JPS6395179A - Method of glazing cement product - Google Patents

Method of glazing cement product

Info

Publication number
JPS6395179A
JPS6395179A JP23657286A JP23657286A JPS6395179A JP S6395179 A JPS6395179 A JP S6395179A JP 23657286 A JP23657286 A JP 23657286A JP 23657286 A JP23657286 A JP 23657286A JP S6395179 A JPS6395179 A JP S6395179A
Authority
JP
Japan
Prior art keywords
base material
plasma
flame
glazed
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23657286A
Other languages
Japanese (ja)
Inventor
田代 楠熊
達也 永田
治幸 水野
泰 清水
久保田 五十嵐
真吾 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP23657286A priority Critical patent/JPS6395179A/en
Publication of JPS6395179A publication Critical patent/JPS6395179A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aftertreatments Of Artificial And Natural Stones (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、プラズマ溶射によるセメント製品の施釉方法
に関する。特に本発明は、基材を熱劣化しない施釉セメ
ント製品の製法として有用である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for glazing cement products by plasma spraying. In particular, the present invention is useful as a method for producing glazed cement products that do not cause thermal deterioration of the base material.

〔従来の技術およびその問題点〕[Conventional technology and its problems]

従来、セメント質基材1例えばコンクリート板、GRC
板1石綿セメント板、ケイ酸カルシウム板上に釉薬を施
した、耐候性および美観を有する施釉セメント製品が知
られている。このような施釉セメント製品の製造は一般
に、セメントに水及び骨材、さらに必要によシ各種添加
剤や補強用の繊維を加えた原料組成物を混練し、それを
加圧成形、押出し成形、流し込み等の成形法により成形
し。
Conventionally, cementitious base material 1 such as concrete board, GRC
Board 1 Glazed cement products having weather resistance and aesthetic appearance are known, in which a glaze is applied on an asbestos cement board or a calcium silicate board. In general, the production of such glazed cement products involves kneading a raw material composition of cement, water and aggregate, as well as various additives and reinforcing fibers added thereto, and then pressurizing, extruding, or molding the mixture. Molded using a molding method such as pouring.

得られた成形体に施釉して焼成したのち、再水和処理す
ることによって製造している。この方法は、セメント製
品全体を焼成するため多量のエネルギーを必要とするば
かりか、焼成の際、温度コント、ロールが離しいという
問題があった。また、使用する窯の大きさの制限により
プレストレスコンク、リート板等の大型セメント製品の
施釉ができないという問題もあった。更に、焼成による
セメント質基材の劣化を再水和により回復させているが
It is manufactured by applying a glaze to the obtained molded body, firing it, and then subjecting it to rehydration treatment. This method not only requires a large amount of energy to fire the entire cement product, but also has problems in that temperature control and rolls are difficult to separate during firing. There was also the problem that large cement products such as prestressed concrete and reeet boards could not be glazed due to the size limitations of the kilns used. Furthermore, the deterioration of the cementitious base material caused by calcination is recovered by rehydration.

ガラス繊維を含むGBC板、石綿を含む石綿セメント板
等、熱劣化の激しい、繊維材料等を含むセメント質基材
には利用できないのが現状である。
Currently, it cannot be used for cementitious base materials containing fiber materials that are subject to severe thermal deterioration, such as GBC boards containing glass fibers and asbestos cement boards containing asbestos.

これらを解決するため、熱に敏感な例えば約500℃以
上で熱劣化するセメント質基材上ヘガラス層を形成する
ための方法として、■セメント質基材の表層のみを局部
的にガスバーナーで加熱し、該基材自体の表面を熔かす
か、あるいは該基材表面に塗布したガラス原料を熔かし
て、ガラス層を得ようとする試み、および、■ガスバー
ナー等の火炎中で、ガラス層を形成する釉薬粒子を溶融
し、それを直接該基材に付着させる試みがなされてきた
。これに関連し1本出願人は先に、■セメント質基材上
に釉薬スラリーを湿式に施し、該基材及び/又はプラズ
マ発生装置を相対的に移動してプラズマ炎によって釉薬
塗膜のみを溶融し、ガラス層をセメント質基材に密着さ
せる方法を提案した。
In order to solve these problems, as a method to form a glass layer on a cementitious base material that is sensitive to heat, for example, and deteriorates due to heat at temperatures above about 500°C, However, attempts are made to obtain a glass layer by melting the surface of the base material itself or by melting the glass raw material applied to the surface of the base material; Attempts have been made to melt the glaze particles forming the glaze and apply them directly to the substrate. In connection with this, the applicant first applied a glaze slurry on a cementitious base material in a wet manner, moved the base material and/or a plasma generator relatively, and removed only the glaze coating film using a plasma flame. We proposed a method of melting and adhering the glass layer to the cementitious base material.

