JPH01151706A - Catalyst and filter for removing combustible fine particles and nitrogen oxide - Google Patents

Catalyst and filter for removing combustible fine particles and nitrogen oxide

Info

Publication number
JPH01151706A
JPH01151706A JP62310607A JP31060787A JPH01151706A JP H01151706 A JPH01151706 A JP H01151706A JP 62310607 A JP62310607 A JP 62310607A JP 31060787 A JP31060787 A JP 31060787A JP H01151706 A JPH01151706 A JP H01151706A
Authority
JP
Japan
Prior art keywords
filter
passages
zeolite
catalyst
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62310607A
Other languages
Japanese (ja)
Inventor
Hideaki Muraki
村木 秀昭
Shiro Kondo
近藤 四郎
Shinichi Matsumoto
伸一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP62310607A priority Critical patent/JPH01151706A/en
Publication of JPH01151706A publication Critical patent/JPH01151706A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters

Abstract

PURPOSE:To simultaneously remove both combustible particles and nitrogen oxides in exhaust gas by holding catalyst component composed of copper and zeolite by means of filter walls which partition intake and discharge passages of a filter. CONSTITUTION:A plurality of intake passages 2 and exhaust passages 3 are alternately formed on a filter 1 in the axial direction thereof. The passages 2, 3 are partitioned by a plurality of filter walls 10 extending in the axial direction. In this case, the passages 2, 3 are blocked checkerwise in every other opening by walls 31, on the intake side A of the respective passages 2, 3. On the other hand, they are blocked checkerwised by walls 22, on an exhaust side B thereof at outlets whose passages are not blocked on the intake side. As a result, the passages blocked on the exhaust side form the intake passages 2, and also, the passages blocked on the intake side form the discharge passages 3. Catalyst components composed of copper and zeolite is held by the filter walls 10.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関、特に自動車の排気ガス中に含まれる
カーボン等の可燃性微粒子並びに窒素酸化物を同時に除
去するための触媒及び該触媒を用いたフィルターに関す
る。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a catalyst for simultaneously removing combustible particulates such as carbon and nitrogen oxides contained in the exhaust gas of internal combustion engines, particularly automobiles, and the catalyst. Regarding the filter used.

〔従来技術〕[Prior art]

ディーゼルエンジンの排気ガス中に含まれるカーボン等
の可燃性微粒子を除去するために、排気系にフィルター
を用いることは公知である。しかし、このフィルターに
は、長時間の使用により可燃性微粒子が堆積し目詰まり
を起こし、圧力損失を生ずる。
It is known to use a filter in the exhaust system to remove combustible particulates such as carbon contained in the exhaust gas of a diesel engine. However, when used for a long time, combustible particles accumulate in this filter, causing it to become clogged and causing a pressure loss.

そこで、従来はこの欠点を解消するものとして。Therefore, conventional methods were used to solve this drawback.

フィルターの微粒子補足部位にニクロム線ヒータ或いは
発熱金属層を組み合わせて通電加熱するように構成した
フィルターが提案されている(特開昭58−74121
)。また、上記補足部位に燃料を噴射して燃料の燃焼熱
により可燃性微粒子を加熱したり、高圧電極を設けて火
花放電により加熱する提案もなされている。これらは、
上記加熱により可燃性微粒子を焼却し、目詰まりを防ぐ
ものである;また、バナジン酸銀触媒を担持したフィル
ター(特開昭58−84042)、更には酸化リチウム
、塩化銅、アルカリ金属を存する五酸化バナジウム、リ
チウム、ナトリウム、カリウムまたはセリウムのバナジ
ン酸塩、またはカリウムまたは銀の過レニウム酸塩から
選んだ1種または2種以上を担持したフィルター(特開
昭59−49825)が提案されている。
A filter has been proposed in which a nichrome wire heater or a heat-generating metal layer is combined with a part of the filter that captures particulates to heat the part with electricity (Japanese Patent Application Laid-Open No. 74121/1983).
). There have also been proposals to inject fuel into the supplementary part and heat the combustible particulates with the combustion heat of the fuel, or to provide a high voltage electrode and heat it by spark discharge. these are,
The above heating incinerates combustible fine particles and prevents clogging; it also uses filters that support a silver vanadate catalyst (Japanese Patent Application Laid-open No. 58-84042), as well as filters containing lithium oxide, copper chloride, and alkali metals. A filter carrying one or more selected from vanadium oxide, lithium, sodium, potassium or cerium vanadate, or potassium or silver perrhenate has been proposed (Japanese Patent Laid-Open No. 59-49825). .

一方、上記排気ガス中には上記可燃性微粒子の外に窒素
酸化物(NOx)も含有されており、該窒素酸化物を除
去するための努力もなされている。
On the other hand, the exhaust gas also contains nitrogen oxides (NOx) in addition to the combustible particles, and efforts are being made to remove the nitrogen oxides.

C解決すべき問題点〕 しかしながら、これら従来技術はいずれも、可燃性微粒
子又は窒素酸化物をそれぞれ単独に除去することについ
ては、その効果を発揮するが、可燃性微粒子と窒素酸化
物の両者を同時に除去することができない。
C. Problems to be Solved] However, while these conventional techniques are effective in removing combustible particulates and nitrogen oxides individually, they are effective in removing both combustible particulates and nitrogen oxides. cannot be removed at the same time.

また、可燃性微粒子除去用のフィルターと、窒素酸化物
除去用の触媒コンバーターとを用い、これらに排気ガス
を順次送入して可燃性微粒子と窒素酸化物とをそれぞれ
除去することも提案されている(特公昭62−4105
4)。
It has also been proposed to use a filter for removing combustible particulates and a catalytic converter for removing nitrogen oxides, and to sequentially feed exhaust gas through these to remove combustible particulates and nitrogen oxides, respectively. There is (Special Public Service 1986-4105)
4).

しかし、かかる手段は、フィルターと触媒コンバータの
2つの装置を必要とし、コンパクト化。
However, such means require two devices, a filter and a catalytic converter, and are compact.

軽量化を進めている自動車技術にとっては好ましいこと
ではない。
This is not good news for automotive technology, which is moving towards weight reduction.

本発明は、かかる問題に鑑みてなされたもので。The present invention was made in view of this problem.

排気ガス中の可燃性微粒子及び窒素酸化物を同時に除去
することができる触媒及びフィルターを提供しようとす
るものである。
The present invention aims to provide a catalyst and a filter that can simultaneously remove combustible particulates and nitrogen oxides from exhaust gas.

〔問題点の解決手段〕[Means for solving problems]

本願の第1発明は、可燃性微粒子並びに窒素酸化物を除
去するための触媒であって、担体に対して銅とゼオライ
トとからなる触媒成分を担持してなることを特徴とする
可燃性微粒子並びに窒素酸化物を除去するための触媒に
ある。
The first invention of the present application is a catalyst for removing combustible particles and nitrogen oxides, which is characterized in that a catalyst component consisting of copper and zeolite is supported on a carrier. It is a catalyst for removing nitrogen oxides.

