JPH033751B2 - - Google Patents

Info

Publication number
JPH033751B2
JPH033751B2 JP60204476A JP20447685A JPH033751B2 JP H033751 B2 JPH033751 B2 JP H033751B2 JP 60204476 A JP60204476 A JP 60204476A JP 20447685 A JP20447685 A JP 20447685A JP H033751 B2 JPH033751 B2 JP H033751B2
Authority
JP
Japan
Prior art keywords
bismuth
mercury
solution
recovering
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60204476A
Other languages
Japanese (ja)
Other versions
JPS62161989A (en
Inventor
Shuichi Oodo
Naomi Sasahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP60204476A priority Critical patent/JPS62161989A/en
Publication of JPS62161989A publication Critical patent/JPS62161989A/en
Publication of JPH033751B2 publication Critical patent/JPH033751B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

発明の目的 本発明は、ビスマス及び又は水銀の回収法に関
する。 従来技術 従来ビスマス及び又は水銀の回収法で簡易にビ
スマス、水銀を液中から回収する方法がなかつ
た。 このため、例えば塩酸酸性の液でイオン交換樹
脂もしくはキレート樹脂に吸着した金属を溶離
し、目的金属を回収する方法においては、溶離液
を循環使用することが好ましいが、好ましい回収
方法がなかつたためこの再循環液中にビスマスが
濃縮残存した場合次のような問題を生じていた。
即ち、レニウムの回収法において、液中にビスマ
スが濃縮するとイオン交換樹脂の吸着性能が劣化
し、好ましい回収処理を行うことができなくな
る。 そこで、ビスマス及び又は水銀を系外に回収す
る好ましい方法が要望されていた。 また本発明は、上記の場合のみに限定されるこ
となく、液中のビスマス及び又は水銀を効率よく
回収する方法である。 発明の構成 即ち、本発明は、イオン交換樹脂からレニウム
を溶離した塩酸酸性の液中のビスマス及又は水銀
の回収法において、ビスマス及び又は水銀の含有
するに前記酸性液を電解液とし、該液を電解する
に際し、陽極側にH2Sおよび又はH2C2O4を吹き
込み、電解を行い、該液を硫酸根等の蓄積なく再
び溶離液として使用可能とすることを特徴とする
ビスマス及び又は水銀の回収法に関するものであ
る。 発明の作用 本発明で対象となる溶液は、塩酸酸性浴(1規
定以上)である。ビスマス、水銀の濃度は、特に
限定を要しない。例えば、レニウムをイオン交換
樹脂で回収する方法において、その溶離液を塩酸
酸性とし、レニウムを溶離回収するが、この場合
循環使用されると1〜5g/のビスマス、及び
0.07〜0.04g/の水銀が蓄積される。 このような液を処理する場合は、陽極に例えば
不溶性陽極を用いる。例えば、カーボン電極等で
ある。さらに陰極には、例えば銅板が用いられ
る。 本発明におけるH2Sおよび又はH2C2O4の添加
は、上記陽極側に添加する。これは、電解により
陽極に発生するCl2ガスが陽極面で式の反応に
より溶解し、陰極に析出するBiを式の反応
により溶解するためBiの回収率が低下するため
であり、H2SおよびH2C2O4等の還元剤を添加す
ることにより、HClOを式の反応により分解
することによりBiの回収率が大幅に高められる
ものと思われる。 Cl2+H2O→HCl+HClO … 3HClO+2Bi→Bi2O3+3HCl … Bi2O3+6HCl→2BiCl3+3H2O … HClO+H2S→HCl+S0+H2O … HClO+H2C2O4→HCl+2Co2+H2O … H2Sおよび又はH2C2O4の吹き込み量は、
H2C2O4については、反応当量の1.0倍〜1.7倍程
度、H2Sについては、電解液にCl2臭が着臭しな
いように吹き込むことが好ましい。 電解条件は、電流密度が30〜250A/m2、電解
液温度は常温、等の条件であることが好ましい。 発明の効果 以上のように本発明を実施することにより以下
の効果を有する。 (1) 溶液中のビスマス及び又は水銀を効率良く回
収できる。 (2) レニウムの回収工程において循環使用する塩
酸酸性溶離液から、ビスマスや水銀等を効率良
く回収できる。 (3) 銅電解液のキレート樹脂によるSb等の除去
工程において循環使用する塩酸酸性溶離液か
ら、ビスマス及び又は水銀を効率良く回収でき
る。 (4) 溶離液の有害成分の蓄積がなく繰り返し使用
が可能となる。 実施例 1 ビスマスを含む塩酸溶液にH2C2O4,H2Sをそ
れぞれ反応当量の1.5倍添加し、4条件で処理し
た結果、表1のごとくビスマスの回収が効率良く
行われた。 原液中のビスマスは、3.5〜3.66g/のもの
を供試料として、約22時間後の液中のビスマス
は、0.93〜0.12g/と効率の良い回収ができ
た。特にH2Sを添加したものがビスマスの回収率
が高い値を示した。 また同様に水銀の回収率も高い値を示した。 比較例 1 実施例1と同様な条件で、H2C2O4およびH2S
のいずれも添加しない条件で行つた結果、表2の
ごとくビスマスの回収率は22時間後であつても悪
い値であつた。
OBJECTS OF THE INVENTION The present invention relates to a method for recovering bismuth and/or mercury. Prior Art Conventionally, there has been no method for easily recovering bismuth and/or mercury from a liquid. For this reason, for example, in a method of recovering the target metal by eluting the metal adsorbed on an ion exchange resin or chelate resin with an acidic solution of hydrochloric acid, it is preferable to recycle the eluent, but there has been no suitable recovery method for this method. When bismuth remains concentrated in the recirculating liquid, the following problems occur.
That is, in the rhenium recovery method, if bismuth is concentrated in the liquid, the adsorption performance of the ion exchange resin deteriorates, making it impossible to perform a preferable recovery process. Therefore, there has been a need for a preferable method for recovering bismuth and/or mercury out of the system. Furthermore, the present invention is not limited to the above-mentioned cases, but is a method for efficiently recovering bismuth and/or mercury in a liquid. Components of the Invention That is, the present invention provides a method for recovering bismuth and/or mercury from an acidic solution of hydrochloric acid in which rhenium has been eluted from an ion exchange resin, in which the acidic solution containing bismuth and/or mercury is used as an electrolytic solution. When electrolyzing bismuth and bismuth, H 2 S and/or H 2 C 2 O 4 are blown into the anode side, electrolysis is performed, and the solution can be used again as an eluent without accumulation of sulfuric acid groups, etc. or related to mercury recovery methods. Effect of the Invention The solution targeted by the present invention is a hydrochloric acid bath (1 normal or more). The concentrations of bismuth and mercury are not particularly limited. For example, in a method for recovering rhenium using an ion exchange resin, the eluent is made acidic with hydrochloric acid to elute and recover rhenium, but in this case, when recycled, 1 to 5 g/bismuth and
