JPH0280363A - Ceramics product which prevents efflorescence and its production - Google Patents

Ceramics product which prevents efflorescence and its production

Info

Publication number
JPH0280363A
JPH0280363A JP63230751A JP23075188A JPH0280363A JP H0280363 A JPH0280363 A JP H0280363A JP 63230751 A JP63230751 A JP 63230751A JP 23075188 A JP23075188 A JP 23075188A JP H0280363 A JPH0280363 A JP H0280363A
Authority
JP
Japan
Prior art keywords
molding
silicate mineral
powder
magnesium silicate
efflorescence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63230751A
Other languages
Japanese (ja)
Other versions
JPH0587466B2 (en
Inventor
Takayuki Shirai
白井 孝幸
Kazuyuki Kawai
和之 川合
Kazumasa Goto
後藤 和昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP63230751A priority Critical patent/JPH0280363A/en
Publication of JPH0280363A publication Critical patent/JPH0280363A/en
Publication of JPH0587466B2 publication Critical patent/JPH0587466B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To obtain the titled ceramics product which has high strength and is free from shrinkage and deformation on calcination by molding a mixture composed of hydraulic cement, fused vitrifiable material powder, magnesium silicate ore powder, etc., and water, then previously hardening the molding with and calcining the molding to the specific max. temp. or above. CONSTITUTION:The above-mentioned admixture contg. the hydraulic cement is molded by a cast molding method, press molding method, etc., used for production of ordinary pottery. The green ware body of the molding is then cured under humidification and is rested to previously hydrate and harden the cement components; thereafter, the molding is calcined under the following conditions. Namely, the molding is calcined at the max. calculation temp. of about >=1100 deg.C (generally about 1100 to 1250 deg.C) in addition to the presence of the above- mentioned magnesium silicate, etc., in order to prevent the efflorescence by the glassy components, etc. The desired ceramics product which prevents the efflorescence is obtd. in this way. The preferable range of the compounding weights of the above-mentioned raw materials is shown in the table.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、ガラス化性材料粉、水硬性セメント、珪酸マ
グネシウム鉱物ならびに活性珪酸鉱物および/または珪
酸アルミニウム鉱物から本質的になる、白華を防止した
新規なセラミック製品およびその製法に関する。本発明
の製法によって、該セラミック製品のガラス化性成分等
による白華現象が実質的に防止され、かつ主に珪酸マグ
ネシウム鉱物の副効果により強度も向上される傾向があ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention provides a method for producing efflorescence consisting essentially of vitrifiable material powder, hydraulic cement, magnesium silicate mineral, and activated silicate mineral and/or aluminum silicate mineral. Regarding new ceramic products and their manufacturing method. By the manufacturing method of the present invention, efflorescence caused by vitrifying components of the ceramic product is substantially prevented, and the strength tends to be improved mainly due to the side effect of the magnesium silicate mineral.

なお、水硬性セメント成分により、生素地の成形容易性
および保形性ならびに焼成時の収縮変形性も大幅に改善
される。
In addition, the hydraulic cement component greatly improves the ease of molding and shape retention of the green material, as well as the shrinkage deformability during firing.

[従来の技術] 従来の陶磁器製品は、粘土系材料に水を加えて成形し、
そして焼成して製造されている。従って、成形生素地の
強度および保形性ならびに焼成時の収縮変形におおきな
問題があったが、やむえないものとされていた。
[Conventional technology] Conventional ceramic products are made by adding water to clay-based materials and molding them.
It is then manufactured by firing. Therefore, there were serious problems with the strength and shape retention of the green material, as well as shrinkage and deformation during firing, but these problems were considered unavoidable.

本発明者は先に、ガラス粉等のフラックス成分、水硬性
セメントおよび他の骨材粉からなる水性混練物を成形し
、セメント成分が実質的に水和硬化した後に、900〜
1050℃程度に焼成する、陶磁器製品の製造方法を発
明した(特願昭62−33]776号)。これによって
、上記の陶磁器製品における問題点は実質的に解決され
た。しかし、ガラス粉等による白部現象が製品の外観上
の問題となっている。なお、製品の強度を更に向上する
ことも、望ましい課題であった。
The present inventor first molded an aqueous kneaded material consisting of a flux component such as glass powder, hydraulic cement, and other aggregate powder, and after the cement component was substantially hydrated and hardened,
He invented a method for manufacturing ceramic products that was fired at about 1050°C (Japanese Patent Application No. 776, 1983). As a result, the above-mentioned problems with ceramic products have been substantially solved. However, the white area phenomenon caused by glass powder and the like poses a problem in the appearance of the product. Furthermore, it was also a desirable issue to further improve the strength of the product.