上記触媒成分としての銅(Cu)は、金属Cu又は酸化
銅(Cub)の状態いずれでも良い。また、Cuと共に
用いるゼオライトは、沸石とも呼ばれ、化学組成は長石
類または准長石類に類(以し。
Copper (Cu) as the catalyst component may be in the form of metal Cu or copper oxide (Cub). Zeolite used with Cu is also called zeolite, and its chemical composition is similar to feldspars or quasi-feldspars (hereinafter referred to as zeolites).

一般式Wm Zn 02n−s H,O(ここに、Wは
Na、 Ca、 K、 Ba又はSr、ZはSi+Aj
2(Si :A/!>1)、sは一定しない〕で示され
る含水珪酸塩である。
General formula Wm Zn 02n-s H,O (where W is Na, Ca, K, Ba or Sr, Z is Si+Aj
2 (Si:A/!>1), s is not constant].

しかして、該触媒は、ゼオライトとCuとを混合するこ
と或いはゼオライトにCuをイオン交換担持すること等
により調製する。このイオン交換担持は、実施例にも示
すごとく、酢酸銅、硝酸銅等の114水溶液中にゼオラ
イト層を浸漬5乾燥することなどにより行う、これによ
り、ゼオライト中のNa或いはアルカリなどの元素がC
uとイオン交換する。また、このときのイオン交換率は
50ないし100%とすることが好ましい。50%未満
では9本発明の効果が得られ難いからである。
The catalyst is prepared by mixing zeolite and Cu, or by supporting Cu on zeolite by ion exchange. As shown in the examples, this ion exchange support is carried out by immersing the zeolite layer in a 114 aqueous solution of copper acetate, copper nitrate, etc. and drying it.
exchange ions with u. Further, the ion exchange rate at this time is preferably 50 to 100%. This is because if it is less than 50%, it is difficult to obtain the effects of the present invention.

ここに、Cuのイオン交換率とは、Cuを一価とした場
合にCuがゼオライト中のNa或いはアルカリ等の元素
と交換した量をいう。
Here, the ion exchange rate of Cu refers to the amount of Cu exchanged with elements such as Na or alkali in the zeolite when Cu is monovalent.

次に、上記触媒成分を担持させる担体としては。Next, as a carrier for supporting the above-mentioned catalyst component.

コーディエライト、アルミナ、シリカ・アルミナ。Cordierite, alumina, silica/alumina.

スボジュメン等の多孔質焼結体等がある。また。Porous sintered bodies such as subodumene are available. Also.

担体の形状としては1粒状、ハニカム状体或いはフオー
ム(多孔)型環任意であるが、排気との接触を向上させ
、可燃性微粒子及び窒素酸化物の除去効果を向上させる
ためには、ハニカム状体等の一体型担体とすることが好
ましい、この一体型担体は、後述するフィルターと同様
のものである。
The shape of the carrier may be a single grain, a honeycomb shape, or a foam (porous) ring. However, in order to improve contact with the exhaust gas and improve the removal effect of combustible particulates and nitrogen oxides, a honeycomb shape is preferred. This integrated carrier, which is preferably an integrated carrier such as a body, is similar to the filter described below.

また、該担体は例えば一体型担体であるコーディエライ
ト担体の表面に、更にアルミナ等の粉末を付着、焼成し
て、該アルミナ等の多孔質体を形成することにより構成
することもできる。
Further, the carrier can also be constructed by further adhering powder of alumina or the like to the surface of a cordierite carrier, which is an integral carrier, and firing the powder to form a porous body of the alumina or the like.

更に、担体上に該触媒成分を担持する方法としては9例
えばまず担体上にゼオライト粉末の多孔質体層をコーテ
ィングし、その後、これらを酢酸銅等の銅水溶液中に浸
漬しCuをイオン交換担持することなどにより行う。し
かして、担体に対する触媒成分の担持量としては、担体
lNに対して1〜50gとすることが好ましい。1g未
満では。
Furthermore, as a method for supporting the catalyst component on a carrier, for example, first, a porous layer of zeolite powder is coated on the carrier, and then, it is immersed in an aqueous copper solution such as copper acetate to support Cu by ion exchange. To do something, such as by doing something. Therefore, the amount of the catalyst component supported on the carrier is preferably 1 to 50 g per N of the carrier. Less than 1g.

本発明の効果を得難<、50gを越えてもそれに見合う
効果を得難い。
It is difficult to obtain the effects of the present invention, and even if it exceeds 50 g, it is difficult to obtain the effects commensurate with that.

なお1本発明にかかる触媒は200〜800℃において
用いることが好ましい。また、触媒層へ導入する排気ガ
スの空間速度としては、GH3Vl千〜lO力/時とす
ることが好ましい。
Note that the catalyst according to the present invention is preferably used at a temperature of 200 to 800°C. Further, the space velocity of the exhaust gas introduced into the catalyst layer is preferably GH3V1,000 to 10 force/hour.

次に1本願の第2発明は、排気ガスの流入側から流出側
に向かって濾過壁により区切られた多数の通路を有する
と共に、該通路はその流出側を閉塞した通人通路とその
流入側を閉塞した排出通路とからなり、通人通路は少な
くとも1つの排出通路と上記濾過壁を共有し、かつ該濾
過壁は通人通路から排出通路に排気ガスが通過するとき
排気ガス中の可燃性微粒子を補足する通孔を有してなり
Next, the second invention of the present application has a large number of passages separated by filter walls from the inflow side to the outflow side of exhaust gas, and the passages include a passageway whose outflow side is closed and a passageway whose inflow side is closed. and a discharge passageway with a closed discharge passageway, the passageway sharing the filter wall with at least one discharge passageway, and the filtering wall being configured to prevent combustible substances in the exhaust gas from passing from the passageway to the discharge passageway. It has holes that trap fine particles.

また該濾過壁には銅とゼオライトとからなる触媒成分を
担持してなることを特徴とする可燃性微粒子並びに窒素
酸化物を除去するためのフィルターにある。
The present invention also provides a filter for removing combustible particulates and nitrogen oxides, characterized in that the filter wall supports a catalyst component consisting of copper and zeolite.

本第2発明にかかるフィルターにおいては、通人通路と
排出通路とは排気ガスの流入側から流出側に向かって設
けた多数の濾過壁によって区画されている。即ち、この
フィルターはその軸方向に沿った多数の通路を有する筒
状体である。そして。
In the filter according to the second aspect of the invention, the passageway and the discharge passageway are separated by a large number of filter walls provided from the exhaust gas inflow side to the exhaust gas outflow side. That is, this filter is a cylindrical body having a large number of passages along its axial direction. and.