然し乍ら上記■では、該火炎が安定せず火炎の状態のコ
ントロールが困難であシ、膜厚及び色に関して均一なガ
ラス層を得ることは難しかった。
However, in the case (2) above, the flame was unstable and it was difficult to control the flame condition, and it was difficult to obtain a glass layer that was uniform in thickness and color.

従って、釉薬の溶融が不均一であるため、ガラス層と基
材との剥離が起きやすい。またガラス層の色の調整も、
火炎によるすすの付着と火炎内の酸化条件がガラス層の
色をかえてしまうので翔しい。
Therefore, since the glaze melts unevenly, peeling between the glass layer and the base material is likely to occur. You can also adjust the color of the glass layer.
This is shocking because the soot adhesion caused by the flame and the oxidation conditions within the flame change the color of the glass layer.

更に伝熱によりて基材表面も熱劣化を受ける。Furthermore, the surface of the base material also undergoes thermal deterioration due to heat transfer.

又、■の場合、火炎中で釉薬粒子の溶融が不完全である
か、または該粒子のブロッキングが起こったシして均一
なガラス層が得られなかった。更に火炎の面積が大きい
ため溶射時間が長くなシ、基材の劣化および部分的溶化
による剥離及び熱劣化の問題がある。更にまた、釉薬粒
子が安定に溶化していない膜状物となる怖れもある。
In the case of (2), the glaze particles were incompletely melted in the flame or blocking of the particles occurred, so that a uniform glass layer could not be obtained. Further, since the area of the flame is large, the spraying time is long, and there are problems of peeling and thermal deterioration due to deterioration of the base material and partial melting. Furthermore, there is a risk that the glaze particles will not be stably dissolved, resulting in a film-like substance.

■の方法で社密着性の優れたガラス層が得られるが、湿
式の施釉およびその後のプラズマ炎溶融の二工程を要し
、そして僅かながら気泡、ピンホール等の生ずる可能性
がある。従って、一工程にて完全に施釉できる工程が−
そう望ましい。
Although method (2) provides a glass layer with excellent adhesion, it requires two steps: wet glazing and subsequent plasma flame melting, and there is a possibility that bubbles, pinholes, etc. may occur, albeit slightly. Therefore, there is a process that can completely glaze in one step.
So desirable.

一方、セラミック粉末を金属基板上へプラズマ溶射して
金属材料の耐久性を向上させる技術が仰られている。金
属のような表面変形し易い素材の場合、基板に物理的変
形を起こさせながらセラミックス粒子を溶着することが
可能である。しかしセメント質基材のような表面変形し
にくい熱劣化性の基板の場合、セラミックス粒子のみの
変形で溶着されなければ々らないので、接着不良等のた
め不可能であった。セラミックス自体の融点が高く、ま
た、完全に溶融しても、溶融体から結晶が析出し易く膜
が多孔性となるため、金属板の場合でも基材上に光沢の
ある膜面を得ることは困難であった。上記に関連して本
出願人は先に%500℃以上に仮焼したセメント質基材
に、ガス炎溶射等によって釉薬を溶着させる施釉セメン
ト製品の製法を提案した。この時点の火炎照射技術では
釉薬を基材上に溶着させる場合、溶射と共に基材上での
照射溶融も意図しているので、セメント質基材の少くも
表面が500℃以上に加熱されて基材から水蒸気および
分解ガス等が施釉表面に排出される。
On the other hand, there has been talk of a technique for improving the durability of metal materials by plasma spraying ceramic powder onto metal substrates. In the case of a material whose surface is easily deformed, such as metal, it is possible to weld ceramic particles while causing physical deformation of the substrate. However, in the case of a heat-degradable substrate such as a cementitious base material whose surface is difficult to deform, it is necessary to weld the ceramic particles by deformation alone, which has been impossible due to poor adhesion. The melting point of the ceramic itself is high, and even if it is completely melted, crystals tend to precipitate from the melt, making the film porous, so it is difficult to obtain a glossy film surface on the base material even in the case of a metal plate. It was difficult. In connection with the above, the present applicant has proposed a method for producing glazed cement products in which a glaze is welded by gas flame spraying or the like to a cementitious base material that has been previously calcined to a temperature of 500° C. or higher. With the flame irradiation technology at this point, when welding a glaze onto a base material, it is intended to irradiate and melt the base material in addition to thermal spraying, so at least the surface of the cementitious base material is heated to 500°C or higher. Steam and decomposition gases are released from the material onto the glazed surface.

