the emission conditions (gas formation and temperature) obtained under normal driving conditions; , a so-called filter method, and the like have been proposed.

しかし、これらフィルターを用いる方法はいずれも固体
状の炭素系微粒子を高い効率で捕捉することを目的とし
ているため、パティキュレートの燃焼・再生時における
フィルター構造体の割れの問題のほか、炭素系微粒子と
共に捕捉される、エンジンオイルからの灰成分(例えば
、酸化カルシウム、酸化亜鉛、五酸化リンなど)の蓄積
によるフィルターの閉塞ならびに触媒活性の低下などの
問題がある。さらに、フィルタ一方式の排ガス浄化装置
は圧力損失を招くなどの欠点をも有している。このため
、実用上十分に満足のいくフィルタ一方式による排ガス
浄化方法は未だ得られていない。
However, since all of these methods using filters aim to capture solid carbon-based particulates with high efficiency, in addition to the problem of cracking of the filter structure during combustion and regeneration of particulates, carbon-based particulates Problems include filter blockage and reduced catalyst activity due to the buildup of ash components (eg, calcium oxide, zinc oxide, phosphorus pentoxide, etc.) from the engine oil that are trapped along with the engine oil. Furthermore, a single filter type exhaust gas purification device also has drawbacks such as pressure loss. For this reason, a practically satisfactory method for purifying exhaust gas using one type of filter has not yet been obtained.

一方、近年、ディーゼルエンジンの改良(例えば、燃料
噴射の高圧化、燃料噴射タイミングの制御など)に伴い
、ディーゼルエンジンから排出されるパティキュレート
の低減がなされた。同時に、この改良ディーゼルエンジ
ンから排出されるパティキュレートに含まれる、主とし
て液状の高分子量炭化水素からなる有機溶剤に可溶な成
分(以下、S OF (Soluble Organi
c Fraction)という)の割合が増加した。従
って、従来のディーゼルエンジンから排出される排ガス
とその性状をことにしている。このため、このような性
状の排ガスの浄化においては、主として発ガン性物質な
どの有害成分を含有するSOFの除去が重要な問題とな
る。
On the other hand, in recent years, with improvements in diesel engines (for example, higher fuel injection pressure, control of fuel injection timing, etc.), particulates emitted from diesel engines have been reduced. At the same time, the particulates discharged from this improved diesel engine contain components soluble in organic solvents (hereinafter referred to as SOF), which mainly consist of liquid high molecular weight hydrocarbons.
c Fraction) increased. Therefore, we are focusing on the exhaust gas emitted from conventional diesel engines and its properties. Therefore, in purifying exhaust gas having such properties, an important issue is mainly the removal of SOF containing harmful components such as carcinogenic substances.

このSOFの排出量は低温域において増加する傾向にあ
ることから、低温域、特に触媒成分を用いて燃焼・浄化
できない低温域におけるSOFの除去が必要となる。
Since the amount of SOF emissions tends to increase in a low temperature range, it is necessary to remove SOF in a low temperature range, especially in a low temperature range where it cannot be burned and purified using a catalyst component.

ディーゼルエンジン排ガスのパティキュレートの浄化用
触媒として、ガス流れに対し平行に貫通孔を有するオー
プン式のハニカム状触媒が検討され、報告されている(
SAE  Paper、810263)。しかし、これ
は白金系触媒を用いた場合の、SOF、炭化水素、−酸
化炭素などを燃焼可能な高温における燃焼・浄化性能を
示したものであり、パティキュレートの除去に間しては
、オープン式のハニカム状触媒では効果がないことが報
告されている。また、オープン式のハニカム状触媒のS
OF吸着・捕捉特性についてはなんら言及されていない
An open honeycomb-shaped catalyst with through holes parallel to the gas flow has been investigated and reported as a catalyst for purifying particulates from diesel engine exhaust gas (
SAE Paper, 810263). However, this shows the combustion and purification performance at high temperatures that can burn SOF, hydrocarbons, carbon oxides, etc. when platinum-based catalysts are used. It has been reported that the honeycomb catalyst of the formula is ineffective. In addition, the open type honeycomb catalyst S
There is no mention of OF adsorption/trapping properties.

(発明が解決しようとする課M) 本発明の目的は、排ガス、特にディーゼルエンジン排ガ
スの浄化に好適なハニカム状排ガス浄化構造体を提供す
ることである。
(Problem M to be Solved by the Invention) An object of the present invention is to provide a honeycomb-shaped exhaust gas purification structure suitable for purifying exhaust gas, particularly diesel engine exhaust gas.

本発明の他の目的は、ディーゼルエンジン排ガス中のS
OFを低温域で長時間にわたって効率よく、かつ安定し
て吸着・捕捉して、ディーゼルエンジン排ガスの効果的
な浄化を可能とするハニカム状排ガス浄化構造体を提供
することである。
Another object of the present invention is to reduce the amount of S in diesel engine exhaust gas.
It is an object of the present invention to provide a honeycomb-shaped exhaust gas purification structure capable of effectively purifying diesel engine exhaust gas by efficiently and stably adsorbing and capturing OF in a low temperature range for a long period of time.

本発明の他の目的は、従来のフィルター式排ガス浄化装
置に見られた背圧上昇、ひび割れなどの問題を引き起こ
すことなく、特にディーゼルエンジン排ガスの効果的な
浄化を可能とするハニカム状排ガス浄化構造体を提供す
ることである。
Another object of the present invention is to provide a honeycomb-like exhaust gas purification structure that enables effective purification of diesel engine exhaust gas without causing problems such as increased back pressure and cracking that are seen in conventional filter-type exhaust gas purification devices. It's about giving your body.

本発明の他の目的は、上記ハニカム状排ガス浄化構造体
を用いて排ガス、特にディーゼルエンジン排ガスを効率
よく浄化する排ガス浄化方法を提供することである。
Another object of the present invention is to provide an exhaust gas purification method for efficiently purifying exhaust gas, particularly diesel engine exhaust gas, using the honeycomb-shaped exhaust gas purification structure.

本発明の他の目的は、上記ハニカム状排ガス浄化構造体
にディーゼルエンジン排ガスを接触させることにより排
ガス中のSOFを吸着・捕捉して排ガスを効率よく浄化
し、吸着・捕捉されたSOFは加熱などによって燃焼・
分解してハニカム状排ガス浄化構造体を再生させる排ガ
ス浄化方法に間する。
Another object of the present invention is to efficiently purify the exhaust gas by adsorbing and capturing SOF in the exhaust gas by bringing the diesel engine exhaust gas into contact with the honeycomb-shaped exhaust gas purification structure, and to efficiently purify the exhaust gas by heating the SOF that has been adsorbed and captured. Burned by
An exhaust gas purification method is developed in which the honeycomb-shaped exhaust gas purification structure is disassembled and regenerated.