通人通路は少なくとも1つの排出通路と上記濾過壁を共
有している。つまり、通人通路に入った排気ガスが必ず
濾過壁を通って排出通路に出る構造となっている。そし
て、この濾過壁には、排気ガスがこの濾過壁を通過する
際に排気ガス中の可燃性微粒子を補足するための通孔が
設けられている。
The passageway shares the filter wall with at least one discharge passageway. In other words, the structure is such that the exhaust gas that enters the passageway always passes through the filter wall and exits to the exhaust passageway. This filter wall is provided with a through hole for capturing combustible particulates in the exhaust gas when the exhaust gas passes through the filter wall.

しかして、上記通人通路と排出通路との形成は。However, what is the formation of the above-mentioned passageway and discharge passageway?

実施例の第1〜第3図に示すごとく、まず多数の通路を
有する筒状体を作り、その通路の一方側を。
As shown in FIGS. 1 to 3 of the embodiment, first, a cylindrical body having a large number of passages was made, and one side of the passages was made.

例えばいわゆる市松模様となるように1個置きに閉塞す
る。次いで、他側において、上記閉塞をしなかった通路
を閉塞する。これにより、−刃側において閉塞しなかっ
た通路が通人通路となり、他方側において閉塞しなかっ
た通路が排出通路となる。
For example, every other block is blocked in a so-called checkered pattern. Next, on the other side, the passages that were not closed are closed. As a result, the passage that is not blocked on the -blade side becomes a pass passage, and the passage that is not blocked on the other side becomes a discharge passage.

また、上記濾過壁は本発明のフィルターの骨格とも言う
べきもので、コーディエライト、アルミナ、アルミナ・
シリカ等のセラミックス粉末焼結体などにより構成する
。しかして、かかる濾過壁は小さい通孔を有しており、
前記のごとく可燃性微粒子を補足する。上記通孔として
は、5〜50μmとすることが好ましい。5μm未満で
は、可燃性微粒子による目詰まりが大きく、また505
mを越えると可燃性微粒子を補足し難く、また窒素酸化
物の除去(浄化)効果も低下する。
In addition, the above-mentioned filter wall can be called the skeleton of the filter of the present invention, and is composed of cordierite, alumina, alumina, etc.
It is composed of a sintered body of ceramic powder such as silica. Thus, such filter walls have small holes,
Supplement combustible particles as described above. The diameter of the through hole is preferably 5 to 50 μm. If the diameter is less than 5 μm, clogging due to combustible particles is large;
If it exceeds m, it becomes difficult to capture combustible particulates, and the nitrogen oxide removal (purification) effect also decreases.

次に、上記濾過壁にはCuとゼオライトとからなる触媒
成分を担持する。その担持手段は、前記第1発明におい
て上記触媒成分を担体に担持する場合と同様である。
Next, a catalyst component consisting of Cu and zeolite is supported on the filter wall. The supporting means is the same as in the case of supporting the catalyst component on the carrier in the first invention.

また、上記触媒成分の構成は、第1発明と同様に、Cu
をゼオライトにイオン交換担持すること等により行う、
また、そのイオン交換率は、前記と同様50〜100%
とすることが好ましい。また、この触媒成分の担持は、
上記濾過壁によって構成されるフィルターIIlに対し
て1〜50g/lとすることが好ましい。
Further, the structure of the catalyst component is similar to the first invention, Cu
carried out by ion-exchange loading on zeolite, etc.
In addition, the ion exchange rate is 50 to 100% as mentioned above.
It is preferable that In addition, this catalyst component is supported by
It is preferable to set it as 1-50 g/l with respect to the filter IIl comprised by the said filtration wall.

なお、第1発明、第2発明において、可燃性微粒子の燃
焼除去は、Cuとゼオライトとの存在により低温で行う
ことができるので、触媒層の周囲。
In addition, in the first invention and the second invention, since the combustion removal of combustible particulates can be performed at a low temperature due to the presence of Cu and zeolite, the combustible particulates can be removed around the catalyst layer.

フィルターの周囲などに特に燃焼加熱用の加熱器を設け
る必要はない、しかし、必要に応じて、かかる加熱器を
設けることもできる。
It is not necessary to provide a heater specifically for combustion heating around the filter, but such a heater can be provided if necessary.

〔作用及び効果〕[Action and effect]

本願第1発明においては、触媒成分として銅とゼオライ
トとを用いているので、排気ガス中の可燃性微粒子を低
温において燃焼除去することができると共に、上記触媒
成分により排気ガス中の窒素酸化物(NOx)を高能率
で除去することができる。
In the first invention of the present application, since copper and zeolite are used as catalyst components, combustible particulates in the exhaust gas can be burned and removed at low temperatures, and the catalyst components can remove nitrogen oxides ( NOx) can be removed with high efficiency.

上記可燃性微粒子の除去は、排気ガスの熱と排気ガス中
の酸素とによる自然発火により、燃焼することにより行
う。そして、このときの燃焼温度は350℃程度の低温
においても行うことができる。これは上記のごと<、C
uとゼオライトとを触媒成分としているためである。
The above-mentioned combustible particulates are removed by combustion due to spontaneous ignition caused by the heat of the exhaust gas and the oxygen in the exhaust gas. The combustion temperature at this time can be as low as about 350°C. This is as above <,C
This is because u and zeolite are used as catalyst components.

上記NOxの除去は、主として排気ガス中の炭化水素と
NOxとを反応させて、N、、Co□。
The removal of NOx is performed mainly by reacting the hydrocarbons in the exhaust gas with NOx to form N, Co□.

H,O等の成分に分解することにより行われる。This is done by decomposing it into components such as H and O.

したがって2本第1発明によれば、排気ガス中の可燃性
微粒子及び窒素酸化物を同時に除去することができる。
Therefore, according to the first aspect of the invention, combustible particulates and nitrogen oxides in exhaust gas can be removed at the same time.

また、その除去は350 ’C程度という低温において
可能である。また、そのために。
Moreover, its removal is possible at a low temperature of about 350'C. Also, for that purpose.

従来のごとく可燃性微粒子及び窒素酸化物をそれぞれ除
去するための2個の除去装置を必要とせず。
There is no need for two removal devices to remove combustible particulates and nitrogen oxides as in the past.

装置がコンパクト、軽量となる。The device is compact and lightweight.

また、可燃性微粒子の除去は前記のごとく排気ガス中の
酸素と反応(燃焼)させることにより行うものであるた
め、その反応雰囲気は酸素過剰下である。一方、窒素酸
化物の除去は3周知のごとく還元反応であるため、かか
る酸素過剰下では充分に行われないのが普通である。し
かるに1本発明は酸素過剰下における可燃性微粒子と窒
素酸化物の同時除去を達成するものであり、注目すべき
ものである。
Further, since the combustible particulates are removed by reacting (combusting) with oxygen in the exhaust gas as described above, the reaction atmosphere is an oxygen-excessive atmosphere. On the other hand, since the removal of nitrogen oxides is a reduction reaction as is well known, it is usually not carried out satisfactorily under such an excess of oxygen. However, the present invention is noteworthy because it achieves the simultaneous removal of combustible particulates and nitrogen oxides under an excess of oxygen.

