JPH0337169A - Glazing method of solid design - Google Patents

Glazing method of solid design

Info

Publication number
JPH0337169A
JPH0337169A JP1172601A JP17260189A JPH0337169A JP H0337169 A JPH0337169 A JP H0337169A JP 1172601 A JP1172601 A JP 1172601A JP 17260189 A JP17260189 A JP 17260189A JP H0337169 A JPH0337169 A JP H0337169A
Authority
JP
Japan
Prior art keywords
glaze
powder
mineral powder
silicate mineral
cementitious
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1172601A
Other languages
Japanese (ja)
Inventor
Hideki Ishida
秀輝 石田
Shibakumaran Uigunarajiya
ウィグナラジャ シバクマラン
Kazumasa Goto
後藤 和昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANGYO SOUZOU KENKYUSHO KK
Inax Corp
Original Assignee
SANGYO SOUZOU KENKYUSHO KK
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANGYO SOUZOU KENKYUSHO KK, Inax Corp filed Critical SANGYO SOUZOU KENKYUSHO KK
Priority to JP1172601A priority Critical patent/JPH0337169A/en
Publication of JPH0337169A publication Critical patent/JPH0337169A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To readily form glaze layer having solid design of suitable thickness by irradiating laser light onto the surface of base material coated with glaze through a light transmission-screening design mask. CONSTITUTION:Whole of necessary surface of base material 1 to be glazed is coated with glaze to form a glaze layer 3. Laser light beam 4 is irradiated onto the glazed base material 1 through a light transmission-screening design mask 6 and the glaze in the part transmitted of the laser light is melted by the light to form design-like glaze layer. Glaze in the part without irradiation of the laser light by screening of the mask 6 is readily removed by washing in hot water, etc. By said method, a glaze layer of design having clear and solid feeling with suitable thickness is able to be readily formed.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は立体模様の施釉方法に関する。詳しくは、釉薬
を塗布した基材表面に、光透過性の模様マスクを通して
レーザー光を照射して該模様状の立体的釉層を形成する
方法に関する。本発明によって、従来は形成が困難であ
った該釉層が容易に形成できる。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for glazing with three-dimensional patterns. Specifically, the present invention relates to a method of forming a patterned three-dimensional glaze layer by irradiating the surface of a base material coated with a glaze with laser light through a light-transmitting pattern mask. According to the present invention, the glaze layer, which was conventionally difficult to form, can be easily formed.

従来の技術およびその問題点 基材上に模様状の柚1層を形成するためには、従来はス
クリーン印刷または転写紙によって基村上に非常に薄い
釉薬層を印刷し、キルンを用いて焼成して釉層を形成し
ていた。しかし印刷または転写による方法では、釉層が
非常に薄いため立体感のある釉層の形成は不可能であっ
た。
Conventional technology and its problems In order to form a patterned layer of yuzu on a base material, conventionally a very thin layer of glaze is printed on the base layer by screen printing or transfer paper, and then fired using a kiln. A glaze layer was formed. However, with printing or transfer methods, it has been impossible to form a glaze layer with a three-dimensional effect because the glaze layer is very thin.

他の方法としては、基材上に模様状の型紙を貼付し、そ
の上から釉薬をスプレー塗布する方法が試行されている
。しかし、型紙の貼付および剥離は面倒な手作業を必要
とする上に、塗布した釉薬が型紙の下に侵入してにじむ
ため不鮮明となる傾向があった。従って、これを焼成し
て厚めの立体的な模様状釉層を形成することは可能であ
るが、工業的には不都合であった。
As another method, a method has been tried in which a patterned paper pattern is pasted onto a base material and a glaze is sprayed onto it. However, pasting and peeling off the paper pattern required tedious manual labor, and the applied glaze tended to get under the paper pattern and bleed, resulting in blurred images. Therefore, although it is possible to form a thick three-dimensional patterned glaze layer by firing this, it is not convenient from an industrial perspective.

本発明によって、予想外にも上記の問題点を解消した、
容易な該施釉方法が提供される。
The present invention unexpectedly solves the above problems.
An easy method of applying the glaze is provided.

問題点を解決するための手段 従って本発明によって;施釉すべき基材の所要の全表面
に釉薬を塗布し、光透過遮断性の模様マスクを通してレ
ーザー光を照射して該模様状の照射部分に熔融釉層を形
成することを特徴とする、立体模様の施釉方法が提供さ
れる。
Means for Solving the Problems Therefore, according to the present invention; a glaze is applied to the entire required surface of the base material to be glazed, and a laser beam is irradiated through a patterned mask having a light transmission blocking property to the patterned irradiated area. A method for applying glaze with a three-dimensional pattern is provided, which is characterized by forming a molten glaze layer.