(問題点を解決するための手段) 本発明者らは、上記目的を達成するために、ディーゼル
エンジン排ガス中のSOFの吸着・捕捉挙動について鋭
意検討の結果、オープン式のハニカム担体に耐火性無機
酸化物を担持したハニカム状排ガス浄化構造体をディー
ゼルエンジン排ガス中に装着すると、排ガス温度が40
0℃以下の条件においても、SOFを効率よく長時間に
わたって安定して、吸着・捕捉できることを見い出し、
この知見に基づいて本発明を完成するに至った。
(Means for Solving the Problems) In order to achieve the above object, the present inventors have conducted extensive studies on the adsorption and capture behavior of SOF in diesel engine exhaust gas, and have found that a refractory inorganic When a honeycomb-shaped exhaust gas purification structure supporting oxides is installed in diesel engine exhaust gas, the exhaust gas temperature will drop to 40°C.
We discovered that SOF can be adsorbed and captured efficiently and stably for a long time even under conditions of 0°C or lower.
Based on this knowledge, we have completed the present invention.

すなわち、本発明は、ハニカム担体に、該担体の容量1
g当り、比表面積が50〜4001W2/gの耐火性無
機酸化物を一50〜400gの割合で担持してなるハニ
カム状排ガス浄化構造体に間する。
That is, the present invention provides a honeycomb carrier with a capacity of 1
A honeycomb-shaped exhaust gas purification structure is formed by supporting a refractory inorganic oxide having a specific surface area of 50 to 4001 W2/g at a ratio of 50 to 400 g per gram.

更に、本発明は、排ガスを上記ハニカム状排ガス浄化構
造体に接触させることを特徴とする排ガス浄化方法に関
する。
Furthermore, the present invention relates to an exhaust gas purification method characterized by bringing exhaust gas into contact with the honeycomb-shaped exhaust gas purification structure.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明のハニカム状排ガス浄化構造体く以下、単に「ハ
ニカム状構造体」という)において使用するハニカム担
体には、特に制限はなく、一般にハニカム担体と称され
るものであればいずれも使用することができる。これら
のうちで、コージェライト、ムライト、α−アルミナ、
ジルコニア、チタニア、リン酸チタン、アルミニウムチ
タネート、ベタライト、スボジュメン、アルミナ・シリ
ケート、ケイ酸マグネシウムなどからなるセラミックハ
ニカムおよびステンレスまたはFe−Cr−A9.合金
などの酸化抵抗性の耐熱金属を用いて一体構造体とした
メタルハニカムなどが好適に使用される。特に、ディー
ゼルエンジン排ガス浄化用としては、コージェライト質
ハニカムあるいはメタルハニカムが好適である。
There are no particular restrictions on the honeycomb carrier used in the honeycomb exhaust gas purification structure of the present invention (hereinafter simply referred to as "honeycomb structure"), and any carrier generally referred to as a honeycomb carrier may be used. I can do it. Among these, cordierite, mullite, α-alumina,
Ceramic honeycombs made of zirconia, titania, titanium phosphate, aluminum titanate, betalite, subodumene, alumina silicate, magnesium silicate, etc., and stainless steel or Fe-Cr-A9. A metal honeycomb or the like which is an integral structure made of an oxidation-resistant heat-resistant metal such as an alloy is preferably used. Cordierite honeycomb or metal honeycomb is particularly suitable for purifying diesel engine exhaust gas.

本発明におけるハニカム担体は、オープン式であって排
ガス流れに対し平行な複数個の貫通孔(以下、「ガス流
通孔」という)を有する。特に、ハニカム担体の横断面
1平方インチ当りのガス流通孔の数が100〜600個
であり、開孔率が40〜95%の場合に優れたSOFの
吸着・捕捉効果が得られる。なお、ここにいう開孔率と
は、ハニカム担体の横断面積に対する全ガス流通孔の横
断面積の合計の割合を意味する。
The honeycomb carrier in the present invention is open and has a plurality of through holes (hereinafter referred to as "gas flow holes") parallel to the flow of exhaust gas. In particular, when the number of gas flow holes per square inch of cross section of the honeycomb carrier is 100 to 600 and the porosity is 40 to 95%, an excellent SOF adsorption/trapping effect can be obtained. The porosity referred to herein means the ratio of the total cross-sectional area of all gas flow holes to the cross-sectional area of the honeycomb carrier.

上記ガス流通孔の数が100個未満、あるいは開孔率が
40%未満では、ハニカム構造体の単位容積当りの排ガ
スとの接触表面積が減少してSOFの吸着・捕捉効果が
低下し、さらには背圧上昇を招いて好ましくない。一方
、ガス流通孔の数が600個を超えるか、あるいは開孔
率が95%を超えるとハニカム構造体を構成する隔壁が
薄くなり、十分な強度が得られず実用上好ましくない。
If the number of gas flow holes is less than 100 or the porosity is less than 40%, the surface area of the honeycomb structure that comes in contact with the exhaust gas per unit volume decreases, and the SOF adsorption/trapping effect decreases. This is undesirable as it causes an increase in back pressure. On the other hand, if the number of gas flow holes exceeds 600 or the porosity exceeds 95%, the partition walls constituting the honeycomb structure become thin and sufficient strength cannot be obtained, which is not preferred in practice.

上記ハニカム担体に担持する耐火性無機酸化物としては
、比表面積が50〜400m2/3の範囲にあり、SO
Fを吸着し得るものであればいずれも使用することがで
きるが、特にアルミナ、ジルコニア、チタニアおよびシ
リカが好適に使用される。
The refractory inorganic oxide supported on the honeycomb carrier has a specific surface area in the range of 50 to 400 m2/3, and SO
Any material that can adsorb F can be used, but alumina, zirconia, titania, and silica are particularly preferred.

これらは単独でも、あるいは2種以上混合して使用する
こともできる。また、これらの複合酸化物としても使用
することができる。
These can be used alone or in combination of two or more. It can also be used as a composite oxide of these.

上記比表面積が50m2/g未満ではSOFの吸着・捕
捉効果が低く、一方400m2/gを超えると熱的に不
安定なものとなり実用的でない。
If the specific surface area is less than 50 m2/g, the adsorption/trapping effect of SOF is low, while if it exceeds 400 m2/g, it becomes thermally unstable and is not practical.