また1本願第2発明においては、フィルター内部を送入
通路と排出通路に区画して、送入通路に入った排気ガス
を濾過壁を通じて排出通路に送出するようになすと共に
r 該[を退壁にCuとゼオライトとからなる触媒成分
を担持している。そのため、排気ガスの可燃性微粒子を
濾過壁によって確実に補足することができ、また、補足
した可燃性微粒子は上記触媒成分によって、前記第1発
明の場合と同様に低温で燃焼除去することができる。
In addition, in the second invention of the present application, the inside of the filter is divided into an inlet passage and an outlet passage, and the exhaust gas that has entered the inlet passage is sent out to the outlet passage through the filtration wall. supports a catalyst component consisting of Cu and zeolite. Therefore, the combustible particulates in the exhaust gas can be reliably captured by the filter wall, and the captured combustible particulates can be burned and removed at low temperatures by the catalyst component, as in the case of the first invention. .

また、排気ガス中の窒素酸化物は、主として上記濾過壁
の通路を通過する際に前記第1発明の場合と同様に上記
触媒成分によって効率よ<Nt等に分解除去される。
Furthermore, nitrogen oxides in the exhaust gas are efficiently decomposed and removed by the catalyst component to <Nt, etc., mainly when passing through the passage of the filter wall, as in the case of the first invention.

したがって1本第2発明によれば、前記第1発明と同様
に、排気ガス中の可燃性微粒子及び窒素酸化物を低温に
おいて同時に除去することができ。
Therefore, according to the second invention, like the first invention, combustible particulates and nitrogen oxides in the exhaust gas can be removed simultaneously at low temperatures.

またその装置もコンパクト軽量となる。そして。The device is also compact and lightweight. and.

第1発明と同様酸素過剰下において可燃性微粒子と窒素
酸化物の同時除去を達成することができる。
Similar to the first invention, combustible particulates and nitrogen oxides can be simultaneously removed under excess oxygen.

上記第1.第2発明において、可燃性微粒子の低温除去
が可能となった理由は明確ではないが。
Above 1st. In the second invention, the reason why the combustible particulates can be removed at low temperature is not clear.

触媒成分としてのCuとゼオライトとが可燃性微粒子の
発火点を下げる働きを行うためと考えられる。
This is thought to be because Cu and zeolite as catalyst components act to lower the ignition point of combustible particles.

〔実施例〕〔Example〕

第1実施例 コーディエライト製フィルター担体の濾過壁に。 First example For filter walls of cordierite filter carriers.

ゼオライト粉末を担持すると共にCuをイオン交換担持
したフィルターを作製し3次いで該フィルターにディー
ゼルエンジンの排気ガスを送入して。
A filter was prepared in which zeolite powder was supported and Cu was ion exchange supported, and exhaust gas from a diesel engine was then fed into the filter.

可燃性微粒子及び窒素酸化物の除去テストを行った。ま
た、比較フィルターについても同様のテストを行った。
A test was conducted to remove combustible particulates and nitrogen oxides. Similar tests were also conducted for comparison filters.

即ち、まず第1図ないし第3図に示すごとく。That is, first, as shown in FIGS. 1 to 3.

上記フィルター1は軸方向に沿って多数の送入通路2と
排出通路3とを交互に有するものである。
The filter 1 has a large number of inlet passages 2 and discharge passages 3 alternately along the axial direction.

該フィルターlは、軸方向に沿う多数の濾過壁10によ
って多数の通路を設け、その通路の排気ガス流入側Aに
おいて、第1図に示すごとく、市松模様にその通路の入
口を一個置きに壁31により閉塞する。また、フィルタ
ーの排気ガス流出側Bにおいて、上記流入側Aにおいて
閉塞しなかった通路の出口を壁22により閉塞する。こ
れにより。
The filter 1 has a large number of passages formed by a large number of filtration walls 10 along the axial direction, and on the exhaust gas inflow side A of the passages, the entrances of the passages are arranged in a checkered pattern every other wall. 31 is occluded. Furthermore, on the exhaust gas outflow side B of the filter, the outlet of the passage that was not blocked on the inflow side A is blocked by the wall 22. Due to this.

流出側Bを閉塞した通路が送入通路2を形成し。The passage with the outflow side B closed forms the feed passage 2.

流入側Aを閉塞した通路が排出通路3を形成する。The passage with the inflow side A closed forms the discharge passage 3.

したがって、送入通路2は流入側Aに送入口21を有し
、流出側Bには壁22を有する通路となる。
Therefore, the inlet passage 2 has an inlet 21 on the inlet side A and a wall 22 on the outlet side B.

一方、排出通路3は流入側Aには壁31を有し。On the other hand, the discharge passage 3 has a wall 31 on the inflow side A.

流出側Bには排出口32を有する。そして、上記フィル
ター1はその濾過壁10に前記触媒成分を70持してな
る。
The outflow side B has a discharge port 32. The filter 1 has 70 of the catalyst components on its filter wall 10.

しかして、流入側Aよりフィルター1に送られるlト気
ガス4は、送入口21よりフィルターlの送入通路2内
に入り、濾過壁10を通過し゛ζIJFIH通路3内に
送出され、排出口32より浄イヒカ゛ス41として排出
される。排気ガス40のηJ燃性微粒子及び窒素酸化物
は、上記濾過壁10を通過する際に前記のごとく除去さ
れる。
Thus, the gas 4 sent to the filter 1 from the inflow side A enters the inlet passage 2 of the filter l from the inlet 21, passes through the filter wall 10, is sent into the IJFIH passage 3, and is sent to the outlet. 32 and is discharged as a cleaning flux 41. The ηJ flammable particulates and nitrogen oxides in the exhaust gas 40 are removed as described above when passing through the filter wall 10.

また、前記フィルター11体はコーディエライト粉末を
成形、焼結することにより作製した一体型基材(担体)
で、その軸方向に直角方向の断面における断面積1in
”当り、約100の通路を有する。また、該フィルター
担体の濾過壁の連子Llよ平均孔径30μmである。ま
た、該フィルター1旦体は直径100mmで、その体積
は1.372である。
The 11 filters are made of an integrated base material (carrier) made by molding and sintering cordierite powder.
and the cross-sectional area in the cross section perpendicular to the axial direction is 1 inch
The filter carrier has approximately 100 passages per unit.The average pore diameter of the filter wall L1 of the filter carrier is 30 μm.The filter has a diameter of 100 mm and a volume of 1.372.

次に、上記フィルター担体上に触媒成分を1旦(存する
方法につき説明する。即ち、まず粒径20μmのゼオラ
イト粉末100部とシリカゾル80部とを水及び硝酸と
共にボールミリングし、ウォッシュコートスラリーを生
成させた。次いで、この中に上記フィルター担体を漬浸
した。続いて圧縮空気により過剰液を吹き去り、乾燥し
て遊離の水を除去し、その後500℃で1時間焼成し、
フィルター担体上に厚み約50μmのゼオライト多孔質
層をコーティングした。
Next, the catalyst component is placed on the filter carrier (existing method will be explained. First, 100 parts of zeolite powder with a particle size of 20 μm and 80 parts of silica sol are ball-milled together with water and nitric acid to produce a wash coat slurry. Then, the filter carrier was immersed in this. Excess liquid was then blown off with compressed air, and free water was removed by drying, followed by baking at 500°C for 1 hour.
A porous zeolite layer having a thickness of about 50 μm was coated on the filter carrier.