なお、水硬性セメントおよび骨材からなる予備水和硬化
物を900℃以下にて焼成しそして再水和するセメント
製品の製法(特σ8昭5/l−41916号)が知られ
ているが、このセメント製品の曲げ強度は+30kgf
/平方cm程度であり、強度および構成において大きな
相違がある。
Incidentally, there is a known method for manufacturing cement products (Special σ8 Showa 5/l-41916) in which a pre-hydrated hardened product consisting of hydraulic cement and aggregate is fired at 900°C or below and then rehydrated. The bending strength of this cement product is +30kgf
/cm2, and there are large differences in strength and composition.

[問題点を解決するだめの手段] 本発明の主目的は、上記の問題点を実質的に解消した、
セラミック製品の製法および該製品を提供することであ
る。
[Means to Solve the Problems] The main object of the present invention is to provide a method that substantially eliminates the above problems.
An object of the present invention is to provide a method for manufacturing a ceramic product and the product.

すなわち本発明によって、水硬性セメント、熔融ガラス
化性材料粉、珪酸マグネシウム鉱物粉、活性珪酸鉱物粉
および/または珪酸アルミニウム鉱物粉、および水から
本質的になる混和物を成形し:該成形物を予備的に水和
硬化し:次いで該成形物を最高温度1100℃以上に焼
成する工程を特徴とする白部を実質的に防止したセラミ
ック製品の製法が提供される。得られた製品は、焼成収
縮変形が実質的に防止され(即ち小であり)、高強度(
例えば曲げ強度が200kgf/平方cm以上)である
That is, according to the present invention, a mixture consisting essentially of hydraulic cement, vitrifiable material powder, magnesium silicate mineral powder, activated silicate mineral powder and/or aluminum silicate mineral powder, and water is molded; Provided is a method for producing a ceramic product that substantially prevents white areas, which is characterized by a step of preliminary hydration hardening and then firing the molded product to a maximum temperature of 1100° C. or higher. The resulting product has virtually no firing shrinkage deformation (i.e. is small) and high strength (
For example, the bending strength is 200 kgf/cm2 or more).

上記の製法において、珪酸マグネシウム鉱物としては、
蛇紋岩鉱物粉、タルク粉、またはこれらの混合物が好ま
しく、これによって該セラミック製品中に該珪酸マグネ
シウム鉱物と酸化カルシウムとの高温度反応生成物が容
易に形成され、強度が更に向上した(例えば曲げ強度が
220kgf/平方Cm以上)セラミック製品が有利に
得られる。
In the above manufacturing method, the magnesium silicate mineral is
Serpentinite mineral powder, talcum powder, or mixtures thereof are preferred, which facilitate the formation of high temperature reaction products of the magnesium silicate mineral and calcium oxide in the ceramic article to further improve strength (e.g. bending resistance). Ceramic products (with a strength of 220 kgf/cm2 or more) are advantageously obtained.

[発明の詳しい記述] (1)原材料 水硬性セメントとしては、ポルトランドセメント、アル
ミナセメント、混合ポルトランドセメント等、いずれも
使用可能である。また任意材料である骨材は、焼成工程
において急激な膨張、収縮を生じない安定な乙の(例え
ば陶磁器質ソヤモット)が望ましく、また川砂、海砂、
珪砂、安山岩、玄武岩、硬質砂岩等も用いられる。
[Detailed Description of the Invention] (1) As the raw material hydraulic cement, any of Portland cement, alumina cement, mixed Portland cement, etc. can be used. As for the optional aggregate, it is preferable to use a stable material (such as ceramic soyamot) that does not cause rapid expansion or contraction during the firing process, and river sand, sea sand, etc.
Silica sand, andesite, basalt, hard sandstone, etc. are also used.