上記耐火性無機酸化物はハニカム担体上に、該担体の容
1k1l当り50〜400gの割合にて担持される。こ
の担持量が50g未満ではSOFを吸着・捕捉できる飽
和量が著しく低下し、一方400gを超えると耐火性無
機酸化物のはぐりやハニカム状構造体の孔の目づまりが
起こりやすくなって好ましくない。
The above-mentioned refractory inorganic oxide is supported on the honeycomb carrier at a rate of 50 to 400 g per 1k1l of the carrier. If the supported amount is less than 50 g, the saturated amount of SOF that can be adsorbed and captured will be significantly reduced, while if it exceeds 400 g, the refractory inorganic oxide will likely peel off and the pores of the honeycomb structure will become clogged, which is not preferable.

上記ハニカム担体に耐火性無機酸化物を担持してなるハ
ニカム状構造体に吸着・捕捉されたSOFは、高温酸素
雰囲気下におくことによって燃焼・分解させることが可
能であり、これによってハニカム状構造体を容易に再生
させることができる。
The SOF adsorbed and captured by the honeycomb-like structure formed by supporting a refractory inorganic oxide on the honeycomb carrier can be burned and decomposed by placing it in a high-temperature oxygen atmosphere, thereby forming a honeycomb-like structure. The body can be easily regenerated.

具体的には、ハニカム状構造体をエンジンの運転条件の
変更に応じて排出される、例えば400℃を超える高温
排ガスと接触させるか、あるいはバーナ、電気ヒーター
などの加熱手段を用いて加熱することによってハニカム
状構造体を再生することができる。
Specifically, the honeycomb-like structure is brought into contact with high-temperature exhaust gas of, for example, over 400°C, which is discharged according to changes in engine operating conditions, or heated using a heating means such as a burner or an electric heater. The honeycomb-like structure can be regenerated.

上記燃焼・分解温度を低下させる目的で耐火性無機酸化
物のほかに白金、パラジウムおよびロジウムから選ばれ
る少なくとも1種の貴金属を担持させることもできる。
In addition to the refractory inorganic oxide, at least one noble metal selected from platinum, palladium, and rhodium may be supported for the purpose of lowering the combustion/decomposition temperature.

本発明で使用するハニカム状構造体の容量はエンジン排
気量によって変わるが、ディーゼルエンジン排ガス浄化
の場合、エンジン排気量12当り0.3〜3交の容量の
ハニカム状構造体を使用する。
The capacity of the honeycomb-like structure used in the present invention varies depending on the engine displacement, but in the case of diesel engine exhaust gas purification, a honeycomb-like structure with a capacity of 0.3 to 3 times per 12 engine displacement is used.

ハニカム状構造体のエンジン排気量1g当りの容量が0
.3U未満では、主として排ガスとの接触時間の低下に
よってSOFの吸着・捕捉効果が低下し、一方312を
超えると、ハニカム状構造体の容量が非常に大きなもの
となって現実的でない。
The capacity per 1g of engine displacement of the honeycomb structure is 0
.. If it is less than 3 U, the adsorption/trapping effect of SOF will decrease mainly due to a decrease in the contact time with exhaust gas, while if it exceeds 312, the capacity of the honeycomb-like structure will become very large, which is not practical.

なお、本発明のハニカム状構造体および排ガス浄化方法
は、特にディーゼルエンジンから排出される排ガスであ
って、排ガス温度が200℃以下においては、排ガスI
n+3当り50mg以下のパティキュレートを含有し、
かつパティキュレート中のSOFの含量が40%以上で
あるディーゼルエンジン排ガスの浄化に極めて効果的で
ある。
In addition, the honeycomb-like structure and the exhaust gas purification method of the present invention are particularly applicable to exhaust gas discharged from a diesel engine, and when the exhaust gas temperature is 200°C or less, the exhaust gas I
Contains 50 mg or less of particulates per n+3,
Moreover, it is extremely effective in purifying diesel engine exhaust gas in which the content of SOF in the particulates is 40% or more.

(発明の効果) 本発明のハニカム状排ガス浄化装置を使用した場合の主
たる効果を列挙すれば次の通りである。
(Effects of the Invention) The main effects of using the honeycomb exhaust gas purification device of the present invention are listed below.

(1)  発ガン性物質などの有害成分を含有する排ガ
スの浄化に効果的であり、特にディーゼルエンジン排ガ
ス中のSOFを効率よく除去することができる。
(1) It is effective in purifying exhaust gas containing harmful components such as carcinogenic substances, and in particular, SOF in diesel engine exhaust gas can be efficiently removed.

(2)ディーゼルエンジン排ガス中のSOFの割合は低
温域で増加する傾向にあるが、このような低温域におい
てもSOFを効果的に除去することができる。
(2) Although the proportion of SOF in diesel engine exhaust gas tends to increase in low temperature ranges, SOF can be effectively removed even in such low temperature ranges.

(3)ディーゼルエンジン排ガス中のSOFを長時間安
定して除去することができる。
(3) SOF in diesel engine exhaust gas can be removed stably for a long time.

(4)長時間の使用によって蓄積したSOFの堆積物は
、例えば400℃を超える高温排ガスに暴露することに
よって、あるいはバーナ、電気ヒーターなどの加熱手段
で加熱することにより容易に燃焼・分解させることがで
き、この際ひび割れなとの問題が生じることはない。従
って、このような再生操作を施すことによって繰り返し
て使用することができる。
(4) SOF deposits accumulated through long-term use can be easily combusted and decomposed by exposure to high-temperature exhaust gas exceeding 400°C, or by heating with a heating means such as a burner or electric heater. can be done without any problem of cracks. Therefore, by performing such a reproducing operation, it can be used repeatedly.

(実施例) 以下、実施例を挙げて本発明をさらに具体的に説明する
(Example) Hereinafter, the present invention will be described in more detail with reference to Examples.