上記の基材としては、陶磁器、セラミック製品、金属製
品、セメント質材等の、従来法によって施釉が可能であ
る基材がすべて使用できる。しかし、セメント質成形物
の場合は、施釉時に熱劣化する場合もあり得るので、該
成形物の少なくも施釉する表面層が水硬性セメントおよ
び焼結有効量の熔融ガラス化性材料粉から本質的になる
セメント質材であるのが好ましい。
As the above-mentioned base material, all base materials that can be glazed by conventional methods can be used, such as ceramics, ceramic products, metal products, cementitious materials, and the like. However, in the case of cementitious molded products, thermal deterioration may occur during glazing, so that at least the surface layer of the molded product to be glazed is essentially made of hydraulic cement and an effective amount of sintering vitrification material powder. Preferably, the material is a cementitious material.

該セメント質成形物の少なくも施釉する表面層が、水硬
性セメント、焼結有効量の熔融ガラス化性材料粉、なら
びに珪酸マグネシウム鉱物粉、活性珪酸鉱物粉、珪酸ア
ルミニウム鉱物粉およびこれらの二以上の混合物からな
る群から選ばれる鉱物粉から本質的になるセメント質層
であることが望ましく、これによって該表面層の白華を
更に改善した施釉方法が提供される。
At least the surface layer to be glazed of the cementitious molded product is made of hydraulic cement, a sintering effective amount of melting vitrification material powder, magnesium silicate mineral powder, activated silicate mineral powder, aluminum silicate mineral powder, or two or more of these. Desirably, the cementitious layer consists essentially of a mineral powder selected from the group consisting of a mixture of the following, thereby providing a glazing method that further improves the efflorescence of the surface layer.

なお、上記の鉱物粉およびガラス粉等は相対的に安価で
あるので、該セメント質成形硬化物全体が、水硬性セメ
ント、焼結有効量の熔融ガラス化性材料粉、ならびに珪
酸マグネシウム鉱物粉、活性珪酸鉱物粉、珪酸アルミニ
ウム鉱物粉およびこれらの二以上の混合物からなる群か
ら選ばれる鉱物粉から本質的になる混和物を成形しそし
て水和硬化してなる、セメント質材であることができる
In addition, since the above-mentioned mineral powders, glass powders, etc. are relatively inexpensive, the entire molded and cured cementitious material contains hydraulic cement, a sintering effective amount of melting vitrifying material powder, magnesium silicate mineral powder, It can be a cementitious material formed by molding and hydrating a mixture consisting essentially of mineral powder selected from the group consisting of activated silicate mineral powder, aluminum silicate mineral powder, and mixtures of two or more of these. .

該セメント質成形硬化物全体が、水硬性セメント、熔融
ガラス化性材料粉、ならびに珪酸マグネシウム鉱物粉、
活性珪酸鉱物粉、珪酸アルミニウム鉱物粉およびこれら
の二以上の混合物からなる群から選ばれる鉱物粉から本
質的になる、成形および焼成(例えば1000℃以上)
してなるセメント質系セラミック材であることが材料強
度の観点から有利である。
The entire molded and cured cementitious material contains hydraulic cement, melt-vitrifying material powder, magnesium silicate mineral powder,
Molding and firing (e.g. at 1000°C or higher) consisting essentially of mineral powder selected from the group consisting of activated silicate mineral powder, aluminum silicate mineral powder, and mixtures of two or more of these.
It is advantageous from the viewpoint of material strength to use a cementitious ceramic material made of

作用および効果 本発明によれば、基材の所要の全表面に釉薬をスプレー
等で塗布するので、釉薬を所要の厚さに塗布できる。次
いで、模様マスクを通してレーザー光を照射するので、
レーザー光が透過した部分の釉薬が熔融して模様状の釉
層が形成できる。レーザー光がマスクによって遮断され
た部分の照射されない釉薬は、温水等で洗って容易に除
去される。従って、従来技術では不可能または困難であ
った、適当な厚さの立体模様の釉層が容易に形成できる
。なお実施例に例示するように、施釉層を有する基材の
上に本発明を適用することによって、更に立体感のある
模様状釉層も形成できる。
Functions and Effects According to the present invention, since the glaze is applied to the entire required surface of the base material by spraying or the like, the glaze can be applied to the required thickness. Next, a laser beam is irradiated through the pattern mask, so
The glaze that passes through the laser beam melts, forming a patterned glaze layer. The glaze that is not irradiated in the areas where the laser light is blocked by the mask is easily removed by washing with warm water or the like. Therefore, it is possible to easily form a glaze layer with an appropriate thickness and a three-dimensional pattern, which was impossible or difficult with the prior art. As illustrated in the Examples, by applying the present invention on a base material having a glazed layer, a patterned glaze layer with a more three-dimensional effect can also be formed.