ガラス化性材料粉(いわゆるフラックス成分)は焼成時
においてガラス性熔融物等のフラックスを生じるしので
あって、具体的には各種のガラス粉、市販のフリット、
長石、ノラス、火山灰、その他のガラス化性火成岩扮等
が例示される。通常はガラス粉またはフリットが用いら
れる。
Vitrifying material powder (so-called flux component) produces flux such as glass melt during firing, and specifically includes various glass powders, commercially available frits,
Examples include feldspar, nolas, volcanic ash, and other vitrified igneous rocks. Usually glass powder or frit is used.

珪酸マグネシウム鉱物粉としてはタルク、蛇紋岩鉱物、
緑泥石等の粉体が例示される。通常は蛇紋岩粉、タルク
粉、またはこれらの混合物が有利に採用される。
Magnesium silicate mineral powders include talc, serpentine minerals,
Examples include powders such as chlorite. Usually serpentine powder, talcum powder or mixtures thereof are advantageously employed.

活性珪酸鉱物粉または珪酸アルミニウム鉱物粉としては
、非晶質ノリ力、微粉末珪砂(骨材用粗珪砂は効果に乏
しい)、ろう石粉(パイロフィライト)、カオリン等の
粘土鉱物粉が例示される。
Examples of active silicate mineral powder or aluminum silicate mineral powder include amorphous glue, finely powdered silica sand (coarse silica sand for aggregates has poor effect), pyrophyllite powder, and clay mineral powders such as kaolin. Ru.

通常は、ろう石、微粉末珪砂、非晶質シリカ、またはこ
れらの混合物か有利に使用される。
Typically, waxite, finely powdered silica sand, amorphous silica or mixtures thereof are advantageously used.

(2)原材料の好ましい配合重量の範囲を下表に示す。(2) The table below shows the preferred blending weight range of raw materials.

これに、成形およびセメントの水和に必要な量の水を加
えて混和し、生素地を成形する。これらの配合量は、本
発明の作用効果を達成する各原材料の好ましい有効量を
示すものである。
This is mixed with the amount of water necessary for shaping and hydration of the cement to form a green body. These compounding amounts indicate preferred effective amounts of each raw material to achieve the effects of the present invention.

原材料の配合量(重量部) 水硬性セメント(例 ポルトランドセメント)100部 珪酸マグネシウム鉱物(例 蛇紋岩) 50〜200部(例えば100部前後)ガラス粉 50〜200部(例えば100部前後)珪酸鉱物および
/または珪酸アルミニウム鉱物(例 ろう石) 5〜150部(通常は10〜100部)(例えば50部
前後) 他の骨材 300〜0部(例えば150部前後) なお−船釣に、セメント100部に対して、他の成分の
合計量は600部以下である。
Amount of raw materials (parts by weight) Hydraulic cement (e.g. Portland cement) 100 parts Magnesium silicate mineral (e.g. serpentine) 50-200 parts (e.g. around 100 parts) Glass powder 50-200 parts (e.g. around 100 parts) Silicate mineral and/or aluminum silicate mineral (e.g. waxite) 5 to 150 parts (usually 10 to 100 parts) (e.g. around 50 parts) Other aggregates 300 to 0 parts (e.g. around 150 parts) For every 100 parts, the total amount of other ingredients is 600 parts or less.

(3)生素地の成形 上記の素地材料に水を加えて混練した混和物を成形する
。混和物とする際に必要に応じて、粘結剤、減水剤、可
塑剤、ゐ動化剤、分散剤等の混和剤を適宜に選択して添
加することができる。なお、耐熱性の補強用無機短繊維
等を該混和物に混入することも可能であり、強度が向上
する。
(3) Forming of green base material A mixture obtained by adding water to the above-mentioned base material and kneading it is molded. When making a mixture, admixtures such as a binder, a water reducing agent, a plasticizer, a mobilizing agent, a dispersing agent, etc. can be appropriately selected and added as necessary. Note that it is also possible to mix heat-resistant reinforcing inorganic short fibers into the mixture, which improves the strength.