従って、セメント質基材を前もって500℃以上に仮焼
処理し、セして施釉後に飽和水蒸気等で再水和処理する
ことが必要であった。
Therefore, it has been necessary to previously calcinate the cementitious base material to a temperature of 500° C. or higher, and then rehydrate it with saturated steam or the like after glazing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、約10,000℃以上そして通常は15#
OOO〜20.000℃糧度の中心火炎温度を有するプ
ラズマガン中のプラズマ炎中に所定の粒径範囲のガラス
質粉を導入しそして迅速かつ充分く溶化し1粒径が可及
的に均一なガラス質溶化粒を該プラズマ炎の噴射力によ
って、所定の溶射距離および走査速度を維持しながらセ
メント質基材上に衝突させることKよって、上記の諸問
題を解決した。
The inventors believe that temperatures above about 10,000°C and typically 15#
Glassy powder with a predetermined particle size range is introduced into the plasma flame of a plasma gun having a center flame temperature of OOO~20,000℃, and is quickly and sufficiently dissolved to make the particle size as uniform as possible. The above-mentioned problems were solved by colliding the vitreous melted particles onto the cementitious base material using the blasting force of the plasma flame while maintaining a predetermined spraying distance and scanning speed.

すなわち1本発明によって、グツズi溶射装置の高温度
プラズマ炎中に平均粒径1〜400ミクロンのガラス質
粉を導入して充分に溶融したガラス質溶化粒を、水和セ
メント質基材および/または該プラズマ溶射装置を相対
的に移動しながら該セメント質基材上に該プラズマ炎の
噴射力によって衝突させてプラズマ溶射することを特徴
とする、水和セメント質基材の施釉方法および施釉セメ
ント製品の製法が提供される。
That is, according to the present invention, vitreous powder having an average particle size of 1 to 400 microns is introduced into the high-temperature plasma flame of the Gutsuzu i thermal spraying apparatus, and the vitreous solubilized particles are sufficiently melted to form a hydrated cementitious base material and/or Alternatively, a method for glazing a hydrated cementitious base material and a glazed cement characterized by performing plasma spraying by colliding the plasma flame onto the cementitious base material while moving the plasma spraying device relatively. A method of manufacturing the product is provided.

本発明の施釉方法は、従来の施釉方法によって施釉した
セメント製品の釉層に含まれる気泡、ピンホール、融着
不良部分等の欠陥を削除し、その除去した釉層部分く上
記のようにプラズマ溶射することによって均質無欠陥の
施釉瑞を得る工aKも、有利に適用できる。
The glazing method of the present invention removes defects such as air bubbles, pinholes, and poor fusion areas contained in the glaze layer of cement products that have been glazed using conventional glazing methods. A method of obtaining a homogeneous and defect-free glaze by thermal spraying can also be advantageously applied.

〔発明の詳しい記述〕[Detailed description of the invention]

本発明におけるセメント質基材とは、水硬性の無機セメ
ント材料を必須成分として含み、そして骨材、補強材、
添加剤等を任意に含み得る成形物から成る基材を意味す
る。該基材は、代表的には。
The cementitious base material in the present invention includes a hydraulic inorganic cement material as an essential component, and aggregate, reinforcing material,
It means a base material made of a molded article that may optionally contain additives and the like. The base material is typically.

実質的に平面状の施釉すべき表面を有するが、該表面は
曲面状であってもよい。上記の無機セメント材料として
は代表的に、ポルトランドセメント。
Although it has a substantially planar surface to be glazed, the surface may be curved. A typical example of the above inorganic cement material is Portland cement.