発明の詳しい記述 前記のように本発明では、従来法によって施釉が可能で
あるすべての基材が使用できる。レーザー光は高熱ビー
ムであるので、使用する釉薬については特に限定されな
い。従って、前記の特定のセメント質基材、およびレー
ザー光の照射に関して以下に記述する。
DETAILED DESCRIPTION OF THE INVENTION As noted above, any substrate that can be glazed by conventional methods can be used in the present invention. Since laser light is a high-heat beam, there are no particular limitations on the glaze to be used. Therefore, the specific cementitious base material and laser light irradiation will be described below.

(1)セメント質材の原材料 水硬性セメントとしては、ポルトランドセメント、アル
ミナセメント、高炉セメント、混合ポルトランドセメン
ト等、の水硬結合性材料粉がいずれも使用可能である。
(1) Raw materials for cementitious material As the hydraulic cement, any hydraulic binding material powder such as Portland cement, alumina cement, blast furnace cement, mixed Portland cement, etc. can be used.

また任意材料である骨材は、加熱工程において急激な膨
張、収縮を生じない安定なもの(例えば陶磁器質シャモ
ット)が望ましく、また川砂、海砂、珪砂、安山岩、玄
武岩、硬質砂岩等も用いられる。
The optional aggregate is preferably a stable material that does not undergo rapid expansion or contraction during the heating process (for example, ceramic chamotte), and river sand, sea sand, silica sand, andesite, basalt, hard sandstone, etc. can also be used. .

上記のガラス化性材料粉は、加熱時においてガラス性熔
融物等のフラックスを形成し他の材料粒子間に侵入して
、焼結効果を達成するものである。
The vitrifying material powder described above forms a flux such as a glassy melt when heated and penetrates between particles of other materials to achieve a sintering effect.

具体的には各種のガラス粉、市販のフリット、長石、シ
ラス、火山灰、その他のガラス化性火成青粉等が例示さ
れる。通常はガラス粉、長石粉またはこれらの混合物が
用いられる。
Specific examples include various glass powders, commercially available frits, feldspar, shirasu, volcanic ash, and other vitrifiable igneous blue powders. Usually glass powder, feldspar powder or a mixture thereof is used.

上記の群から選ばれる鉱物粉(好ましい成分)は、その
焼結性または高温度反応性の観点から、微粒状であるこ
とが必要であり、そして一般的には平均粒径が約50ミ
クロン以下そして通常は約5〜30ミクロン程度である
。該鉱物粉は、セメント用の骨材とは区別されるもので
あり、(イ)加熱中に活性化して焼結するものおよび/
または(ロ)セメント中のカルシウム成分と高温度反応
して焼結高強度物質を形成するものである。
The mineral powder selected from the above group (the preferred ingredient) needs to be finely granular from the viewpoint of its sinterability or high temperature reactivity, and generally has an average particle size of about 50 microns or less. The thickness is usually about 5 to 30 microns. The mineral powder is distinguished from aggregate for cement, and includes (a) one that is activated and sintered during heating and/or
or (b) reacts at high temperature with calcium components in cement to form a sintered high strength material.

珪酸成分および酸化マグネシウム酸分を含む珪酸マグネ
シウム鉱物粉としてはタルク、蛇紋岩、緑泥石等の粉体
が例示される。通常は蛇紋岩粉、タルク扮、またはこれ
らの混合物が有利に採用される。
Examples of the magnesium silicate mineral powder containing a silicic acid component and a magnesium oxide acid component include powders of talc, serpentine, chlorite, and the like. Usually serpentine powder, talc powder, or mixtures thereof are advantageously employed.

層性珪酸鉱物粉または珪酸成分および酸化アルミニウム
成分を含む珪酸アルミニウム鉱物粉としては、非晶質シ
リカ、微粉末珪砂(骨材用粗珪砂は効果がない)、ろう
石粉(パイロフィライト)、カオリンまたはセリサイト
等の粘土鉱物粉が例示される。通常は、ろう石、微粉末
珪砂、非晶質シリカ、またはこれらの混合物が有利に使
用される。
Layered silicate mineral powders or aluminum silicate mineral powders containing silicic acid components and aluminum oxide components include amorphous silica, finely powdered silica sand (coarse silica sand for aggregate is ineffective), pyrophyllite powder, and kaolin. Alternatively, clay mineral powder such as sericite is exemplified. Typically, waxite, finely divided silica sand, amorphous silica or mixtures thereof are advantageously used.