成形方法としては通常の陶磁器の製造に用いられる鋳込
成形法、プレス成形法、振動プレス成形法、押出成形法
やセメント製品の製造に用いられる加圧脱水成形法、抄
造法、吹付は法、ロール成形法等、種々の成形方法を採
用することができる。
Molding methods include the casting method, press molding, vibration press molding, extrusion molding method used in the manufacture of ordinary ceramics, the pressurized dehydration molding method used in the manufacture of cement products, the paper making method, the spraying method, Various molding methods such as roll molding can be employed.

一般に、強度的には加圧脱水による方法、そして能率的
には押出法等が好ましい。
Generally, a method using pressure dehydration is preferred in terms of strength, and an extrusion method is preferred in terms of efficiency.

成形後に、該生素地を加湿養生ないし放置(例えば数時
間〜数日)してセメント成分を予備的に水和硬化させる
。次いで、下記の焼成条件にて焼成する。なお、水和硬
化した該素地の所要表面上に該焼成条件に適当な釉薬を
塗布しそして焼成することによって、施釉セラミック製
品が有利に得られる。
After shaping, the green body is cured in a humidified state or left to stand (for example, for several hours to several days) to preliminarily harden the cement components by hydration. Next, it is fired under the following firing conditions. Incidentally, a glazed ceramic product can be advantageously obtained by applying a glaze suitable for the firing conditions on the required surface of the hydration-hardened base and firing.

(4)焼成 焼成によって脱水したセメント系硬化物の間隙に、該ガ
ラス化性材料のガラス化熔融物が実質的に侵入してセラ
ミック焼結体が形成される。焼成工程中に該セメント系
硬化物は該素地の骨格を形成して、焼結時に不可避と考
えられていた収縮を実質的に防止する(例えば、従来の
焼結体収縮率約10%に対して、本発明では1%前後)
。なお、焼成により脱水されたセメント成分は、再水和
されることなく実質的に骨材として作用する。即ち、従
来技術の場合と異なり、セメント成分は、高温度焼成さ
れて再水和能力を実質的に有さずまたガラス成分にて包
囲されているので、実質的に再水和されない。
(4) Firing The vitrified molten material of the vitrifying material substantially enters into the gaps of the cement-based hardened material dehydrated by firing, thereby forming a ceramic sintered body. During the firing process, the cementitious hardened material forms a skeleton of the substrate, substantially preventing shrinkage that was thought to be inevitable during sintering (for example, compared to the conventional sintered material shrinkage rate of about 10%). In the present invention, it is around 1%)
. Note that the cement component dehydrated by firing substantially acts as an aggregate without being rehydrated. That is, unlike in the prior art, the cement component is fired at high temperatures and has virtually no rehydration capacity, and is surrounded by the glass component, so that it is not substantially rehydrated.

本発明においては、ガラス質成分等による白華減少を防
止するために、上記の珪酸マグネシウム鉱物成分等の存
在に加えて、約1100℃以上の最高焼成温度が必要で
あることが見いだされた。
In the present invention, it has been found that in addition to the presence of the above-mentioned magnesium silicate mineral component, a maximum firing temperature of about 1100° C. or higher is necessary to prevent the reduction of efflorescence due to glassy components.

従って、本発明における焼成は、最高焼成温度約110
0℃以上(一般に1100〜1250°C1100℃に
て約20分以上、好ましくは約30分以上であり、そし
て1200℃では約7分以上、好ましくは約10分以上
である。このような焼成条件は、例えばローラーハース
キルンまたはトンネルキルンによって容易に実施できる
。ちなみに、最高焼成温度100(>−1050℃程度
では、白華防止は達成困難である。
Therefore, the firing in the present invention is carried out at a maximum firing temperature of about 110
0°C or higher (generally 1100 to 1250°C) at 1100°C for about 20 minutes or more, preferably about 30 minutes or more, and at 1200°C for about 7 minutes or more, preferably about 10 minutes or more.Such firing conditions This can be easily carried out using, for example, a roller hearth kiln or a tunnel kiln. Incidentally, it is difficult to prevent efflorescence at a maximum firing temperature of about 100°C (>-1050°C).

具体例 例1: 原材料として、下記の混合物(重量部)を使用した。Concrete example Example 1: The following mixture (parts by weight) was used as a raw material.