アル?ナセメント、高炉セメント、ジェットセメント、
スラグセメント、石膏セメント、およびこれらの混合物
等が例示される。通常は、普通ポルトランドセメントが
使用される。本発明の方法が適用し得る代表的なセメン
ト質基材の例としては。
Al? cement, blast furnace cement, jet cement,
Examples include slag cement, gypsum cement, and mixtures thereof. Normally, ordinary Portland cement is used. Examples of typical cementitious base materials to which the method of the present invention can be applied include:

=ンクリート材、スパンクリート、発泡コンクリ−)(
ALC等)材、ケイカル板、スレート板、ガラス繊維補
強コンクリ−)(GRC)、炭素繊維補強コンク17−
)(CFRC)等の板状、棒状等の物体がある。形状は
平面状の外に1噴出溶射の可能な程度の曲面状であって
もよい。
= concrete material, spancrete, foamed concrete) (
ALC, etc.) material, silica board, slate board, glass fiber reinforced concrete (GRC), carbon fiber reinforced concrete 17-
) (CFRC) and other plate-shaped and rod-shaped objects. In addition to being flat, the shape may be curved to the extent that one jet thermal spraying is possible.

上記のガラス質粉の平均粒度範囲は、その溶融性にもよ
るが、一般的には径約1〜約400ミ・りaン、好まし
くは約4〜約250ミクロン、最も好ましくは約10〜
約150ぽクロンである。なお、ガラス質粉の平均径が
1ミクロン未満の場合には、基板に到達する前に飛散す
る。或いは、ガラス粉供給口付近で急激に溶化しブロッ
キングを起こす。400ζクロンを越えると、ガラス粉
の均一な供給が困翔になる。仮に供給可能としても。
The average particle size range of the glassy powder described above depends on its meltability, but is generally about 1 to about 400 microns in diameter, preferably about 4 to about 250 microns, and most preferably about 10 to about 250 microns in diameter.
It is about 150 pochrons. Note that when the average diameter of the glassy powder is less than 1 micron, it scatters before reaching the substrate. Alternatively, the glass powder rapidly melts near the supply port and causes blocking. If it exceeds 400 ζ chrome, it becomes difficult to uniformly supply the glass powder. Even if it is possible to supply it.

プラズマ炎中での溶融が不充分となる。該ガラス質粉と
しては、通常は釉薬を溶融してガラス化し、そして粉砕
したものが用いられるが、その他の普通ガラスの粉末で
あってもよい。
Melting in the plasma flame is insufficient. The vitreous powder is usually one obtained by melting a glaze, vitrifying it, and pulverizing it, but it may also be a powder of other ordinary glass.

上記プラズマの出力およびプラズマ溶射ガンとセメント
質基材との間の距離は、該基板表面がプラズマ溶射によ
って約450℃未満の温度に維持□されるように(例え
ば約400℃、好ましくは約300℃よシ高温とならな
いように)設定される。
The power of the plasma and the distance between the plasma spray gun and the cementitious substrate are such that the substrate surface is maintained at a temperature of less than about 450°C by the plasma spray (e.g., about 400°C, preferably about 300°C). The temperature is set so that it does not reach temperatures as high as ℃.

従って、プラズマガンの出力は通常約1oKw〜約60
Kwの範囲が適当である。また、上記の距離は通常的1
0mm〜300 mm程度であシ、減圧溶射の場合は約
1o o o mm程度までである。基材および装置の
熱破損を回避するために、約20mm以上の距離が一般
に望しい。なお、プラズマ炎の基材上の照射面積は、一
般的に直径が約5〜100mm程度の円形状となる。
Therefore, the output of a plasma gun is usually about 1oKw to about 60Kw.
A range of Kw is appropriate. Also, the above distance is usually 1
The thickness is approximately 0 mm to 300 mm, and in the case of vacuum spraying, it is up to approximately 10 mm. A distance of about 20 mm or more is generally desirable to avoid thermal damage to the substrate and device. The irradiation area of the plasma flame on the base material is generally circular with a diameter of about 5 to 100 mm.