0.07-0.04 g/mercury is accumulated. When processing such a liquid, an insoluble anode, for example, is used as the anode. For example, it is a carbon electrode. Furthermore, a copper plate, for example, is used for the cathode. In the present invention, H 2 S and/or H 2 C 2 O 4 is added to the anode side. This is because the Cl 2 gas generated at the anode due to electrolysis is dissolved on the anode surface by the reaction of the formula, and the Bi deposited on the cathode is dissolved by the reaction of the formula, resulting in a decrease in the recovery rate of Bi. It is thought that by adding a reducing agent such as H 2 C 2 O 4 and the like, the recovery rate of Bi can be greatly increased by decomposing HClO by the reaction of the formula. Cl 2 +H 2 O→HCl+HClO … 3HClO+2Bi→Bi 2 O 3 +3HCl … Bi 2 O 3 +6HCl→2BiCl 3 +3H 2 O … HClO+H 2 S→HCl+S 0 +H 2 O … HClO+H 2 C 2 O 4 →HCl+2Co 2 +H 2 O …The amount of H 2 S and or H 2 C 2 O 4 blown into
For H 2 C 2 O 4 , it is preferable to blow about 1.0 to 1.7 times the reaction equivalent, and for H 2 S, it is preferable to blow into the electrolyte so as not to give off a Cl 2 odor. The electrolytic conditions are preferably such that the current density is 30 to 250 A/m 2 and the electrolyte temperature is room temperature. Effects of the Invention By implementing the present invention as described above, the following effects can be obtained. (1) Bismuth and/or mercury in solution can be efficiently recovered. (2) Bismuth, mercury, etc. can be efficiently recovered from the hydrochloric acid acidic eluent that is recycled in the rhenium recovery process. (3) Bismuth and/or mercury can be efficiently recovered from the hydrochloric acid acidic eluent that is recycled in the process of removing Sb, etc. using a chelate resin in the copper electrolyte. (4) The eluent does not accumulate harmful components and can be used repeatedly. Example 1 H 2 C 2 O 4 and H 2 S were each added in an amount of 1.5 times the reaction equivalent to a hydrochloric acid solution containing bismuth, and as a result of treatment under four conditions, bismuth was efficiently recovered as shown in Table 1. The amount of bismuth in the stock solution was 3.5 to 3.66 g per sample, and after about 22 hours, the amount of bismuth in the solution was 0.93 to 0.12 g per sample, which was able to be efficiently recovered. Particularly, the one to which H 2 S was added showed a high bismuth recovery rate. Similarly, the recovery rate of mercury also showed a high value. Comparative Example 1 Under the same conditions as Example 1, H 2 C 2 O 4 and H 2 S
As a result of conducting the experiment without adding any of the above, as shown in Table 2, the recovery rate of bismuth was a poor value even after 22 hours.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 イオン交換樹脂からレニウムを溶離した塩酸
酸性の液中のビスマス及び又は水銀の回収法にお
いて、ビスマス及び又は水銀の含有するに前記酸
性液を電解液とし、該液を電解するに際し、陽極
側にH2Sおよび又はH2C2O4を吹き込み、電解を
行い、該液を硫酸根等の蓄積なく再び溶離液とし
て使用可能とすることを特徴とするビスマス及び
又は水銀の回収法。
1. In a method for recovering bismuth and/or mercury from an acidic solution of hydrochloric acid that has eluted rhenium from an ion exchange resin, the acidic solution containing bismuth and/or mercury is used as an electrolytic solution, and when electrolyzing the solution, the anode side is A method for recovering bismuth and/or mercury, which comprises blowing in H 2 S and/or H 2 C 2 O 4 to perform electrolysis, and making the solution usable as an eluent again without accumulation of sulfuric acid radicals.
JP60204476A 1985-09-18 1985-09-18 Method for recovering bismuth and/or mercury Granted JPS62161989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60204476A JPS62161989A (en) 1985-09-18 1985-09-18 Method for recovering bismuth and/or mercury