次に、上記フィルター担体を0.02mol/lの酢f
i銅水溶液に24時間漬浸し、乾燥後、500゛Cで1
時間焼成して、ゼオライトに対してCUをイオン交換担
持した。その際のCuのイオン交換4シは89%であっ
た。また、フィルター担体12に対するCuの担持量は
20 g/lであった。
Next, the above filter carrier was mixed with 0.02 mol/l vinegar f.
i Soaked in a copper aqueous solution for 24 hours, dried, and then heated at 500°C for 1
The zeolite was calcined for a period of time to support CU on zeolite through ion exchange. The ion exchange rate of Cu at that time was 89%. Further, the amount of Cu supported on the filter carrier 12 was 20 g/l.

続いて、上記フィルター担体を第1〜第3図に示したよ
うに、その通路の入口及び出口を壁22・又は31によ
り閉塞して、送入通路2.排出通路3が共に同数の前記
フィルターlを作製した。この壁はアルミナ粉末焼結体
を用いた。このフィルターを試料漱1とする。
Subsequently, as shown in FIGS. 1 to 3, the inlet and outlet of the passage of the filter carrier are closed with walls 22 and 31, and the inlet passage 2. The filters 1 having the same number of discharge passages 3 were manufactured. This wall was made of alumina powder sintered body. This filter will be referred to as Sample Soil 1.

マ?、:、比較のために上記触媒成分は担持しない比較
フィルター(試料NQ、CL)を作製した。
Ma? ,: For comparison, comparison filters (samples NQ and CL) not carrying the above catalyst components were prepared.

次に、上記フィルターをディーゼルエンシアの排気カス
気流中に取り付け、可燃性微粒子と窒素酸化物(NOx
)の除去効果につき試験した。なお、可燃性微粒子の燃
焼温度の低下効果は5時間後の圧力損失の増加率で評価
した。すなわち、可燃性微粒子が低温度で燃焼しなけれ
しホフイルターに堆積し1 目詰まりを起こし、圧力損
失カベ大きくなるため、この評価法を用いた。
Next, the above filter was installed in the exhaust gas stream of Diesel Encia, and combustible particulates and nitrogen oxides (NOx) were removed.
) removal effect was tested. The effect of lowering the combustion temperature of combustible particles was evaluated by the rate of increase in pressure loss after 5 hours. That is, this evaluation method was used because combustible particles must be combusted at low temperatures and accumulate in the filter, causing clogging and increasing pressure loss.

上記ディーゼルエンジンとして駆 4気筒の噴射型エン
ジン、行程室容積2200cc、回転数250Orpm
、負荷5kgf−mのものを用し為だ。
The above diesel engine is a 4-cylinder injection type engine, stroke chamber volume 2200cc, rotation speed 250Orpm.
This is because a load of 5 kgf-m is used.

なお、試験時におけるフイフレクー内の温度しま約45
0″C1また空間速度(、HSVは3万/時であった。
In addition, the temperature inside the Fifreku at the time of the test was approximately 45
0″C1 and space velocity (HSV was 30,000/hour).

測定の結果を第1表に示す。The measurement results are shown in Table 1.

第1表 第1表より明らかなように1本発明にかかるフィルター
(Nnl)は比較フィルター(NaC1)より、圧力損
失増加率が極めて低く、低温度において可燃性微粒子を
効果よく燃焼除去していることが分かる。また、NOx
に関しても本発明のフィルターは比較フィルターに比し
て極めて高い浄化率(除去率)を示していることが分か
る。
As is clear from Table 1, the filter (Nnl) according to the present invention has an extremely lower rate of increase in pressure loss than the comparative filter (NaC1), and effectively burns and removes combustible particulates at low temperatures. I understand that. Also, NOx
It can also be seen that the filter of the present invention exhibits an extremely high purification rate (removal rate) compared to the comparative filter.

上記のごとく本願第1.第2発明ともに、可燃性微粒子
及びNOxの除去に優れた効果を発揮することが分かる
As mentioned above, No. 1 of the present application. It can be seen that both the second invention exhibits excellent effects in removing combustible particulates and NOx.

第2実施例 炭化珪素製のフィルター担体の濾過壁に、第1実施例と
同様に触媒成分を担持し°ζ、フィルターを作製した。
Second Example A filter was prepared by supporting a catalyst component on the filter wall of a silicon carbide filter carrier in the same manner as in the first example.

そして、第1実施例と同様のテストを行った。Then, a test similar to that of the first example was conducted.

即ち、フィルター担体として、断面積1in”当り20
0個の通路を有する。炭化珪素製のフィルター担体を用
いた。また、該フィルター担体は。
That is, as a filter carrier, 20
It has 0 passages. A filter carrier made of silicon carbide was used. Moreover, the filter carrier.

濾過壁の平均細孔径が4011mで、直径100+nm
The average pore size of the filter wall is 4011 m, and the diameter is 100+ nm.
.

体積はl、3I!、であった。The volume is l, 3I! ,Met.

次に1粒径30pmのゼオライト粉末100部とシリカ
ゾル75部、アルミナゾル5部を水、硝酸とともに、ボ
ールミリングしてウォッシュコートスラリーを生成させ
、この中に上記フィルター担体を浸漬した。続いて、第
1実施例と同様に。
Next, 100 parts of zeolite powder having a particle size of 30 pm, 75 parts of silica sol, and 5 parts of alumina sol were ball milled together with water and nitric acid to produce a wash coat slurry, into which the filter carrier was immersed. Then, the same as in the first embodiment.

過剰液を吹き去り、乾燥、焼成して、上記フィルター担
体に対、して厚み50pmのゼオライトをコーティング
した。
The excess liquid was blown off, the filter carrier was dried and fired, and the filter carrier was coated with 50 pm thick zeolite.

その後、第1実施例と同様にして1ゼオライトニ対して
Cuをイオン交換担持した。このイオン交換率は90%
で、またフィルター担体12に対するCuの担持量は2
0 g/Qであった。また。
Thereafter, Cu was supported by ion exchange on one zeolite in the same manner as in the first example. This ion exchange rate is 90%
Also, the amount of Cu supported on the filter carrier 12 is 2
It was 0 g/Q. Also.

第1実施例と同様にして、第1〜第3図に示すごと(1
通路の入口又は出口に壁を設けて、通人通路と排出通路
を設けた。これにより1本発明にがかるフィルター(試
料Nα2)を作製した。
In the same manner as in the first embodiment, as shown in FIGS. 1 to 3 (1
A wall was installed at the entrance or exit of the passage to provide a passage for passage and a passage for discharge. As a result, a filter according to the present invention (sample Nα2) was produced.