プラズマ溶射は通常、プラズマガン又はセメント質基材
を左右方向に一定の走査速度(通常数cmないし数十c
m/秒)にて一定の走査間隔(プラズマ炎の照射面積に
よるが通常数mm〜数cm)で移動させて行われる。ガ
ラス質粉の供給割合は1回の走査で数十ないし数百ミク
ロンのガラス層が得られるように調整される。上記の走
査を通常は1回実施して、所望厚さのガラス層を得る。
Plasma spraying is usually performed using a plasma gun or a cementitious base material at a constant scanning speed (usually several centimeters to tens of centimeters) in the left and right direction.
m/sec) at fixed scanning intervals (usually several mm to several cm, depending on the irradiation area of the plasma flame). The feed rate of the glass powder is adjusted so that a glass layer of tens to hundreds of microns can be obtained in one scan. The above scanning is usually performed once to obtain the desired thickness of the glass layer.

もちろん、2回走査することも可能である。Of course, it is also possible to scan twice.

本発明で使用するプラズマ炎とは、主として、窒素ガス
、アルゴンガス、ネオンガス等の不活性ガスを電離させ
て形成する高温高速のプラズマジェットを意味する。更
に必要に応じて該不活性ガスに加えて水素又は空気等も
使用される。
The plasma flame used in the present invention mainly refers to a high-temperature, high-speed plasma jet formed by ionizing an inert gas such as nitrogen gas, argon gas, neon gas, or the like. Furthermore, hydrogen, air, etc. may be used in addition to the inert gas, if necessary.

本発明の方法は、通常は、実質的に平面状の施釉すべき
表面を有するセメント質基材に有利に適用されるが、急
激な形状変化のない曲面状の該表面を有する該基材にも
適用できる。即ち、後者場合、施釉すべき表面とプラズ
マ溶射装置(例えばプラズマガ・y、)との距離の変化
が約1096未満、厳密には約2X未満であれば、平面
の場合と同様に実施可能である。
Although the method of the present invention is advantageously applied to cementitious substrates which normally have a substantially planar surface to be glazed, it can also be applied advantageously to cementitious substrates which have a surface to be glazed that is substantially planar, but which has a curved surface that does not undergo sudden changes in shape. can also be applied. That is, in the latter case, as long as the change in distance between the surface to be glazed and the plasma spraying device (e.g. plasma spraying device) is less than about 1096, more precisely less than about 2X, it can be carried out in the same way as in the case of a flat surface. .

両者の距離が約10X以上、厳密には約2%以上に渡っ
て変化する場合には施釉すべき該曲面との距離がほぼ一
定となるように、該曲面の変化にそつてプラズマガンの
位置を該間隔方向に移動してプラズマ溶射炎を適用する
のが望ましい。なお、円筒状又は円柱状等の棒状の基材
表面罠施釉する場合は、例えば施釉すべき棒状の基材を
回転させながら相対的に移動させて、プラズマ炎を適用
することができる。
If the distance between the two changes by about 10X or more, more precisely about 2% or more, the position of the plasma gun should be adjusted according to the change in the curved surface so that the distance to the curved surface to be glazed remains almost constant. It is desirable to move the plasma spray flame in the direction of the spacing and apply the plasma spray flame. In addition, when trap-glazing the surface of a rod-shaped base material such as a cylinder or a cylinder, the plasma flame can be applied, for example, by rotating and relatively moving the rod-shaped base material to be glazed.

本発明に使用する装置は、少なくとも一個のプラズマガ
ン並びに該プラズマガン及び必要に応じて施釉すべき基
材を夫々保持する支持具から本質的に成る。更に、施釉
すべき表面全体にプラズマ溶射炎を均一に適用するため
、該ガンの支持具及び/又は該基材の支持具を移動させ
る手段を備える。例えば、複数個のプラスミンを所定の
間隔に配置して固定し、該ガンの配列と実質的に垂直方
向に該ガンから一定の距離を維持して、施釉すべき基材
を移動させる搬送機を備えた構成の装置が例示される。
The apparatus used according to the invention essentially consists of at least one plasma gun and a support which respectively holds the plasma gun and, if necessary, the substrate to be glazed. Furthermore, means are provided for moving the gun support and/or the substrate support in order to uniformly apply the plasma spray flame over the entire surface to be glazed. For example, a plurality of plasmins are arranged and fixed at predetermined intervals, and a conveyor is used to move the substrate to be glazed while maintaining a fixed distance from the guns in a direction substantially perpendicular to the arrangement of the guns. An example of a device having this configuration is illustrated.