普通ポルトランドセメント     100部蛇紋岩(
150メツシユ以下)       50部ガラス粉(
100メツシユ以下)     12561Eろう石(
200メツシユ以下)      25部色シャモット
骨材(16メツシユ以下) 200部上記の混合物に水
およびメチルセルロースを加えて混練し、幅50mmそ
して厚さ10mmに押出成形し、長さ100mmに切断
して試料とした。
Ordinary Portland cement 100 parts Serpentine (
150 mesh or less) 50 parts glass powder (
100 mesh or less) 12561E wax stone (
(200 mesh or less) 25 parts Colored chamotte aggregate (16 mesh or less) 200 parts Water and methylcellulose were added to the above mixture, kneaded, extruded to a width of 50 mm and a thickness of 10 mm, and cut to a length of 100 mm to form a sample. did.

空気乾燥した。ローラーハースキルンにより、該試料板
を最高温度1200°C×20分間の条件にて焼成した
Air dried. The sample plate was fired in a roller hearth kiln at a maximum temperature of 1200°C for 20 minutes.

得られたセラミック板において目視にて白華は認められ
ず、曲げ強度は2!;Okgf/平方cmそして収縮率
はo、e%であった。なお、曲げ強度の測定は、スパン
間隔90mm、荷重速度2mm/分にてJIS  A3
209に準じて行った。
No efflorescence was visually observed in the obtained ceramic plate, and the bending strength was 2! ; Okgf/cm2 and the shrinkage rate was o, e%. The bending strength was measured using JIS A3 at a span interval of 90 mm and a loading rate of 2 mm/min.
It was carried out according to 209.

例2: 上記の例1の、予備的に水和養生しそして乾燥した試料
板の上表面に、乾燥重量%にて(長石40、炭酸カルシ
ウムIO5亜鉛華5、タルク25、珪砂IOおよび蛙目
粘土10)からなる釉薬のスラリーを乾燥重量約50m
g/平方cmにてスプレー塗布した。これを例1と同様
に焼成して、白華現象のない施釉セラミック板を得た。
Example 2: The upper surface of the pre-hydrated and dried sample plate of Example 1 above was coated with 40 feldspar, calcium carbonate IO5, zinc oxide 5, talc 25, siliceous sand IO and Frogmite in % dry weight. Approximately 50m dry weight of glaze slurry made of clay10)
Spray application was carried out at g/cm2. This was fired in the same manner as in Example 1 to obtain a glazed ceramic plate free from efflorescence.

作用および効果 水硬性セメントおよびガラス化性材料粉(いわゆるフラ
ックス成分)を主成分とするセラミック製品の白華現象
は、(i)ガラス化材料(フラックス成分)中の水溶流
出性の塩基成分の存在、()ガラス化性材料中の塩基成
分とセメント中の酸(硫酸根)が反応して塩を形成しそ
してアルカリ金属酸化物として残存、および(iii 
)セメントが焼成時に分解活性化してCaO等を形成す
ることが、主な原因である。
Actions and Effects The efflorescence phenomenon of ceramic products whose main components are hydraulic cement and vitrifying material powder (so-called flux component) is caused by (i) the presence of a water-soluble base component in the vitrifying material (flux component); , () the base component in the vitrifiable material and the acid (sulfuric acid radical) in the cement react to form a salt and remain as an alkali metal oxide, and (iii
) The main cause is that cement is decomposed and activated during firing to form CaO and the like.

本発明において、活性珪酸鉱物(または珪酸アルミニウ
ム鉱物)および珪酸マグネシウム鉱物を共存させて、1
100℃以上に焼成する。これらの構成の組合せによっ
て、上記の白華の要因(1)(11)、(山)が存利に
解消できることが見いだされた。
In the present invention, active silicate minerals (or aluminum silicate minerals) and magnesium silicate minerals are allowed to coexist, and 1
Fire at 100°C or higher. It has been found that the above-mentioned causes of efflorescence (1), (11), and (mountain) can be effectively eliminated by a combination of these structures.

即ち、上記の原因(1)の解消は、ガラス成分中の水溶
性塩基成分が1100℃以上の高温度焼成によって反応
し、実用的にガラス中に固定されるためと思考される。
That is, it is considered that the above cause (1) is resolved because the water-soluble base component in the glass component reacts with the high temperature firing at 1100° C. or higher and is practically fixed in the glass.