実施例1 比表面積130n+2/gのアルミナ3kgを水と湿式
粉砕してスラリー化した。このスラリー中に、下記の円
柱状のステンレス製ハニカム担体セル形状:コルゲーシ
ョン型 ガス流通孔の数:200個(ハニカム担体の横断面1平
方インチ当り、以下同じ) 開孔率=89% 容j1: 2.479 (担体の内径(以下、単に「内
径」という’): 5.66インチ、担体の長さ(以下
、単に「長さ」という):6インチ) を浸漬した後、余分なスラリーを取り除いた。引続き、
150℃で2時間乾燥した後、500℃で2時間焼成し
て、ハニカム担体の容jiff当りアルミナを300g
担持したハニカム状構造体を得た。
Example 1 3 kg of alumina having a specific surface area of 130n+2/g was wet-pulverized with water to form a slurry. In this slurry, the following cylindrical stainless steel honeycomb carrier cell shape: corrugation type Number of gas flow holes: 200 (per 1 square inch cross section of the honeycomb carrier, same hereinafter) Porosity = 89% Volume j1: 2.479 (inner diameter of carrier (hereinafter simply referred to as ``inner diameter''): 5.66 inches, length of carrier (hereinafter simply referred to as ``length''): 6 inches) After soaking, excess slurry was removed. removed. Continuing,
After drying at 150°C for 2 hours, it was fired at 500°C for 2 hours to obtain 300g of alumina per volume of honeycomb carrier.
A supported honeycomb structure was obtained.

実施例2 比表面積118m21gのチタニア3kgを水と湿式粉
砕してスラリー化した。・このスラリー中に、下記の円
柱状のステンレス製ハニカム担体セル形状:コルゲーシ
ョン型 ガス流通孔の数=450個 開孔率二83% 容量:  1.65g(内径:5.66インチ、長さ:
4インチ) を浸漬した後、余分なスラリーを取り除いた。引続き、
150℃で2時間乾燥した後、500℃で2時間焼成し
て、ハニカム担体の容量lQ当りチタニアを200g担
持したハニカム状構造体を得た。
Example 2 3 kg of titania having a specific surface area of 118 m21 g was wet-pulverized with water to form a slurry. - In this slurry, the following cylindrical stainless steel honeycomb carrier cell shape: corrugation type, number of gas flow holes = 450, porosity: 283%, capacity: 1.65 g (inner diameter: 5.66 inches, length:
After soaking (4 inches), excess slurry was removed. Continuing,
After drying at 150° C. for 2 hours, it was fired at 500° C. for 2 hours to obtain a honeycomb-like structure in which 200 g of titania was supported per 1Q volume of the honeycomb carrier.

実施例3 比表面積130m2/gのアルミナ2kgを水と湿式粉
砕してスラリー化した。このスラリー中に、下記の円柱
状のコージェライトモノリス担体ガス流通孔の数:約4
00個 開孔率:75% 容1i: 2.47Q (内径:5.66インチ、長さ
:6.00インチ) を浸漬した後、余分なスラリーを取り除いた。引続き、
150℃で3時間乾燥した後、400℃で2時間焼成し
て、担体の容1k1l当りアルミナを100g担持した
ハニカム状構造体を得た。
Example 3 2 kg of alumina having a specific surface area of 130 m2/g was wet-pulverized with water to form a slurry. In this slurry, the following cylindrical cordierite monolith carrier gas flow holes: Approximately 4
After immersing 00 pieces of porosity: 75%, volume 1i: 2.47Q (inner diameter: 5.66 inches, length: 6.00 inches), excess slurry was removed. Continuing,
After drying at 150° C. for 3 hours, it was fired at 400° C. for 2 hours to obtain a honeycomb-like structure in which 100 g of alumina was supported per 1 liter of carrier volume.

実施例4 実施例3において、アルミナの代わりに比表面積120
1/gのジルコニアを用いた以外は実施例3と同様にし
て、担体の容111g当りジルコニアを100g担持し
たハニカム状構造体を得た。
Example 4 In Example 3, specific surface area 120 was used instead of alumina.
A honeycomb structure in which 100 g of zirconia was supported per 111 g of the carrier was obtained in the same manner as in Example 3, except that 1/g of zirconia was used.

実施例5 実施例3において、アルミナの代わりに比表面積138
m+2/Hのチタニア−ジルコニア混合粉体(T i 
02/Z r 02重量比=1/1)を用いた以外は実
施例3と同様にして、担体の容量12当りチタニアおよ
びジルコニアをそれぞれ50gおよび50g担持したハ
ニカム状構造体を得た。
Example 5 In Example 3, a specific surface area of 138 was used instead of alumina.
m+2/H titania-zirconia mixed powder (T i
A honeycomb-like structure was obtained in the same manner as in Example 3 except that 50 g and 50 g of titania and zirconia were supported per 12 volumes of the carrier, respectively.

実施例6 実施例3において、アルミナの代わりに比表面積152
III218のアルミナ−シリカ複合酸化物(AQ20
3/S i 02重量比:4/])を用いた以外は実施
例3と同様にして、担体の容量1l当りアルミナ−シリ
カ複合酸化物を100g担持したハニカム状構造体を得
た。
Example 6 In Example 3, a specific surface area of 152 was used instead of alumina.
III218 alumina-silica composite oxide (AQ20
A honeycomb-like structure carrying 100 g of alumina-silica composite oxide per 1 liter of carrier capacity was obtained in the same manner as in Example 3 except that 3/S i 02 weight ratio: 4/] was used.

実施例7 実施例3において、アルミナの代わりに比表面積132
n+2/Hの、白金を1!ii%担持したアルミナを用
いた以外は実施例3と同様にして、担体の容111st
当りアルミナおよび白金をそれぞれ100gおよび1g
担持したハニカム状構造体を得た。
Example 7 In Example 3, a specific surface area of 132 was used instead of alumina.
1 platinum of n+2/H! ii% supported alumina was used in the same manner as in Example 3, and the carrier volume was 111 st.
100g and 1g of alumina and platinum, respectively
A supported honeycomb structure was obtained.

実施例8 実施例3において、アルミナの代わりに比表面積112
+w2/gの、パラジウムを1重量%担持したアルミナ
を用いた以外は実施例3と同様にして、担体の容量1l
当りアルミナおよびパラジウムをそれぞれ100gおよ
び1g担持したハニカム状構造体を得た。
Example 8 In Example 3, a specific surface area of 112 was used instead of alumina.
+w2/g, except that alumina carrying 1% by weight of palladium was used, except that the carrier had a capacity of 1 liter in the same manner as in Example 3.
A honeycomb-like structure carrying 100 g and 1 g of alumina and palladium, respectively, was obtained.