また、比較のために、上記触媒成分は担持しない、前記
と同様のフィルター担体を用いた比較フィルター(試料
N11C2)を作製した。
Furthermore, for comparison, a comparative filter (sample N11C2) was prepared using the same filter carrier as above but without supporting the catalyst component.

そして、第1実施例と同様のテストを行った。Then, a test similar to that of the first example was conducted.

その結果を第2表に示す。The results are shown in Table 2.

同表より知られるご七<1本発明にががるフィルター(
隨2)は比較フィルター(NaC2)に比して、可燃性
微粒子及びNOxの除去に優れた効果を発揮することが
分かる。
The filter known from the same table is <1 filter according to the present invention (
It can be seen that the filter 2) is more effective in removing combustible particulates and NOx than the comparative filter (NaC2).

第3実施例 コーディエライト製フオーム型フィルター担体のiIt
過壁退壁第1実施例と同様に触媒成分を担持して、フィ
ルターを作製した。そして、第1実施例と同様のテスト
を行った。′ 即ち、フィルター担体として、直径100m。
Third Example Cordierite Foam Filter Carrier iIt
A filter was produced by supporting a catalyst component in the same manner as in the first example. Then, a test similar to that of the first example was conducted. ' That is, as a filter carrier, a diameter of 100 m.

体積1.3Qのコーディエライト製フオーム型フィルタ
ーを用いた。この担体は3次元網目構造のコーディエラ
イトの多孔体(フオーム)である。
A cordierite foam filter with a volume of 1.3Q was used. The carrier is a porous foam of cordierite with a three-dimensional network structure.

この網目骨格格子の数は15/インチであった。The number of mesh skeleton lattices was 15/inch.

次に、第1実施例と同様のゼオライト9 シリカゾル、
硝酸等を含むウォッシュコートスラリーを作成し、この
中に上記フィルター担体を浸漬し。
Next, the same zeolite 9 silica sol as in the first example,
A wash coat slurry containing nitric acid, etc. is prepared, and the filter carrier is immersed in this slurry.

第1実施例と同様にして過剰液を吹き去り、乾燥。Excess liquid was blown off and dried in the same manner as in the first example.

焼成し、上記フィルター担体に対して約200 g。Baked, about 200 g for the above filter carrier.

厚み1100IIのゼオライトをコーティングした。It was coated with zeolite having a thickness of 1100 II.

その後、上記フィルター担体を0.02mo171の硝
酸銅水溶液に24時間浸漬し、第1実施例と同様にして
、フィルター担体上のゼオライトに対してCuをイオン
交換担持した。このCuのイオン交換率は93%で、ま
たフィルター担体1!に対するCuの担持量はlOg/
Qであった。
Thereafter, the filter carrier was immersed in a 0.02 mo171 copper nitrate aqueous solution for 24 hours, and Cu was supported by ion exchange on the zeolite on the filter carrier in the same manner as in the first example. The ion exchange rate of this Cu is 93%, and the filter carrier is 1! The amount of Cu supported is lOg/
It was Q.

また、第1実施例と同様に9通路の人口又は出口に壁を
設けて、通人通路と排出通路を形成して。
Also, similar to the first embodiment, walls were provided at the entrances or exits of the nine passages to form passageways and discharge passages.

本発明にかかるフィルター(試料NL0L3)を作製し
た。
A filter according to the present invention (sample NL0L3) was produced.

また、比較のために、前記触媒成分を担持しない、前記
と同様のフオーム型フィルター担体を用いた比較フィル
ター(試料No、 C3)を作製した。
For comparison, a comparison filter (Sample No. C3) was prepared using the same foam type filter carrier as above, but without supporting the catalyst component.

そして、第1実施例と同様のテストを行った。Then, a test similar to that of the first example was conducted.

その結果を第3表に示す。The results are shown in Table 3.

同表より知られるごとく9本発明にががるフィルター(
胤3)は、比較フィルター(NαC3)に比して、可燃
性微粒子及びNOxの除去に優れた効果を発揮すること
が分かる。
As is known from the same table, nine filters according to the present invention (
It can be seen that Seed 3) exhibits superior effects in removing combustible particulates and NOx compared to the comparative filter (NαC3).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は9本発明の第1実施例にかかるフ
ィルターを示し、第1図はその斜視図。 第2図は要部断面図、第3図は一部欠さい側面図である
。 101.フィルター、   io、、、濾過壁。 231.送入通路、      3.、、排出通路。 439.排気ガス。
1 to 3 show a filter according to a first embodiment of the present invention, and FIG. 1 is a perspective view thereof. FIG. 2 is a sectional view of the main part, and FIG. 3 is a partially cutaway side view. 101. filter, io,, filtration wall. 231. Inlet passage, 3. ,,exhaust passage. 439. exhaust gas.

Claims (7)

【特許請求の範囲】[Claims] (1)可燃性微粒子並びに窒素酸化物を除去するための
触媒であって、担体に対して銅とゼオライトとからなる
触媒成分を担持してなることを特徴とする可燃性微粒子
並びに窒素酸化物を除去するための触媒。
(1) A catalyst for removing combustible particulates and nitrogen oxides, characterized by supporting a catalyst component consisting of copper and zeolite on a carrier. Catalyst for removal.
(2)銅は、ゼオライトにイオン交換担持されているこ
とを特徴とする特許請求の範囲第1項に記載の触媒。
(2) The catalyst according to claim 1, wherein the copper is ion exchange supported on zeolite.
(3)銅のイオン交換率は50〜100%であることを
特徴とする特許請求の範囲第2項に記載の触媒。
(3) The catalyst according to claim 2, wherein the ion exchange rate of copper is 50 to 100%.
(4)排気ガスの流入側から流出側に向かってろ過壁に
より区切られた多数の通路を有すると共に、該通路はそ
の流出側を閉塞した送入通路とその流入側を閉塞した排
出通路とからなり、送入通路は少なくとも1つの排出通
路と上記ろ過壁を共有し、かつ該ろ過壁は送入通路から
排出通路に排気ガスが通過するとき排気ガス中の可燃性
微粒子を補足する通孔を有してなり、また該ろ過壁には
銅とゼオライトとからなる触媒成分を担持してなること
を特徴とする可燃性微粒子並びに窒素酸化物を除去する
ためのフィルター。
(4) It has a large number of passages separated by filter walls from the inflow side to the outflow side of the exhaust gas, and the passages are separated from an inlet passage whose outflow side is closed and a discharge passage whose inflow side is closed. The inlet passage shares the filter wall with at least one outlet passage, and the filtration wall has a through hole for capturing combustible particulates in the exhaust gas when the exhaust gas passes from the inlet passage to the outlet passage. 1. A filter for removing combustible particulates and nitrogen oxides, characterized in that the filtration wall has a catalyst component made of copper and zeolite supported thereon.
(5)鋼は、ゼオライトにイオン交換担持されているこ
とを特徴とする特許請求の範囲第4項に記載のフィルタ
ー。
(5) The filter according to claim 4, wherein the steel is supported by ion exchange on zeolite.
(6)銅のイオン交換率は50〜100%であることを
特徴とする特許請求の範囲第5項に記載のフィルター。
(6) The filter according to claim 5, wherein the ion exchange rate of copper is 50 to 100%.
(7)ろ過壁の通孔は、5〜50μmであることを特徴
とする特許請求の範囲第4項に記載のフィルター。
(7) The filter according to claim 4, wherein the pores in the filtration wall have a diameter of 5 to 50 μm.
JP62310607A 1987-12-08 1987-12-08 Catalyst and filter for removing combustible fine particles and nitrogen oxide Pending JPH01151706A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62310607A JPH01151706A (en) 1987-12-08 1987-12-08 Catalyst and filter for removing combustible fine particles and nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62310607A JPH01151706A (en) 1987-12-08 1987-12-08 Catalyst and filter for removing combustible fine particles and nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH01151706A true JPH01151706A (en) 1989-06-14