(2)原材料の配合量 ガラス化性材料粉を含有する耐熱劣化性のセメント質材
料の好ましい配合重量の範囲を下表に示す。これに、成
形およびセメントの水和に必要な量の水(例えばセメン
ト1部に対して0.1〜0゜5重量部の水)を加えて混
和し、成形する。これらの配合量は、本発明の作用効果
を達成する各原材料の好ましい有効量を示すものである
(2) Loading amount of raw materials The table below shows the preferred weight range of the heat deterioration resistant cementitious material containing the vitrifying material powder. To this is added an amount of water necessary for molding and hydration of the cement (for example, 0.1 to 0.5 parts by weight of water per 1 part of cement), and the mixture is mixed and molded. These compounding amounts indicate preferred effective amounts of each raw material to achieve the effects of the present invention.

一般的な原材料の配合量(重量部) 水硬性セメント          100部ガラス化
性材料粉     約50〜300部上記の鉱物粉また
は混合物 (望ましい成分)     約20〜400部(好まし
くは約50〜300部) 骨材            約500−0部典型的な
原材料の配合m(重量部) 水硬性セメント(例 ポルトランドセメント)100部 ガラス化性材料粉(例 ガラス粉) 約50〜200部 (例えば100部前後) 珪酸マグネシウム鉱物(例 蛇紋岩) 約50〜200部 (例えば100部前後) 珪酸鉱物および/または珪酸アルミニウム鉱物(例 ろ
う石)        約5〜150部(通常は約10
〜100部) (例えば50部前後) 骨材             約300〜0部(例え
ば150部前後) なお、セメント100部に対して、他の成分の合計量は
一般的に600部以下である。
Typical amounts of raw materials (parts by weight) Hydraulic cement 100 parts Vitrifying material powder Approx. 50-300 parts Mineral powder or mixture mentioned above (desired ingredients) Approx. 20-400 parts (preferably approx. 50-300 parts) Aggregate: Approximately 500-0 parts Typical raw material mix m (parts by weight) Hydraulic cement (e.g. Portland cement) 100 parts Vitrifying material powder (e.g. glass powder) Approximately 50-200 parts (e.g. around 100 parts) Silicic acid Magnesium mineral (e.g. serpentinite) about 50 to 200 parts (e.g. around 100 parts) Silicate mineral and/or aluminum silicate mineral (e.g. waxite) about 5 to 150 parts (usually about 10 parts)
~100 parts) (For example, around 50 parts) Aggregate: Approximately 300 to 0 parts (For example, around 150 parts) The total amount of other components is generally 600 parts or less with respect to 100 parts of cement.

(3)レーザー光の照射 本発明で使用するレーザー光とは、原子および分子内の
束縛電子のエネルギー準位系による誘導放出によって、
光波を発振増幅したコヒーレントな光ビームを意味する
。代表的には、co、レーザー等の気体レーザーおよび
ヤグ(YAG)レーザー等の固体レーザーが効果的に使
用できる。
(3) Irradiation of laser light The laser light used in the present invention is caused by stimulated emission by the energy level system of bound electrons in atoms and molecules.
It refers to a coherent light beam that is made by oscillating and amplifying light waves. Typically, gas lasers such as CO lasers and solid state lasers such as YAG lasers can be effectively used.

本発明にて使用するレーザー装置の出力は特に制限され
ないが、通常約2kw以上であるのが好ましく、約5k
w以上であるのが望ましい。照射装置の集光レンズと基
材表面との距離は通常約100mm〜300mm程度で
ある。しかしレーザー光は減衰しにくいので、特に限定
はされない。
The output of the laser device used in the present invention is not particularly limited, but it is usually preferably about 2kw or more, and about 5kw.
It is desirable that it be equal to or greater than w. The distance between the condensing lens of the irradiation device and the surface of the substrate is usually about 100 mm to 300 mm. However, since laser light is difficult to attenuate, there are no particular limitations.

レーザー光の基材上の照射面積は、一般的に直径が約1
0=J’Omm程度の円形状となる。
The irradiation area of the laser beam on the substrate is generally about 1 in diameter.
It becomes a circular shape of about 0=J'Omm.

レーザー光の照射は、出力が約5KWの場合、レーザー
ガンまたは基材を左右方向に一定の走査速度(通常、数
cmないし数十cm/秒)にて−定の走査間隔(レーザ
ー光の照射面積によるが通常数m m = 教+ m 
m )で移動させて行われる。
When the output of the laser beam is approximately 5KW, the laser gun or the substrate is scanned horizontally at a constant speed (usually several cm to several tens of cm/sec) at a constant scanning interval (laser beam irradiation). Depends on the area, but usually a few mm = + m
m).