実施例9 実施例3において、アルミナの代わりに比表面積108
1/gの、白金およびロジウムをそれぞれ0.7重量%
および0.3重量%担持したジルコニアを用いた以外は
実施例3と同様にして、担体の容量1g当りジルコニア
、白金およびロジウムをそれぞれ100g、0.7gお
よび0.3g担持したハニカム状構造体を得た。
Example 9 In Example 3, specific surface area 108 was used instead of alumina.
1/g, 0.7% by weight each of platinum and rhodium
A honeycomb-like structure was prepared in the same manner as in Example 3 except that zirconia supported at 0.3% by weight was used, in which 100 g, 0.7 g, and 0.3 g of zirconia, platinum, and rhodium were supported per 1 g of carrier capacity, respectively. Obtained.

実施例10 比表面積150n+2/Hのアルミナ2kgを水と湿式
粉砕してスラリー化した。このスラリー中に、下記の円
柱状のコージェライトモノリス担体ガス流通孔の数:約
200個 開孔率:63% 容It: 2−479 (内径:5.66インチ、長さ
:6.00インチ) を浸漬した後、余分なスラリーを取り除いた。引続き、
150℃で3時間乾燥した後、400℃で2時間焼成し
て、担体の容11g当りアルミナを200g担持したハ
ニカム状構造体を得た。
Example 10 2 kg of alumina with a specific surface area of 150 n+2/H was wet-pulverized with water to form a slurry. In this slurry, the following cylindrical cordierite monolith carrier Number of gas flow holes: Approximately 200 Porosity: 63% Volume It: 2-479 (inner diameter: 5.66 inches, length: 6.00 inches ) After soaking, excess slurry was removed. Continuing,
After drying at 150° C. for 3 hours, it was fired at 400° C. for 2 hours to obtain a honeycomb-like structure in which 200 g of alumina was supported per 11 g of carrier volume.

実施例11 比表面積86 m2/gのチタニア2kgを水と湿式粉
砕してスラリー化した。このスラリー中に、下記の円柱
状のコージェライトモノリス担体ガス流通孔の数:約3
00個 開孔率:72% 容量:3.62!Q(内径:7.5インチ、長さ=5.
0インチ) を浸漬した後、余分なスラリーを取り除いた。引続き、
150℃で3時間乾燥した後、400℃で2時間焼成し
て、担体の容量Illllチリチタニア0g担持したハ
ニカム状構造体を得た。
Example 11 2 kg of titania having a specific surface area of 86 m2/g was wet-pulverized with water to form a slurry. In this slurry, the following cylindrical cordierite monolith carrier gas flow holes: Approximately 3
00 pieces Opening rate: 72% Capacity: 3.62! Q (inner diameter: 7.5 inches, length = 5.
After soaking (0 inch), excess slurry was removed. Continuing,
After drying at 150° C. for 3 hours, it was fired at 400° C. for 2 hours to obtain a honeycomb-like structure having a carrier capacity of 0 g of titania.

実施例12 比表面積10211121gのアルミナ2kgを水と湿
式粉砕してスラリー化した。このスラリー中に下記の円
柱状のコージェライトモノリス担体ガス流通孔の数:約
400個 開孔率:75% 容fl:  1.65!9 (内径:5.66インチ、
長さ:4.OOインチ) を浸漬した後、余分なスラリーを取り除いた。引続き、
・150℃で3時間乾燥して、担体の容′flk12当
りアルミナを150g担持したハニカム状構造体を得た
。・ 比較例1 実施例1において、担体の容量1g当りのアルミナの担
持量が30gになるようにした以外は実施例1と同様に
して、担体の容量1l当りアルミナを30g担持したハ
ニカム状構造体を得た。
Example 12 2 kg of alumina with a specific surface area of 10211121 g was wet-pulverized with water to form a slurry. In this slurry, the following cylindrical cordierite monolith carrier has gas flow holes: about 400, porosity: 75%, volume fl: 1.65!9 (inner diameter: 5.66 inches,
Length: 4. After soaking (0.0 inch), excess slurry was removed. Continuing,
- Drying at 150° C. for 3 hours yielded a honeycomb-like structure in which 150 g of alumina was supported per 12 flk volumes of the carrier. Comparative Example 1 A honeycomb-like structure was prepared in the same manner as in Example 1 except that the amount of alumina supported per 1 liter of carrier capacity was 30 g in Example 1. I got it.

比較例2 比表面積150+a2/Hのアルミナ2kgを水と湿式
粉砕してスラリー化した。このスラリー中に、下記の円
柱状のコージェライトモノリス担体ガス流通孔の数:約
400個 開孔率=75% 容量:0.671(内径:3.60インチ、長さ:4.
OOインチ) を浸漬した後、余分なスラリーを取り除いた。引続き、
150℃で3時間乾燥した後、400℃で2時間焼成し
て、担体の容量112当りアルミナを150g担持した
ハニカム状構造体を得た。
Comparative Example 2 2 kg of alumina with a specific surface area of 150+a2/H was wet-pulverized with water to form a slurry. In this slurry, the following cylindrical cordierite monolith carrier has gas flow holes: approximately 400, porosity = 75%, capacity: 0.671 (inner diameter: 3.60 inches, length: 4.
After soaking (0.0 inch), excess slurry was removed. Continuing,
After drying at 150° C. for 3 hours, it was fired at 400° C. for 2 hours to obtain a honeycomb-like structure in which 150 g of alumina was supported per 112 volumes of the carrier.

比較例3 比表面積150+2/Hのアルミナ2kgを水と湿式粉
砕してスラリー化した。このスラリー中に、下記の円柱
状のコージェライトモノリス担体ガス流通孔の数:約1
00個 開孔率:30% 容量: 1.659 (内径:5.66インチ、長さ:
4.OOインチ) を浸漬した後、余分なスラリーを取り除いた。引続き、
150℃で3時間乾燥した後、400℃で2時間焼成し
て、担体の容量1l当りアルミナを200g担持したハ
ニカム状構造体を得た。
Comparative Example 3 2 kg of alumina with a specific surface area of 150+2/H was wet-pulverized with water to form a slurry. In this slurry, the following cylindrical cordierite monolith carrier gas flow holes: Approximately 1
00 pieces Opening rate: 30% Capacity: 1.659 (Inner diameter: 5.66 inches, Length:
4. After soaking (0.0 inch), excess slurry was removed. Continuing,
After drying at 150° C. for 3 hours, it was fired at 400° C. for 2 hours to obtain a honeycomb-like structure in which 200 g of alumina was supported per liter of carrier volume.