Family

ID=18007293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62310607A Pending JPH01151706A (en) 1987-12-08 1987-12-08 Catalyst and filter for removing combustible fine particles and nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH01151706A (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991001795A1 (en) * 1989-08-11 1991-02-21 Sakai Chemical Industry Co., Ltd. Method of treating exhaust gas
US5032156A (en) * 1988-11-01 1991-07-16 Sulzer Brothers Limited Device for performing a sorption process
JP2003025316A (en) * 2001-07-13 2003-01-29 Ngk Insulators Ltd Honeycomb structure and method for manufacturing the honeycomb structure
WO2011042990A1 (en) * 2009-10-09 2011-04-14 イビデン株式会社 Honeycomb filter
US9121327B2 (en) 2003-08-05 2015-09-01 Basf Corporation Catalyzed SCR filter and emission treatment system
WO2017178576A1 (en) 2016-04-13 2017-10-19 Umicore Ag & Co. Kg Particle filter having scr-active coating
EP3281699A1 (en) 2016-08-11 2018-02-14 Umicore AG & Co. KG Particle filter with scr active coating
EP3296009A1 (en) 2016-09-20 2018-03-21 Umicore AG & Co. KG Particle filter with scr active coating
WO2018054929A1 (en) 2016-09-20 2018-03-29 Umicore Ag & Co. Kg Diesel particle filter
WO2019197177A1 (en) 2018-04-09 2019-10-17 Umicore Ag & Co. Kg Coated wall-flow filter
DE102018110804A1 (en) * 2018-05-04 2019-11-07 Umicore Ag & Co. Kg Coated wall flow filter
WO2019215208A1 (en) 2018-05-09 2019-11-14 Umicore Ag & Co. Kg Method for coating a wall-flow filter
WO2020094760A1 (en) 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Catalytically active particle filter with a high degree of filtration efficiency
DE102018127953A1 (en) * 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Wall flow filter with high filtration efficiency
WO2020094766A1 (en) 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Particle filter with a plurality of coatings
WO2020141190A1 (en) 2019-01-04 2020-07-09 Umicore Ag & Co. Kg Method for producing catalytically active wall flow filters
DE102019100107A1 (en) * 2019-01-04 2020-07-09 Umicore Ag & Co. Kg Catalytically active filter substrate and process for its manufacture and use
EP4015066A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
EP4015065A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
EP4015064A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
EP4015067A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
EP4063003A1 (en) 2021-03-23 2022-09-28 UMICORE AG & Co. KG Filter for the aftertreatment of exhaust gases of internal combustion engines
WO2022200311A1 (en) 2021-03-23 2022-09-29 Umicore Ag & Co. Kg Method for increasing the fresh filtration of gasoline particle filters
DE102021107129A1 (en) 2021-03-23 2022-09-29 Umicore Ag & Co. Kg Particulate filter for petrol engine exhaust
WO2022243348A1 (en) 2021-05-19 2022-11-24 Umicore Ag & Co. Kg Coating process for a wall-flow filter
DE102021125536A1 (en) 2021-10-01 2023-04-06 Umicore Ag & Co. Kg Catalytically active particle filter with high filtration efficiency