上記の原因(ii )の解消は、ガラス化性材料および
セメントから生成する例えば硫酸ナトリウムが、活性珪
酸鉱物または珪酸アルミニウム鉱物から生成する活性な
珪酸と、高温度にて反応して、例えば安定なN a t
 O・n5i0、を形成するためと思考される。上記の
原因(1ii)の解消は、分解活性化したCaO等が高
温度にて反応して、珪酸アルミニウム鉱物とは例えばC
ao・mAl*oa・nS jotを形成して安定化し
、そして珪酸マグネシウム鉱物とは例えばCaO・m 
M g O・n S i Oxを形成して安定化するた
めと思考される。更に、上記のCaO等と珪酸マグネシ
ウム鉱物との高温度反応生成物は高強度であるため、本
発明のセラミック製品の強度を向上する。これらの構成
および作用の組合せによって、本発明の白華の防止、強
度の増大、焼成収縮変形の防止等が有利に達成される。
The solution to cause (ii) above is that, for example, sodium sulfate produced from vitrifying materials and cement reacts with active silicic acid produced from active silicate minerals or aluminum silicate minerals at high temperatures, resulting in stable Nat
It is thought that this is to form O.n5i0. The solution to the above cause (1ii) is that decomposition-activated CaO, etc. react at high temperatures, and aluminum silicate minerals, such as carbon
ao・mAl*oa・nS jot is formed and stabilized, and magnesium silicate minerals are, for example, CaO・m
It is thought that this is to form M g O·n S i Ox and stabilize it. Furthermore, since the high-temperature reaction product of CaO or the like and magnesium silicate mineral has high strength, it improves the strength of the ceramic product of the present invention. By the combination of these structures and effects, the prevention of efflorescence, increase in strength, prevention of firing shrinkage deformation, etc. of the present invention can be advantageously achieved.

特許出願人 株式会社 イナックスPatent applicant Inax Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)水硬性セメント、熔融ガラス化性材料粉、珪酸マ
グネシウム鉱物粉、活性珪酸鉱物粉および/または珪酸
アルミニウム鉱物粉、および水から本質的になる混和物
を成形し;該成形物を予備的に水和硬化し;次いで該成
形物を最高温度1100℃以上に焼成する工程を特徴と
する、白華を実質的に防止したセラミック製品の製法。
(1) Molding a mixture consisting essentially of hydraulic cement, vitrifiable material powder, magnesium silicate mineral powder, activated silicate mineral powder and/or aluminum silicate mineral powder, and water; A method for producing a ceramic product that substantially prevents efflorescence, characterized by the steps of hydration hardening; and then firing the molded product at a maximum temperature of 1100° C. or higher.
(2)該珪酸マグネシウム鉱物が蛇紋岩鉱物、タルク、
およびこれらの混合物から選ばれ、そして該活性珪酸鉱
物および/または珪酸アルミニウム鉱物が、ろう石、微
粉末珪砂、非晶質シリカおよびこれらの混合物から選ば
れる、特許請求の範囲第1項の製法。
(2) The magnesium silicate mineral is a serpentine mineral, talc,
and mixtures thereof, and the activated silicate mineral and/or aluminum silicate mineral is selected from waxite, finely powdered silica sand, amorphous silica, and mixtures thereof.
(3)予備的に水和硬化した該成形物の所要表面に釉薬
を塗布し、そして焼成する、特許請求の範囲第1または
第2項の製法。
(3) The manufacturing method according to claim 1 or 2, wherein a glaze is applied to a required surface of the molded product which has been preliminarily hydrated and hardened, and then fired.
(4)水硬性セメント;熔融ガラス化性材料粉;蛇紋岩
鉱物、タルクおよびこれらの混合物から選ばる珪酸マグ
ネシウム鉱物粉;およびろう石、微粉末珪砂、非晶質シ
リカおよびこれらの混合物から選ばれる鉱物粉から本質
的になる、高温度焼成セラミック製品であり;該セラミ
ック中に酸化カルシウムと該珪酸マグネシウム鉱物との
高温度反応生成物が形成され;該セメント成分は本質的
に骨材として作用し焼成収縮変形を実質的に防止し;そ
して該セラミックの白華が実質的に存在しないことを特
徴とする、セラミック製品。
(4) Hydraulic cement; Melting and vitrifying material powder; Magnesium silicate mineral powder selected from serpentinite minerals, talc, and mixtures thereof; and Quartzite, finely powdered silica sand, amorphous silica, and mixtures thereof. A high temperature fired ceramic product consisting essentially of mineral powder; in the ceramic a high temperature reaction product of calcium oxide and the magnesium silicate mineral is formed; the cement component essentially acts as an aggregate. CLAIMS 1. A ceramic product which substantially prevents firing shrinkage deformation; and is characterized by the substantial absence of efflorescence of the ceramic.
(5)該セラミック製品の所要表面に釉層を有する、特
許請求の範囲第4項のセラミック製品。
(5) The ceramic product according to claim 4, which has a glaze layer on a required surface of the ceramic product.
JP63230751A 1988-09-14 1988-09-14 Ceramics product which prevents efflorescence and its production Granted JPH0280363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63230751A JPH0280363A (en) 1988-09-14 1988-09-14 Ceramics product which prevents efflorescence and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63230751A JPH0280363A (en) 1988-09-14 1988-09-14 Ceramics product which prevents efflorescence and its production