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60204476A JPS62161989A (en) 1985-09-18 1985-09-18 Method for recovering bismuth and/or mercury

Publications (2)

Publication Number Publication Date
JPS62161989A JPS62161989A (en) 1987-07-17
JPH033751B2 true JPH033751B2 (en) 1991-01-21

Family

ID=16491157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60204476A Granted JPS62161989A (en) 1985-09-18 1985-09-18 Method for recovering bismuth and/or mercury

Country Status (1)

Country Link
JP (1) JPS62161989A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128804A (en) * 1976-04-22 1977-10-28 Stanley Electric Co Ltd Electrolytic recovery of metal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52128804A (en) * 1976-04-22 1977-10-28 Stanley Electric Co Ltd Electrolytic recovery of metal

Also Published As

Publication number Publication date
JPS62161989A (en) 1987-07-17

Similar Documents

Publication Publication Date Title
EP1159467B1 (en) Process for the recovery of tin, tin alloys or lead alloys from printed circuit boards
JP3089595B2 (en) Recovery of indium by electrowinning
US5051187A (en) Process for recovering sulfuric acid
JPH0532453B2 (en)
US3650925A (en) Recovery of metals from solution
EP0210769B1 (en) Removal of arsenic from acids
JPS6327434B2 (en)
KR102614534B1 (en) Electrode and its manufacturing method and manufacturing method of regenerative electrode
JPH033751B2 (en)
US5423957A (en) Electrolytic process for dissolving platinum, platinum metal impurities and/or platinum metal alloys
AU577173B2 (en) An electrolytic process for the simultaneous deposition of gold and replenishment of elemental iodine
JPH029677B2 (en)
US6340423B1 (en) Hydrometallurgical processing of lead materials using fluotitanate
JPS62500388A (en) Production of zinc from ores and concentrates
JPS61133192A (en) Treatment of waste copper liquid containing hydrochloric acid
JP3350917B2 (en) Method for selective recovery of antimony and bismuth in electrolytic solution in copper electrorefining
US3880733A (en) Preconditioning of anodes for the electrowinning of copper from electrolytes having a high free acid content
JPH08253888A (en) Production of high purity cobalt
JPS6312149B2 (en)
JP3065242B2 (en) Method for producing high-purity cobalt and high-purity cobalt sputtering target
JPH0238536A (en) Separation of noble metal in acidic iridium solution
US2779727A (en) Method for treating titanium metal
JP3653944B2 (en) Method for selective recovery of Sb and Bi from copper electrolyte
JP2965442B2 (en) Regeneration method of iron chloride waste liquid containing nickel
EP0618312A1 (en) Process for obtaining n-acetyl homocysteine thiolactone from DL-homocystine by electrochemical methods