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5032156A (en) * 1988-11-01 1991-07-16 Sulzer Brothers Limited Device for performing a sorption process
WO1991001795A1 (en) * 1989-08-11 1991-02-21 Sakai Chemical Industry Co., Ltd. Method of treating exhaust gas
JP2003025316A (en) * 2001-07-13 2003-01-29 Ngk Insulators Ltd Honeycomb structure and method for manufacturing the honeycomb structure
JP4640903B2 (en) * 2001-07-13 2011-03-02 日本碍子株式会社 Honeycomb structure and manufacturing method thereof
US10857529B2 (en) 2003-08-05 2020-12-08 Basf Corporation Catalyzed SCR filter and emission treatment system
US9121327B2 (en) 2003-08-05 2015-09-01 Basf Corporation Catalyzed SCR filter and emission treatment system
US9144795B2 (en) 2003-08-05 2015-09-29 Basf Corporation Catalyzed SCR filter and emission treatment system
US9517455B2 (en) 2003-08-05 2016-12-13 Basf Corporation Catalyzed SCR filter and emission treatment system
US9517456B2 (en) 2003-08-05 2016-12-13 Basf Corporation Catalyzed SCR filter and emission treatment system
US9757717B2 (en) 2003-08-05 2017-09-12 Basf Corporation Method for disposing SCR composition on a wall flow monolith
US10258972B2 (en) 2003-08-05 2019-04-16 Basf Corporation Catalyzed SCR filter and emission treatment system
JP2018031377A (en) * 2003-08-05 2018-03-01 ビーエーエスエフ コーポレーション Emission treatment system and method using scr filter
US10518254B2 (en) 2003-08-05 2019-12-31 Basf Corporation Catalyzed SCR filter and emission treatment system
US8617476B2 (en) 2009-10-09 2013-12-31 Ibiden Co., Ltd. Honeycomb filter and urea SCR device
WO2011042990A1 (en) * 2009-10-09 2011-04-14 イビデン株式会社 Honeycomb filter
WO2017178576A1 (en) 2016-04-13 2017-10-19 Umicore Ag & Co. Kg Particle filter having scr-active coating
EP3281699A1 (en) 2016-08-11 2018-02-14 Umicore AG & Co. KG Particle filter with scr active coating
KR20190051053A (en) * 2016-09-20 2019-05-14 우미코레 아게 운트 코 카게 Particle filter with SCR-active coating
WO2018054929A1 (en) 2016-09-20 2018-03-29 Umicore Ag & Co. Kg Diesel particle filter
EP3296009A1 (en) 2016-09-20 2018-03-21 Umicore AG & Co. KG Particle filter with scr active coating
US10961886B2 (en) 2016-09-20 2021-03-30 Umicore Ag & Co. Kg Particle filter with SCR-active coating
US10914214B2 (en) 2016-09-20 2021-02-09 Umicore Ag & Co. Kg SCR diesel particle filter with oxidation catalyst and oxygen storage catalyst loadings, and exhaust system including the same
WO2019197177A1 (en) 2018-04-09 2019-10-17 Umicore Ag & Co. Kg Coated wall-flow filter
EP4219006A1 (en) 2018-04-09 2023-08-02 Umicore AG & Co. KG Coated wall-flow filter
US11305269B2 (en) 2018-04-09 2022-04-19 Umicore Ag & Co. Kg Coated wall-flow filter
US11441459B2 (en) 2018-05-04 2022-09-13 Umicore Ag & Co. Kg Coated wall-flow filter
CN112074657A (en) * 2018-05-04 2020-12-11 优美科股份公司及两合公司 Coated wall-flow filter
WO2019211373A1 (en) 2018-05-04 2019-11-07 Umicore Ag & Co. Kg Coated wall-flow filter
DE102018110804A1 (en) * 2018-05-04 2019-11-07 Umicore Ag & Co. Kg Coated wall flow filter
CN112074657B (en) * 2018-05-04 2022-08-16 优美科股份公司及两合公司 Coated wall-flow filter
EP4043088A1 (en) 2018-05-09 2022-08-17 Umicore AG & Co. KG Method for coating a wall flow filter
WO2019215208A1 (en) 2018-05-09 2019-11-14 Umicore Ag & Co. Kg Method for coating a wall-flow filter
DE102018127953A1 (en) * 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Wall flow filter with high filtration efficiency
WO2020094766A1 (en) 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Particle filter with a plurality of coatings
WO2020094760A1 (en) 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Catalytically active particle filter with a high degree of filtration efficiency
US11808189B2 (en) 2018-11-08 2023-11-07 Umicore Ag & Co. Kg High-filtration efficiency wall-flow filter
US11566548B2 (en) 2018-11-08 2023-01-31 Umicore Ag & Co. Kg Catalytically active particle filter with a high degree of filtration efficiency
DE102018127957A1 (en) * 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Particle filter with multiple coatings
WO2020094763A1 (en) 2018-11-08 2020-05-14 Umicore Ag & Co. Kg High-filtration efficiency wall-flow filter
DE102018127955A1 (en) * 2018-11-08 2020-05-14 Umicore Ag & Co. Kg Catalytically active particle filter with high filtration efficiency
WO2020141191A1 (en) 2019-01-04 2020-07-09 Umicore Ag & Co. Kg Catalytically active filter substrate, method for producing same, and use thereof
DE102019100107A1 (en) * 2019-01-04 2020-07-09 Umicore Ag & Co. Kg Catalytically active filter substrate and process for its manufacture and use
WO2020141190A1 (en) 2019-01-04 2020-07-09 Umicore Ag & Co. Kg Method for producing catalytically active wall flow filters
US11679359B2 (en) 2019-01-04 2023-06-20 Umicore Ag & Co. Kg Method for producing catalytically active wall flow filters
WO2022129010A1 (en) 2020-12-15 2022-06-23 Umicore Ag & Co. Kg Catalytically active particle filter with a high degree of filtration efficiency
EP4015067A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
WO2022129023A1 (en) 2020-12-15 2022-06-23 Umicore Ag & Co. Kg Catalytically active particulate filter having a high degree of filtering efficiency
EP4015066A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
WO2022129014A1 (en) 2020-12-15 2022-06-23 Umicore Ag & Co. Kg Catalytically active particulate filter having a high degree of filtering efficiency
EP4015065A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
EP4015064A1 (en) 2020-12-15 2022-06-22 UMICORE AG & Co. KG Catalytically active particle filter with high filtration efficiency
WO2022200311A1 (en) 2021-03-23 2022-09-29 Umicore Ag & Co. Kg Method for increasing the fresh filtration of gasoline particle filters
DE102021107130B4 (en) 2021-03-23 2022-12-29 Umicore Ag & Co. Kg Device for increasing the fresh filtration of petrol particle filters
DE102021107129A1 (en) 2021-03-23 2022-09-29 Umicore Ag & Co. Kg Particulate filter for petrol engine exhaust
WO2022200310A1 (en) 2021-03-23 2022-09-29 Umicore Ag & Co. Kg Filter for the aftertreatment of exhaust gases of internal combustion engines
DE102021107130A1 (en) 2021-03-23 2022-09-29 Umicore Ag & Co. Kg Device for increasing the fresh filtration of petrol particle filters
EP4063003A1 (en) 2021-03-23 2022-09-28 UMICORE AG & Co. KG Filter for the aftertreatment of exhaust gases of internal combustion engines
WO2022243348A1 (en) 2021-05-19 2022-11-24 Umicore Ag & Co. Kg Coating process for a wall-flow filter
DE102021125536A1 (en) 2021-10-01 2023-04-06 Umicore Ag & Co. Kg Catalytically active particle filter with high filtration efficiency
WO2023052580A1 (en) 2021-10-01 2023-04-06 Umicore Ag & Co. Kg Catalytically active particle filter with a high degree of filtration efficiency

Similar Documents

Publication Publication Date Title
JPH01151706A (en) Catalyst and filter for removing combustible fine particles and nitrogen oxide
RU2392456C2 (en) Method and device for cleaning of exhaust gas
JP3113662B2 (en) Catalyst for exhaust gas purification of diesel engines
CN1316152C (en) Filter catalyst for waste gas purification
CN101636228B (en) Exhaust gas purification filter and method of producing the same
JP4835193B2 (en) Diesel particulate filter
EP1679119B1 (en) Method of production of a filter catalyst for exhaust gas purification of a diesel engine
EP1368107B1 (en) A catalyzed diesel particulate matter exhaust filter
KR101457238B1 (en) Improved soot filter
JP2010269205A (en) Catalyst for cleaning exhaust gas
CN104411930A (en) Diesel particulate filter and exhaust gas purification device
JP3900421B2 (en) Wall flow type diesel exhaust gas purification filter type catalyst and diesel exhaust gas purification device
JPWO2018159214A1 (en) Exhaust gas purification filter and method of manufacturing the same
JPH07114902B2 (en) Filter for removing combustible particles and nitrogen oxides
KR20080057336A (en) Exhaust gas purifying apparatus
JP3855267B2 (en) Exhaust gas purification catalyst and method for producing the same
JP4715032B2 (en) Diesel exhaust gas purification filter
JP2004058013A (en) Purification catalyst for exhaust gas
JP3269535B2 (en) Exhaust gas purification catalyst for diesel engines
JP4218559B2 (en) Diesel exhaust gas purification device
JP3874246B2 (en) Filter type catalyst for diesel exhaust gas purification
JP2002159859A (en) Catalyst for cleaning exhaust gas
JP3871197B2 (en) Particulate filter
JP2788494B2 (en) Honeycomb-shaped exhaust gas purification structure and exhaust gas purification method using the structure
JP2004243189A (en) Purifying apparatus for exhaust gas of internal combustion engine