この複数個のガンの代シに一個のプラスミンを該搬送方
法と垂直方向に往復して移動させる態様も例示される。
An embodiment is also exemplified in which one piece of plasmin is moved back and forth in a direction perpendicular to the transport method in place of the plurality of guns.

更に上記の曲面を有する基材の場合は、該曲面の変化に
応じ、プラズマガンの位置を両者の間隔方向に変化させ
ることができる。なお、上記の各態様における各移動手
段は、エレクトロニクスによって自動的に制御すること
が可能である。これらの制御手段は、例えば。
Furthermore, in the case of the base material having the above-mentioned curved surface, the position of the plasma gun can be changed in the direction of the distance between the two in accordance with the change in the curved surface. Note that each moving means in each of the above embodiments can be automatically controlled by electronics. These control means include, for example.

自動工作機械等の技術常識に基づき成し得る。This can be achieved based on technical common sense regarding automatic machine tools, etc.

〔実 施 例〕〔Example〕

本発明の方法を、下記の例により更に具体的に説明する
The method of the present invention will be explained more specifically by the following examples.

例1 下記表−1の組成(重量部)のガラス粉末を37〜88
ミクロンの粒度範囲に調興した。このガラス粉末4を、
第1図に示すように、プラズマテクニック社製FT−A
200([1プラズi溶射ガン5のプラズマ炎6中に送
りこみ、下記表−2の条件下でアスベスト補強コンクリ
ート板2上に溶射した。その結果、光沢のあるガラスコ
ーテイング面(コーティング厚さ約100建クロン)3
を有する施釉コンクリート板1が得られた。得られた施
釉コンクリート板1には損傷が認められず、コンクリー
ト基板の強度劣イヒも生じなかった。またコーティング
と該コンクリート板との付着強度は約60 kg f 
7cm2であった。
Example 1 Glass powder having the composition (parts by weight) shown in Table 1 below was mixed with 37 to 88
Prepared to micron particle size range. This glass powder 4,
As shown in Figure 1, FT-A manufactured by Plasma Technique Co., Ltd.
200 ([1) was sent into the plasma flame 6 of the Plas i thermal spray gun 5 and sprayed on the asbestos-reinforced concrete plate 2 under the conditions shown in Table 2 below. 100 kron) 3
A glazed concrete board 1 having the following properties was obtained. No damage was observed in the obtained glazed concrete board 1, and no deterioration in the strength of the concrete substrate occurred. The adhesion strength between the coating and the concrete plate is approximately 60 kgf.
It was 7cm2.

表−1 8i02 69    Na2O1 At203 14    Kto   1Li20  
9    B201 6 表−2 プ5ズマ出カニ 650AXd6V (42,9KW) 距 離(d) : 90mm プラズマガン走査間隔(幅)  : 4mm例2 例1と同じ組成のガラス粉末を37−88ミクロンの粒
度範囲にtli整した。このガラス粉末を例−1と同じ
装置を用い下記表−3の条件で、コンクリート基板上へ
溶射した。その結果、光沢のあるガラスコーテイング面
(厚さ約100ミロクン)を有する施釉コンクリート板
が得られた。該施釉コンクリート板には損傷は認められ
ず、コンクリート基板の強度劣化も生じなかった。コー
テイング面と基板との付着強度は約50 kg f/c
m2でbだ。
Table-1 8i02 69 Na2O1 At203 14 Kto 1Li20
9 B201 6 Table-2 Plasma output crab 650AXd6V (42,9KW) Distance (d): 90mm Plasma gun scanning interval (width): 4mmExample 2 Glass powder with the same composition as Example 1 with a particle size of 37-88 microns Adjusted to within the range. This glass powder was thermally sprayed onto a concrete substrate using the same equipment as in Example 1 under the conditions shown in Table 3 below. As a result, a glazed concrete board with a glossy glass coated surface (thickness of approximately 100 mm) was obtained. No damage was observed to the glazed concrete board, and no deterioration in the strength of the concrete substrate occurred. The adhesion strength between the coating surface and the substrate is approximately 50 kg f/c
m2 is b.