比較桝4 比表面積150II12/gのアルミナ2kgを水と湿
式粉砕してスラリー化した。このスラリー中に、下記の
円柱状のコージェライトモノリス担体ガス流通孔の数:
約50個 開口率:72% 容量:2.479<内径:5.66インチ、長さ:6.
00インチ) を浸漬した後、余分なスラリーを取り除いた。引続き、
150℃で3時間乾燥した後、400℃で2時間焼成し
て、担体の容量111当りアルミナを300g担持した
ハニカム状構造体を得た。
Comparison Box 4 2 kg of alumina with a specific surface area of 150II12/g was wet-pulverized with water to form a slurry. In this slurry, the following number of cylindrical cordierite monolith carrier gas flow holes:
Approximately 50 pieces Opening ratio: 72% Capacity: 2.479<Inner diameter: 5.66 inches, Length: 6.
00 inches), excess slurry was removed. Continuing,
After drying at 150° C. for 3 hours, it was fired at 400° C. for 2 hours to obtain a honeycomb-like structure in which 300 g of alumina was supported per 111 volumes of the carrier.

比較例5 実施例3において、アルミナの代わりに比表面積15+
m2/Hのジルコニアを用いた以外は実施例3と同様に
して、担体の容量12当りジルコニアを200g担持し
たハニカム状構造体を得た。
Comparative Example 5 In Example 3, a specific surface area of 15+ was used instead of alumina.
A honeycomb-like structure was obtained in the same manner as in Example 3 except that zirconia of m2/H was used, in which 200 g of zirconia was supported per 12 volumes of the carrier.

上記実施例1〜12および比較例1〜5におけるハニカ
ム担体、耐火性無機酸化物の性状などを表1にまとめて
示す。(以下余白) 実施例13 実施例1−12および比較例1〜5で得られたハニカム
状構造体について、市販の過給直噴式ディーゼルエンジ
ン(4気筒、2800cc)で、燃料として硫黄含量が
0.03重量%である軽油を用いて下記の試験を行った
The properties of the honeycomb carrier and the refractory inorganic oxide in Examples 1 to 12 and Comparative Examples 1 to 5 are summarized in Table 1. (Space below) Example 13 The honeycomb structures obtained in Examples 1-12 and Comparative Examples 1 to 5 were used as fuel with a sulfur content of 0 in a commercially available supercharged direct injection diesel engine (4 cylinders, 2800 cc). The following test was conducted using light oil having a concentration of .03% by weight.

エンジン回転数1000rp+s、トルク1.0kg・
m、構造体入口温度100℃の条件において、ハニカム
状構造体の人口部および出口部の排ガス中のパティキュ
レートを通常のダイリュウーショントンネル法を用いて
捕捉した。このパティキュレートをジクロロメタン溶液
で抽出して、抽出前後のパティキュレートの重量変化か
らSOFの排出量(B/+w’−排ガス)を測定し、ハ
ニカム状構造体によるSOFの捕捉率を求めた。
Engine speed 1000rp+s, torque 1.0kg・
Particulates in the exhaust gas at the artificial part and the outlet part of the honeycomb-like structure were captured using a normal dilution tunnel method under the condition that the inlet temperature of the honeycomb structure was 100°C. The particulates were extracted with a dichloromethane solution, and the amount of SOF discharged (B/+w'-exhaust gas) was measured from the change in weight of the particulates before and after extraction, and the capture rate of SOF by the honeycomb structure was determined.

さらに、上記の排ガス雰囲気下でハニカム状構造体を1
0時間曝露した後、再度同様にしてSOFの捕捉率を測
定した。
Furthermore, the honeycomb-like structure was
After 0 hours of exposure, the SOF capture rate was measured again in the same manner.

なお、ハニカム状構造体の上記試験前後の重量を測定し
、SOFの捕捉によるハニカム状構造体の重量変化の測
定も行った。
The weight of the honeycomb structure before and after the above test was measured, and the change in weight of the honeycomb structure due to SOF capture was also measured.

結果を表2に示す。The results are shown in Table 2.

(以下余白) 表2の結果から、本発明のハニカム状構造体は優れたS
OFの吸着・捕捉効果を発揮し、しかもその性能を長時
間にわたって安定して維持できることが理解される。
(The following is a blank space) From the results in Table 2, the honeycomb-like structure of the present invention has excellent S
It is understood that it exhibits an OF adsorption/trapping effect and can stably maintain its performance over a long period of time.

実施例14 実施例13で試験した後の各ハニカム状構造体を電気炉
中で600℃で2時間加熱して捕捉したSOFを燃焼、
除去した。この再生ハニカム状構造体を、エンジン回転
数2000 rrxa、  )ルウ3゜6kg−m、構
造体入口温度200℃とした以外は実施例13と同様に
して試験した。
Example 14 Each honeycomb structure tested in Example 13 was heated at 600°C for 2 hours in an electric furnace to burn the captured SOF.
Removed. This regenerated honeycomb structure was tested in the same manner as in Example 13, except that the engine speed was 2000 rrxa, the slue was 3.6 kg-m, and the structure inlet temperature was 200°C.

結果を表3に示す、 (以下余白) 表3の結果から、本発明のハニカム状構造体に吸着・捕
捉されたSOFは加熱によって燃焼・分解され、このよ
うに再生されたハニカム状構造体は再度排ガス浄化装置
として効果的に利用できることが理解される。
The results are shown in Table 3 (blank below). From the results in Table 3, it can be seen that the SOF adsorbed and captured by the honeycomb structure of the present invention is burned and decomposed by heating, and the honeycomb structure regenerated in this way is It is understood that it can be effectively used again as an exhaust gas purification device.

実施例15 実施例3で得たハニカム状構造体であって、実施例14
で試験した後のS(>Fを吸着・捕捉したハニカム状構
造体を実施例13で用いたと同じエンジンおよび燃料を
用いて、エンジン回転数2500rpm、トルク20.
6kg・−のエンジン運転条件の排ガス中に装着して1
5分間曝露し、その間の構造体人口部および出口部のS
OFの排出量を実施例13におけると同様にして測定し
た。なお、この運転は停止状態から一気に運転したもの
であり、15分後のハニカム状構造体入口温度は570
℃であった。
Example 15 A honeycomb-like structure obtained in Example 3, which is the same as Example 14.
Using the same engine and fuel used in Example 13, the honeycomb-like structure adsorbing and capturing S(>F) was tested at an engine speed of 2500 rpm and a torque of 20.
Installed in exhaust gas under engine operating conditions of 6 kg・-1
Exposure for 5 minutes, during which S of the structure's population and outlet
The amount of OF discharged was measured in the same manner as in Example 13. Note that this operation was started from a stopped state all at once, and the temperature at the inlet of the honeycomb structure after 15 minutes was 570.
It was ℃.