本発明の方法は、通常は、実質的に平面状の施釉すべき
表面を有する基材に有利に適用されるが、曲面状の該表
面を有する該基材にも適用できる。
The method of the invention is usually advantageously applied to substrates having a substantially planar surface to be glazed, but can also be applied to substrates having a curved surface.

なお、円筒状または円柱状等の棒状の基材表面に施釉す
る場合は、例えば施釉すべき棒状の基材を回転させなが
ら相対的に移動させて、レーザー光を照射することがで
きる。
In addition, when applying a glaze to the surface of a rod-shaped base material such as a cylinder or a cylinder, the rod-shaped base material to be glazed can be relatively moved while rotating, and the laser beam can be irradiated, for example.

本発明に使用する装置は、少なくも一個のレーザーガン
並びに該レーザーガンおよび必要に応じて施釉すべき基
材をそれぞれ保持する支持具から本質的に成る。更に、
施釉すべき表面全体にレーザー光を均一に適用するため
、該ガンの支持具および/または該基材の支持具を移動
させる手段を備える。上記の移動手段は、必要に応じて
、エレクトロニクスによって自動的に制御することが可
能である。これらの制御゛手段は、例えば、自動工作機
械等の技術常識に基づき容易に成し得る。
The apparatus used according to the invention essentially consists of at least one laser gun and a support respectively holding the laser gun and, if necessary, the substrate to be glazed. Furthermore,
Means are provided for moving the gun support and/or the substrate support in order to uniformly apply laser light over the entire surface to be glazed. The above-mentioned movement means can be automatically controlled by electronics, if desired. These control means can be easily implemented, for example, based on common technical knowledge of automatic machine tools and the like.

実質的に減衰しないので、6→Jと一一マ弓t□用いて
任意の場所にレーザー光を誘導できる、(ロ)光である
ので、プラズマ炎のような構成物質による影響がない、
(ハ)光学系の利用によって、照射ビームの形状および
エネルギー分布を自由に変化できる、(ニ)風等の影響
が少ない、(ホ)照射すべき表面の直前または上流に光
透過遮断性模様マスクを設置して、該マ、スク模様状の
照射が容易にできる、(へ)反射ミラー等を用いて、複
雑な表面および裏面等の照射が可能である、等の利点が
ある。
Since there is virtually no attenuation, laser light can be guided to any location using 6→J and 11mm bow t□. (b) Since it is light, it is not affected by constituent substances such as plasma flame.
(c) By using an optical system, the shape and energy distribution of the irradiation beam can be changed freely; (d) there is little influence from wind, etc.; (e) there is a patterned mask that blocks light transmission immediately before or upstream of the surface to be irradiated. It has the advantage that it is possible to easily irradiate a mask or a square pattern by setting up a mirror, and that it is possible to irradiate complex front and back surfaces by using a reflective mirror or the like.

具体例 例!= 重量部にてガラス粉30部、セメント(普通ポルトラン
ドセメント)301に、骨材としての磁器シャモット(
粒径lam以下)40部、水I6部およびメチルセルロ
ース1.2部を調合して混練した後、押出成形法で幅5
0mmq長さIQQs+Il、厚さ10+mの寸法に成
形し、水和養生しそして105℃にて空気乾燥して試験
体とした。
Specific example! = 30 parts by weight of glass powder, 301 parts of cement (ordinary Portland cement), and porcelain chamotte as aggregate (
After mixing and kneading 40 parts (particle size lam or less), 6 parts water I, and 1.2 parts methyl cellulose, extrusion molding
It was molded into a size of 0 mmq length IQQs+Il and thickness 10+m, hydrated and cured, and air-dried at 105°C to obtain a test specimen.

青色フリット粉末100重量部、水150重量部および
エタノール50重量部から実質的になる釉薬スラリーを
、該試験体2の上表面に約0. 15mmの厚さにスプ
レー塗布した。
A glaze slurry consisting essentially of 100 parts by weight of blue frit powder, 150 parts by weight of water and 50 parts by weight of ethanol was applied to the upper surface of the test specimen 2 at a rate of about 0. It was spray coated to a thickness of 15 mm.