表−3 プラズマ出カニ 560 AX68V (3&IKW) 距離(d) ニア0rnm プラズマガン走査速度 :22Cm/秒走査問隔(幅)
:4mm 例3(比較例) 下記表−4の組成(重量部)のセラミックス粉(ムライ
ト粉末)を例−1の装置を用い1表−5の条件でコンク
リート基板上へ溶射した。
Table-3 Plasma output crab 560 AX68V (3 & IKW) Distance (d) Near 0rnm Plasma gun scanning speed: 22Cm/sec Scan interval (width)
:4mm Example 3 (Comparative Example) Ceramic powder (mullite powder) having the composition (parts by weight) shown in Table 4 below was thermally sprayed onto a concrete substrate using the apparatus of Example 1 under the conditions shown in Table 1-5.

その結果、光沢のある面は得られなかった。更に、膜面
の該コンクリート上への付着強度も約10 kg f/
cm!と弱いものであった。
As a result, a shiny surface could not be obtained. Furthermore, the adhesion strength of the membrane surface to the concrete is approximately 10 kg f/
cm! It was a weak one.

表−4 At、0. 766 Stへ  22.4 Na!0   α3 Fe!03   α2 他     α5 表−5 フ5 スマ出カニ 500AX 62V (31に11
)距 離(d)  : 12omm プラズマガン走査速度:  16 cm/秒走査問隔(
@)  :  4mm 〔作用および効果〕 所定範囲の粒度のガラス質粉をプラズマ炎中に導入する
と、該ガラス粉は15.000〜20.000℃の高温
のプラズマ炎中で迅速に且つ完全に溶融し。
Table-4 At, 0. To 766 St 22.4 Na! 0 α3 Fe! 03 α2 Other α5 Table-5 Fu5 Sma-de-kani 500AX 62V (31 to 11
) Distance (d): 12omm Plasma gun scanning speed: 16cm/sec Scan interval (
@): 4mm [Function and Effect] When glass powder with a particle size within a predetermined range is introduced into a plasma flame, the glass powder melts quickly and completely in the plasma flame at a high temperature of 15,000 to 20,000°C. death.

極めて低粘性のガラス溶融体粒子が形成される。Very low viscosity glass melt particles are formed.

これをプラズマ炎の噴出力を利用して所定の距離間隔に
てセメント質基材上に直接吹き付けて放冷することによ
って、基材の強度劣化を伴うことなく、光沢を有するコ
ーテイング面が得られる。
By spraying this directly onto the cementitious base material at predetermined intervals using the ejection power of plasma flame and allowing it to cool, a glossy coating surface can be obtained without deteriorating the strength of the base material. .

従って、本発明の方法は次の効果を有する:■光沢を有
し、しかも基材に強固く密着したガラス層が得られる。
Therefore, the method of the present invention has the following effects: (1) A glass layer that is glossy and firmly adheres to the substrate can be obtained.

■基材の加熱による強度劣化を生じない。従って、再水
和工程によるセメント質基材の劣化強度の回復は不要で
ある。■基材表面がプラズマ溶射により短かい走査時間
に加熱されても一般的に300℃以下であるので、S射
によりセメント質基材中の蒸発または分解成分がガス化
して釉面が損傷することはない。従って。
■No strength deterioration occurs due to heating of the base material. Therefore, it is not necessary to restore the deteriorated strength of the cementitious base material by a rehydration process. ■Even if the base material surface is heated during a short scanning time by plasma spraying, the temperature is generally below 300°C, so the evaporation or decomposition components in the cementitious base material will gasify due to S radiation and damage the glaze surface. There isn't. Therefore.

溶射前の仮焼は必要でないので、大型製品に有利に適用
できる。■本発明による施釉は水を用いない乾式の施釉
であるので、従来法のように釉層の気泡、ピンホール等
が回避される。
Since calcination before thermal spraying is not required, it can be advantageously applied to large-sized products. (2) Since the glazing according to the present invention is a dry glazing that does not use water, bubbles, pinholes, etc. in the glaze layer are avoided as in the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法を示す説明図であ石。 1・・・施釉コンクリート板 FIG. 1 is an explanatory diagram showing the method of the present invention. 1...Glazed concrete board

Claims (1)