その結果、ハニカム状構造体人口部および出口部のSO
Fの排出量はそれぞれ1 、6 mg/−一排ガスおよ
び1 、3 m8/*3−排ガスであり、その排出量は
低い値を示すとともに、ハニカム状構造体に捕捉された
SOFの放出は認められなかった。
As a result, the SO of the honeycomb-like structure's population and outlet
The emission amount of F is 1,6 mg/-1 exhaust gas and 1,3 m8/*3-exhaust gas, respectively, and the emission amount shows a low value, and the release of SOF trapped in the honeycomb-like structure is not recognized. I couldn't.

試験後取り出したハニカム状構造体の重量は1402.
7gであり、初期の重量1402.0gと同等の重量を
示した。また、実施例14の試験後においてはSOFの
吸着・捕捉による茶褐色を呈したがハニカム状構造体が
初期の白色を呈し、SOFが分解、除去されてハニカム
状構造体が再生されていることが確認された。
The weight of the honeycomb structure taken out after the test was 1402.
The weight was 7g, which was equivalent to the initial weight of 1402.0g. Furthermore, after the test in Example 14, the honeycomb-like structure exhibited a brownish color due to adsorption and capture of SOF, but the honeycomb-like structure took on its initial white color, indicating that the SOF had been decomposed and removed and the honeycomb-like structure had been regenerated. confirmed.

上記結果から、本発明のハニカム状構造体に吸着・捕捉
されたSOFは、エンジン運転条件などを変更して高温
排ガスを排出させ、これをハニカム状構造体に接触させ
ることによっても燃焼・分解され、使用後のハニカム状
構造体を効果的に再生できることが理解される。
From the above results, the SOF adsorbed and captured by the honeycomb-like structure of the present invention can be combusted and decomposed by changing engine operating conditions to emit high-temperature exhaust gas and bringing it into contact with the honeycomb-like structure. It is understood that the honeycomb structure can be effectively regenerated after use.

Claims (12)

【特許請求の範囲】[Claims] (1)ハニカム担体に、該担体の容量1l当り、比表面
積が50〜400m^2/gの耐火性無機酸化物を50
〜400gの割合で担持してなるハニカム状排ガス浄化
構造体。
(1) Add 50% of a refractory inorganic oxide having a specific surface area of 50 to 400 m^2/g to a honeycomb carrier per 1 liter of capacity of the carrier.
A honeycomb-shaped exhaust gas purification structure supported at a ratio of ~400g.
(2)ハニカム担体が金属またはセラミックスからなる
オープン式ハニカム担体である請求項(1)に記載のハ
ニカム状排ガス浄化構造体。
(2) The honeycomb exhaust gas purification structure according to claim 1, wherein the honeycomb carrier is an open type honeycomb carrier made of metal or ceramics.
(3)ハニカム担体が横断面1平方インチ当り100〜
600個のガス流通孔を有し、かつその横断面の開孔率
が40〜95%である請求項(2)に記載のハニカム状
排ガス浄化構造体。
(3) The honeycomb carrier has a density of 100 to 100 per square inch of cross section.
The honeycomb exhaust gas purification structure according to claim 2, which has 600 gas flow holes and has a cross-sectional porosity of 40 to 95%.
(4)耐火性無機酸化物がアルミナ、ジルコニア、チタ
ニアおよびシリカから選ばれる少なくとも1種である請
求項(1)に記載のハニカム状排ガス浄化構造体。
(4) The honeycomb-shaped exhaust gas purification structure according to claim (1), wherein the refractory inorganic oxide is at least one selected from alumina, zirconia, titania, and silica.
(5)耐火性無機酸化物のほかに白金、パラジウムおよ
びロジウムから選ばれる少なくとも1種の貴金属を担持
してなる請求項(4)に記載のハニカム状排ガス浄化構
造体。
(5) The honeycomb-shaped exhaust gas purification structure according to claim (4), which supports at least one noble metal selected from platinum, palladium, and rhodium in addition to the refractory inorganic oxide.
(6)ディーゼルエンジンの排ガスを浄化するための装
置である請求項(1)に記載のハニカム状排ガス浄化構
造体。
(6) The honeycomb-shaped exhaust gas purification structure according to claim (1), which is a device for purifying exhaust gas of a diesel engine.
(7)ディーゼルエンジンの排ガスを請求項(1)のハ
ニカム状排ガス浄化構造体に接触させることを特徴とす
る排ガス浄化方法。
(7) An exhaust gas purification method comprising bringing the exhaust gas of a diesel engine into contact with the honeycomb-shaped exhaust gas purification structure according to claim (1).
(8)ハニカム状排ガス浄化構造体の容量がエンジン排
気量1l当り0.3〜3lである請求項(7)に記載の
排ガス浄化方法。
(8) The exhaust gas purification method according to (7), wherein the honeycomb exhaust gas purification structure has a capacity of 0.3 to 3 liters per liter of engine displacement.
(9)通常の運転条件下においてディーゼルエンジンか
ら排出される比較的低温な排ガス中のパティキュレート
を構成するSOFをハニカム状排ガス浄化構造体に吸着
・捕捉せしめて排ガスを浄化し、必要に応じて該構造体
を高温酸素含有雰囲気下におくことにより上記吸着・捕
捉されたSOFを燃焼・分解させて該構造体を再生させ
る請求項(7)に記載の排ガス浄化方法。
(9) SOF, which constitutes particulates in relatively low-temperature exhaust gas emitted from a diesel engine under normal operating conditions, is adsorbed and captured in the honeycomb-shaped exhaust gas purification structure to purify the exhaust gas, and as needed. 8. The exhaust gas purification method according to claim 7, wherein the structure is regenerated by placing the structure in a high-temperature oxygen-containing atmosphere to burn and decompose the adsorbed and captured SOF.
(10)ディーゼルエンジンの排ガスの温度が400℃
以下である請求項(9)に記載の排ガス浄化方法。
(10) The temperature of diesel engine exhaust gas is 400℃
The exhaust gas purification method according to claim 9, which is as follows.
(11)ハニカム状排ガス浄化構造体をバーナーなどの
加熱手段を用いて加熱して再生させる請求項(9)に記
載の排ガス浄化方法。
(11) The exhaust gas purification method according to (9), wherein the honeycomb-shaped exhaust gas purification structure is heated and regenerated using heating means such as a burner.
(12)ハニカム状排ガス浄化構造体を高温排ガスと接
触させて再生する請求項(9)に記載の排ガス浄化方法
(12) The exhaust gas purification method according to claim (9), wherein the honeycomb-shaped exhaust gas purification structure is regenerated by contacting with high-temperature exhaust gas.
JP17109589A 1989-07-04 1989-07-04 Honeycomb-shaped exhaust gas purification structure and exhaust gas purification method using the structure Expired - Lifetime JP2788494B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17109589A JP2788494B2 (en) 1989-07-04 1989-07-04 Honeycomb-shaped exhaust gas purification structure and exhaust gas purification method using the structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17109589A JP2788494B2 (en) 1989-07-04 1989-07-04 Honeycomb-shaped exhaust gas purification structure and exhaust gas purification method using the structure