島田理化工業(株)製のレーザー(Cod)ガンを用い
、該釉薬塗布面上に水玉模様の光透過マスク6を設置し
、そして下記の条件にてレーザー光4を照射しそして放
冷した。(なお、本例では低出力のレーザーを使用した
が、工業的には出力5KW以上のものが望ましい。) レーザー光エネルギー密度:約2QOW /平方師集光
しンズ5/釉薬面の距離:約30crsガンの走査速度
(左右方向):約8 cm7分ガンの走査間隔(幅方向
):約8問 照射放冷後に、マスクによってレーザー光が照射されな
かった部分の釉薬塗布面を熱水にて洗い落として、厚さ
約0.1mmの水玉模様の立体的施釉3を有する美麗な
セメント買収lを得た。レーザー光の照射による該セメ
ント質表面層の強度劣化は認められなかった。なお、該
水玉模様の釉層はその輪郭がソフトな感じであり好まし
いものであった。
Using a laser (Cod) gun manufactured by Shimada Rika Kogyo Co., Ltd., a light transmitting mask 6 with a polka dot pattern was placed on the glaze coated surface, and laser light 4 was irradiated under the following conditions, followed by cooling. (Although a low-power laser was used in this example, a laser with an output of 5 KW or more is desirable from an industrial perspective.) Laser light energy density: Approximately 2 QOW / Square condensing lens 5 / Distance of glaze surface: Approximately Scanning speed of 30 crs gun (left and right direction): Approximately 8 cm, 7 minutes Gun scanning interval (width direction): Approximately 8 questions After irradiation and cooling, the glaze-applied surface of the part that was not irradiated with the laser beam by the mask was soaked with hot water. After washing off, a beautiful cement piece was obtained with a three-dimensional glaze with polka dots about 0.1 mm thick. No deterioration in strength of the cementitious surface layer due to laser light irradiation was observed. The polka dot pattern glaze layer had a soft outline, which was preferable.

例2: 下記の(1)、(2)および(3)の試験体をそれぞれ
使用して、例1と同様に光透過マスクを用いて施釉を実
施した。
Example 2: Using the following test specimens (1), (2), and (3), glazing was performed in the same manner as in Example 1 using a light-transmitting mask.

(1)重量部にて珪酸アルミニウム鉱物としてろう石2
0部、ガラス粉20部、セメントとして普通ポルトラン
ドセメント20部、骨材として磁器ンヤモット(粒径1
1以下)40部、水17部およびメチルセルロース1部
を調合し、混練した後、押出成形法で幅50■、長さ1
00+u+、厚さlolの寸法に成形し、水和養生しそ
して乾燥して試験体とした。
(1) Waxite 2 as aluminum silicate mineral in parts by weight
0 parts, 20 parts of glass powder, 20 parts of ordinary Portland cement as cement, porcelain Nyamot (particle size 1
1 or less), 17 parts of water, and 1 part of methylcellulose were mixed, kneaded, and extruded into a mold with a width of 50 cm and a length of 1.
It was molded into a size of 00+u+ and thickness lol, hydrated and cured, and dried to obtain a test specimen.

(2) 重量部にて珪酸マグネシウム鉱物として蛇紋岩
20部、ガラス粉20部、セメントとして普通ポルトラ
ンドセメント20部、骨材として磁器シャモット(粒径
1mm以下)40部、水17部およびメチルセルロース
1部を調合し、これを混練した後、押出成形法で幅5部
mm、長さ100+ai、厚さ110ll1の寸法に成
形し、水和養生しそして乾燥して試験体とした。
(2) By weight, 20 parts of serpentine as magnesium silicate mineral, 20 parts of glass powder, 20 parts of ordinary Portland cement as cement, 40 parts of porcelain chamotte (particle size 1 mm or less) as aggregate, 17 parts of water, and 1 part of methylcellulose. After mixing and kneading, the mixture was extrusion molded to a size of 5 mm in width, 100 mm in length, and 110 mm in thickness, hydrated, cured, and dried to obtain a test specimen.

(3) 原材料として、下記の混合物(重量部)を使用
した。
(3) The following mixture (parts by weight) was used as a raw material.

普通ポルトランドセメント    100部蛇紋岩(1
50メツシユ以下)50部 ガラス粉(100メツシユ以下)125部ろう石(20
0メツシユ以下)25部 色シャモット骨材(粒径llmm以下)200部上記の
混合物に水およびメチルセルロースを加えて混練糾、幅
50+wmそして厚さ10++uaに押出成形し、長さ
1001に切断して試料とした。該試料を水和養生しそ
して105℃にて空気乾燥して試験体とした。
Ordinary Portland cement 100 parts Serpentine (1
(50 mesh or less) 50 parts Glass powder (100 mesh or less) 125 parts Waxite (20
0 mesh or less) 25 parts Colored chamotte aggregate (particle size 11 mm or less) 200 parts Water and methylcellulose were added to the above mixture, kneaded, extruded to a width of 50+wm and a thickness of 10++ua, and cut into lengths of 1001 to form samples. And so. The samples were hydrated and air dried at 105°C to prepare test specimens.