【特許請求の範囲】[Claims] (1)プラズマ溶射装置および/または水和セメント質
基材を相対的に移動しながら、該プラズマ溶射装置の高
温度プラズマ炎中に平均粒径1〜400ミクロンのガラ
ス質粉を導入して充分に溶融したガラス質溶化粒を、該
水和セメント質基材上に該プラズマ炎の噴射力によって
衝突させて該基材を実質的に熱劣化することなくプラズ
マ溶射することを特徴とする、セメント製品の施釉方法
(1) While relatively moving the plasma spraying equipment and/or the hydrated cementitious base material, it is sufficient to introduce vitreous powder with an average particle size of 1 to 400 microns into the high temperature plasma flame of the plasma spraying equipment. A cement, characterized in that plasma spraying is performed by impinging vitreous molten grains onto the hydrated cementitious base material by the jetting force of the plasma flame without substantially thermally deteriorating the base material. How to glaze the product.
JP23657286A 1986-10-03 1986-10-03 Method of glazing cement product Pending JPS6395179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23657286A JPS6395179A (en) 1986-10-03 1986-10-03 Method of glazing cement product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23657286A JPS6395179A (en) 1986-10-03 1986-10-03 Method of glazing cement product

Publications (1)

Publication Number Publication Date
JPS6395179A true JPS6395179A (en) 1988-04-26

Family

ID=17002619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23657286A Pending JPS6395179A (en) 1986-10-03 1986-10-03 Method of glazing cement product

Country Status (1)

Country Link
JP (1) JPS6395179A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333084A (en) * 1989-06-28 1991-02-13 Inax Corp Method for thermally-spraying and grazing cement martial
US6692844B2 (en) * 2000-08-29 2004-02-17 The Boeing Company Glaze for ceramic superplastic forming (SPF) dies

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161382A (en) * 1984-01-27 1985-08-23 株式会社イナックス Manufacture of glazed cement product
JPS60235775A (en) * 1984-05-09 1985-11-22 株式会社ナカシマ Glass flame-spraying coating
JPS60264377A (en) * 1984-06-11 1985-12-27 株式会社イナックス Manufacture of glazed cementitious substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161382A (en) * 1984-01-27 1985-08-23 株式会社イナックス Manufacture of glazed cement product
JPS60235775A (en) * 1984-05-09 1985-11-22 株式会社ナカシマ Glass flame-spraying coating
JPS60264377A (en) * 1984-06-11 1985-12-27 株式会社イナックス Manufacture of glazed cementitious substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0333084A (en) * 1989-06-28 1991-02-13 Inax Corp Method for thermally-spraying and grazing cement martial
US6692844B2 (en) * 2000-08-29 2004-02-17 The Boeing Company Glaze for ceramic superplastic forming (SPF) dies

Similar Documents

Publication Publication Date Title
JPH03261636A (en) Method for formation of wide decorative surface on substrate such as glass, glass ceramic and ceramic and decorated glass ceramic plate
AU595181B2 (en) Process and apparatus for producing glazed ceramic tiles, and tiles so obtained
JPH0345578A (en) Glazing of multicolor design
JPS6395179A (en) Method of glazing cement product
RU2600252C1 (en) Method of making large-sized glass ceramic foam blocks
KR19990046239A (en) Manufacturing Method of Decorative Sheet Glass_
JPH0422872B2 (en)
JPS63100085A (en) Elongated glazed prestressed concrete material and manufacture
JPH0456796B2 (en)
CN113979720B (en) Preparation process of large-specification high-strength ceramic sheet and ceramic sheet
JPH0333084A (en) Method for thermally-spraying and grazing cement martial
JPH0333080A (en) Production of cementitious material having fused surface layer
JP2648071B2 (en) Manufacturing method of porous ceramic plate
JPS646150B2 (en)
JP2664318B2 (en) Coating material for heating furnace refractory coating
JPH0515670B2 (en)
JPS63123882A (en) Large scale glazed concrete board
JPH0688849B2 (en) Method for producing ceramic foam
JPH02302377A (en) Production of plate consisting of porcelain plate integrated with foamed ceramic
CN109987965A (en) The building wall material and its manufacturing method produced with yellow phosphorus blast furnace slag
JPH02302375A (en) Production of plate consisting of porcelain plate integrated with foamed ceramic
JPH0333083A (en) Method for irradiating and glazing cement material
JPH0751449B2 (en) Manufacturing method of glassy sintered plate
JPH07315954A (en) Production of porous ceramic board and device therefor
JPH02120284A (en) Production of panel