Publications (2)

Publication Number Publication Date
JPH0280363A true JPH0280363A (en) 1990-03-20
JPH0587466B2 JPH0587466B2 (en) 1993-12-16

Family

ID=16912711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63230751A Granted JPH0280363A (en) 1988-09-14 1988-09-14 Ceramics product which prevents efflorescence and its production

Country Status (1)

Country Link
JP (1) JPH0280363A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489352A (en) * 1990-07-28 1992-03-23 Daiken Trade & Ind Co Ltd Production of pottery product
JPH04114959A (en) * 1990-08-31 1992-04-15 Daiken Trade & Ind Co Ltd Production of inorganic baked product
US5284712A (en) * 1987-12-26 1994-02-08 Kazuyuki Kawai Cement-containing ceramic articles and method for production thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284712A (en) * 1987-12-26 1994-02-08 Kazuyuki Kawai Cement-containing ceramic articles and method for production thereof
JPH0489352A (en) * 1990-07-28 1992-03-23 Daiken Trade & Ind Co Ltd Production of pottery product
JPH04114959A (en) * 1990-08-31 1992-04-15 Daiken Trade & Ind Co Ltd Production of inorganic baked product

Also Published As

Publication number Publication date
JPH0587466B2 (en) 1993-12-16

Similar Documents

Publication Publication Date Title
WO2020005178A2 (en) A production method of clay based ceramic materials opaque glazes and opaque frits using precision casting waste sand
US5284712A (en) Cement-containing ceramic articles and method for production thereof
KR940000727B1 (en) Cement-containing ceramic articles and method for production thereof
JPH0280363A (en) Ceramics product which prevents efflorescence and its production
JP2756934B2 (en) Sinter from coal ash as raw material and method for producing the same
JP3491991B2 (en) Manufacturing method of cement-based fired building materials
RU2137731C1 (en) Raw mix for fabrication of ceramic products
JPH049747B2 (en)
JP3229400B2 (en) Inorganic binder, sintered block using the inorganic binder, and method of manufacturing the same
JP3090085B2 (en) Manufacturing method of cement ceramic products
JP3181968B2 (en) Manufacturing method of enamel concrete
JPH02175653A (en) Pottery-like sintered product
JPS61205654A (en) Superhigh strength cement concrete composition
SU1444308A1 (en) Method of producing decorative facing panels
JPS61281056A (en) Manufacture of cement product
JPH0741357A (en) Production of architectural burnt plate
JPH0624876A (en) Production of terracotta
JPS586717B2 (en) High adhesive tile
JPH06345529A (en) Production of architectural burnt plate
JP4556016B2 (en) Energy-saving manufacturing method and molded body of ceramic-based molded body
JPH0333059A (en) Composition for inorganic compacting and burning material
JPH034500B2 (en)
JP3143731B2 (en) Lightweight fireproof castable
JPH1067553A (en) Calcination product
JPS63159249A (en) Manufacture of inorganic hardened body