このようにして、例1と同様な水玉模様の立体的施釉を
有するセメント質板を得た。なお本例の施抽板は、その
非施釉表面および側面に実質的に白華現象の虞れがない
ことを更に特徴とするものである。
In this way, a cementitious board having a three-dimensional glaze with a polka dot pattern similar to that of Example 1 was obtained. The bolted plate of this example is further characterized in that there is substantially no risk of efflorescence on its unglazed surface and side surfaces.

例3: 下記のようにして、セラミックタイルの試験体を調製し
た。すなわち、生滑石および陶石の混合物63重量%と
長石およびベタライLの混合物30重量%を混合し、長
石の粒子径が約2ミクロン以上になる程度までボールミ
ルで糊層し泥漿とする。これに泥漿粘土75を混合した
後、脱水製粉し坏土を作る。この坏土をプレス圧300
kg/平方cmで加圧し、充填率0.7の成形体(10
0X 100X 5m1M)に成形する。
Example 3: Ceramic tile specimens were prepared as follows. That is, 63% by weight of a mixture of raw talc and pottery stone and 30% by weight of a mixture of feldspar and Betalai L are mixed, and a paste layer is formed in a ball mill until the particle size of feldspar becomes about 2 microns or more. After mixing slurry clay 75 with this, it is dehydrated and milled to make clay. Press this clay at a pressure of 300
A molded body (10
0X 100X 5m1M).

この成形体を空気乾燥し、上表面に乳白色の釉薬スラリ
ーを約0.2romの厚さにスプレー塗布し、次いで該
素地をトンネルキルン中で最高温度1150℃にて36
時間焼成し、乳白色の釉層を有するせり4質のタイルを
得た。
The molded body was air-dried, a milky white glaze slurry was spray applied to the upper surface to a thickness of about 0.2 rom, and the green body was then heated in a tunnel kiln at a maximum temperature of 1150°C for 36 hours.
After firing for a period of time, a tile with a milky white glaze layer of 4 quality was obtained.

この乳白色釉層を有するタイルの該釉層上に、例1と同
様にして、青色釉薬スラリーを塗布しそして該水玉模様
マスクを用いてレーザー光を照射して、施釉を実施した
A blue glaze slurry was applied onto the glaze layer of the tile having the milky white glaze layer in the same manner as in Example 1, and the polka dot pattern mask was used to irradiate laser light to perform glazing.

乳白色の該釉層上に厚さ約0.1mmの水玉模様の青色
釉層を有する立体感のある施釉タイル板を得た。
A glazed tile board with a three-dimensional effect was obtained, which had a blue glaze layer with a polka dot pattern about 0.1 mm thick on the milky white glaze layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明において模様マスクを通してレーザー
光を照射して、該模様状の熔融釉層を形成する態様を例
示する説明図である。 !・・・施釉した基′材; 2・・・基材板;3・・・
釉層: 4・・・レーザー光ビーム:5・・・集光レン
ズ二 〇・・・模様マスク。
FIG. 1 is an explanatory diagram illustrating an embodiment in which a patterned molten glaze layer is formed by irradiating laser light through a patterned mask in the present invention. ! ... Glazed base material; 2... Base material plate; 3...
Glaze layer: 4...Laser beam: 5...Condensing lens 20...Pattern mask.

Claims (4)