Publications (2)

Publication Number Publication Date
JPH0338255A true JPH0338255A (en) 1991-02-19
JP2788494B2 JP2788494B2 (en) 1998-08-20

Family

ID=15916896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17109589A Expired - Lifetime JP2788494B2 (en) 1989-07-04 1989-07-04 Honeycomb-shaped exhaust gas purification structure and exhaust gas purification method using the structure

Country Status (1)

Country Link
JP (1) JP2788494B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0781590A1 (en) 1995-12-25 1997-07-02 Toyota Jidosha Kabushiki Kaisha Exhaust catalyst for purifying exhaust gas emitted from diesel engine
US5686377A (en) * 1995-01-17 1997-11-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gases
AT412531B (en) * 2002-06-03 2005-04-25 Porzellanfabrik Frauenthal Gmb Honeycomb ceramic molding for exhaust gas treatment systems, especially regenerative heat storage systems, has gas channels of different cross-section
WO2005079165A3 (en) * 2004-02-23 2005-10-13 Ibiden Co Ltd Honeycomb structural body and exhaust gas purifying apparatus
JP2008528271A (en) * 2005-01-31 2008-07-31 コンパクトジーティーエル パブリック リミテッド カンパニー Catalytic reactor
JP4689874B2 (en) * 2001-05-30 2011-05-25 東洋エアゾール工業株式会社 Trigger type injection switching device for aerosol container

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627295A (en) * 1979-08-13 1981-03-17 Janome Sewing Machine Co Ltd Signal output device for adjusting condition of cotton of sewing machine
JPS6157223A (en) * 1984-08-27 1986-03-24 Toyota Motor Corp Filter for collecting diesel particulate
JPS6256783A (en) * 1985-09-05 1987-03-12 Matsushita Electric Ind Co Ltd Heat transfer device
JPS63143941A (en) * 1986-12-08 1988-06-16 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for nitrogen oxide removal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5627295A (en) * 1979-08-13 1981-03-17 Janome Sewing Machine Co Ltd Signal output device for adjusting condition of cotton of sewing machine
JPS6157223A (en) * 1984-08-27 1986-03-24 Toyota Motor Corp Filter for collecting diesel particulate
JPS6256783A (en) * 1985-09-05 1987-03-12 Matsushita Electric Ind Co Ltd Heat transfer device
JPS63143941A (en) * 1986-12-08 1988-06-16 Nippon Shokubai Kagaku Kogyo Co Ltd Catalyst for nitrogen oxide removal

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5686377A (en) * 1995-01-17 1997-11-11 Kabushiki Kaisha Toyota Chuo Kenkyusho Catalyst for purifying exhaust gases
EP0781590A1 (en) 1995-12-25 1997-07-02 Toyota Jidosha Kabushiki Kaisha Exhaust catalyst for purifying exhaust gas emitted from diesel engine
JP4689874B2 (en) * 2001-05-30 2011-05-25 東洋エアゾール工業株式会社 Trigger type injection switching device for aerosol container
AT412531B (en) * 2002-06-03 2005-04-25 Porzellanfabrik Frauenthal Gmb Honeycomb ceramic molding for exhaust gas treatment systems, especially regenerative heat storage systems, has gas channels of different cross-section
WO2005079165A3 (en) * 2004-02-23 2005-10-13 Ibiden Co Ltd Honeycomb structural body and exhaust gas purifying apparatus
US7585471B2 (en) 2004-02-23 2009-09-08 Ibiden Co., Ltd. Honeycomb structured body and exhaust gas purifying device
JP2008528271A (en) * 2005-01-31 2008-07-31 コンパクトジーティーエル パブリック リミテッド カンパニー Catalytic reactor

Also Published As

Publication number Publication date
JP2788494B2 (en) 1998-08-20

Similar Documents

Publication Publication Date Title
JP3113662B2 (en) Catalyst for exhaust gas purification of diesel engines
JP4889873B2 (en) Exhaust gas purification system, exhaust gas purification catalyst used therefor, and exhaust purification method
JP2863567B2 (en) Exhaust gas purifying material and exhaust gas purifying method
KR100605005B1 (en) Catalytic soot filter and use thereof in treatment of lean exhaust gases
JPH02207845A (en) Catalyst for purification of exhaust gas from diesel engine
JPH0160652B2 (en)
JPH01151706A (en) Catalyst and filter for removing combustible fine particles and nitrogen oxide
JP2012036821A (en) Exhaust emission control system of internal combustion engine
JP2008121438A (en) Catalyst-carried particulate filter
JP4251764B2 (en) Exhaust gas purification device and exhaust gas purification method using the same
JP4604374B2 (en) Exhaust gas purification device for internal combustion engine
JP2009255051A (en) Exhaust gas purification device
JP5502885B2 (en) Oxidation catalyst suitable for burning light oil components
JP2788494B2 (en) Honeycomb-shaped exhaust gas purification structure and exhaust gas purification method using the structure
JP2007117954A (en) Catalyst for cleaning exhaust gas from diesel engine
JPH0768178A (en) Catalyst body for removing particulate substance in diesel vehicle and preparation thereof
JP2003190793A (en) Filter type catalyst for purifying diesel exhaust gas
JP4649587B2 (en) Exhaust gas purification filter and collection method of particulate matter
JPH01307452A (en) Waste gas purification catalyst
JP2006159020A (en) Filter and catalyst for purification of exhaust gas
JP3096466B2 (en) Purification method of diesel engine exhaust gas
JPS6351947A (en) Catalyst filter for combustion of particulate
JPH09168723A (en) Exhaust gas filter
JP2008264631A (en) Filter catalyst for purifying exhaust gas
JPH0255603B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100605

Year of fee payment: 12