【特許請求の範囲】[Claims] (1)施釉すべき基材の所要の全表面に釉薬を塗布し、
光透過遮断性の模様マスクを通してレーザー光を照射し
て該模様状の照射部分に熔融釉層を形成することを特徴
とする、立体模様の施釉方法。
(1) Apply glaze to the entire required surface of the base material to be glazed,
A method for glazing a three-dimensional pattern, which comprises irradiating a laser beam through a patterned mask that blocks light transmission to form a molten glaze layer on the irradiated portion of the pattern.
(2)該基材がセメント質成形硬化物からなり、該成形
物の少なくも施釉する表面層が水硬性セメントおよび焼
結有効量の熔融ガラス化性材料粉から本質的になること
を特徴とする;該釉層およびセメント質材の表面層およ
び該表面層内部の接合強度を改善した請求項1の施釉方
法。
(2) The base material is made of a cementitious molded and cured product, and at least the surface layer to be glazed of the molded product is characterized in that it consists essentially of hydraulic cement and a sintering effective amount of meltable vitrifying material powder. The glazing method according to claim 1, wherein the glaze layer, the surface layer of the cementitious material, and the bonding strength inside the surface layer are improved.
(3)該成形物の少なくも表面層が、水硬性セメント、
焼結有効量の熔融ガラス化性材料粉、ならびに珪酸マグ
ネシウム鉱物粉、活性珪酸鉱物粉、珪酸アルミニウム鉱
物粉およびこれらの二以上の混合物からなる群から選ば
れる鉱物粉から本質的になるセメント質層である、該表
面層の白華を更に改善した請求項2の施釉方法。
(3) At least the surface layer of the molded article is made of hydraulic cement,
a cementitious layer consisting essentially of a sintering effective amount of meltable vitrifiable material powder and a mineral powder selected from the group consisting of magnesium silicate mineral powder, activated silicate mineral powder, aluminum silicate mineral powder, and mixtures of two or more thereof; The glazing method according to claim 2, wherein the efflorescence of the surface layer is further improved.
(4)該セメント質成形硬化物全体が、水硬性セメント
、熔融ガラス化性材料粉、ならびに珪酸マグネシウム鉱
物粉、活性珪酸鉱物粉、珪酸アルミニウム鉱物粉および
これらの二辺上の混合物からなる群から選ばれる鉱物粉
から本質的になる、成形および焼成してなるセメント質
系セラミック材である、請求項2の施釉方法。
(4) The entire molded and cured cementitious material is selected from the group consisting of hydraulic cement, melt-vitrifying material powder, magnesium silicate mineral powder, activated silicate mineral powder, aluminum silicate mineral powder, and mixtures thereof on two sides. 3. The glazing method of claim 2, wherein the glazing is a cementitious ceramic material formed and fired, consisting essentially of selected mineral powders.
JP1172601A 1989-07-04 1989-07-04 Glazing method of solid design Pending JPH0337169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1172601A JPH0337169A (en) 1989-07-04 1989-07-04 Glazing method of solid design

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1172601A JPH0337169A (en) 1989-07-04 1989-07-04 Glazing method of solid design

Publications (1)

Publication Number Publication Date
JPH0337169A true JPH0337169A (en) 1991-02-18

Family

ID=15944882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1172601A Pending JPH0337169A (en) 1989-07-04 1989-07-04 Glazing method of solid design

Country Status (1)

Country Link
JP (1) JPH0337169A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040037733A (en) * 2002-10-30 2004-05-07 이향덕 Block attached with stone and apparatus for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717483A (en) * 1980-06-27 1982-01-29 Kubota Ltd Cement product enamel baking method
JPS58199788A (en) * 1982-05-11 1983-11-21 八幡電機精工株式会社 Manufacture of dressing refractory board
JPS5973482A (en) * 1982-10-18 1984-04-25 株式会社イナックス Hydraulic ceramic product

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717483A (en) * 1980-06-27 1982-01-29 Kubota Ltd Cement product enamel baking method
JPS58199788A (en) * 1982-05-11 1983-11-21 八幡電機精工株式会社 Manufacture of dressing refractory board
JPS5973482A (en) * 1982-10-18 1984-04-25 株式会社イナックス Hydraulic ceramic product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040037733A (en) * 2002-10-30 2004-05-07 이향덕 Block attached with stone and apparatus for manufacturing the same

Similar Documents

Publication Publication Date Title
US6064034A (en) Laser marking process for vitrification of bricks and other vitrescent objects
US6340650B1 (en) Ceramic products made from waste glass, raw batch formulations, and method
IE57209B1 (en) Process and apparatus for producing glazed ceramic tiles,and tiles so obtained
JPH0345578A (en) Glazing of multicolor design
JPH0337169A (en) Glazing method of solid design
KR940000727B1 (en) Cement-containing ceramic articles and method for production thereof
JP3094226B2 (en) Crystallized glass composite ceramics and method for producing the same
JPH04175281A (en) Glazed molded article of cement having transfer decoration and production thereof
JPH0456796B2 (en)
JPH0333084A (en) Method for thermally-spraying and grazing cement martial
JPH0333080A (en) Production of cementitious material having fused surface layer
JPH0333083A (en) Method for irradiating and glazing cement material
JPH08133825A (en) Producing method of cement-based burned building material
JP3163101B2 (en) Surface treatment method of zeolite-containing hardened cement by laser irradiation
JPH0624876A (en) Production of terracotta
JPH04130075A (en) Method for coloring cement hardened body by irradiation of laser
JP2709744B2 (en) Method of manufacturing ceramic products
JPH06107475A (en) Foamed ceramic sheet and its production
WO2021090161A1 (en) Article made of conglomerate material and method for manufacturing such article
JPS6395179A (en) Method of glazing cement product
Akhter et al. Rapid laser surface enamelling by powder feeding technique
JPH0280363A (en) Ceramics product which prevents efflorescence and its production
JPH02302375A (en) Production of plate consisting of porcelain plate integrated with foamed ceramic
RU1805106C (en) Composition for base layer of decorative facing material
JPH03112878A (en) Production of ceramic-coated concrete