JPS61205654A - Superhigh strength cement concrete composition - Google Patents

Superhigh strength cement concrete composition

Info

Publication number
JPS61205654A
JPS61205654A JP60046882A JP4688285A JPS61205654A JP S61205654 A JPS61205654 A JP S61205654A JP 60046882 A JP60046882 A JP 60046882A JP 4688285 A JP4688285 A JP 4688285A JP S61205654 A JPS61205654 A JP S61205654A
Authority
JP
Japan
Prior art keywords
cement
strength
weight
cement concrete
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60046882A
Other languages
Japanese (ja)
Inventor
悦郎 坂井
柴山 幸夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP60046882A priority Critical patent/JPS61205654A/en
Publication of JPS61205654A publication Critical patent/JPS61205654A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用方法〕 本発明は超高強度セメントコンクリート組成物に関する
。さらに詳しくはセメント質物質、°超微粉、高性能減
水剤、水および陶磁器粉砕品よシなることを特徴とする
超高強度セメントコンクリート組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application] The present invention relates to ultra-high strength cement concrete compositions. More particularly, it relates to an ultra-high strength cement concrete composition characterized by a cementitious material, an ultra-fine powder, a high-performance water reducing agent, water and a ceramic pulverized product.

〔従来技術〕[Prior art]

セメント、超微粉、高性能減水剤および水よQなる高強
度セメント組成物は公知(特公表昭55−500863
)である。一般にコンクリートは上記組成物と骨材の複
合材料であることから、圧縮強度は骨材の強度に太きく
左右される。従って、強度の高く、入手容易な、かつ経
済的な骨材を組み合せた超高強度セメントコンクリート
組成物の開発が切望されている。
High-strength cement compositions consisting of cement, ultrafine powder, high-performance water reducing agent, and water-Q are well known (Japanese Patent Publication 55-500863).
). Generally, concrete is a composite material of the above-mentioned composition and aggregate, so its compressive strength is greatly influenced by the strength of the aggregate. Therefore, there is a strong need for the development of an ultra-high-strength cement concrete composition that combines high-strength, easily available, and economical aggregates.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のようなことより、本発明者らは種々検討を加えた
結果、セメント、超微粉、高性能減水剤、水および陶磁
器の粉砕物を組み合せることによシ超高強度でかつ耐熱
性のすぐれたセメントコンクリートを得ることができる
知見を得て本発明を完成するに到った。
Based on the above, the present inventors conducted various studies and found that by combining cement, ultrafine powder, high-performance water reducing agent, water, and crushed ceramics, an ultrahigh-strength and heat-resistant material can be created. The present invention was completed based on the knowledge that it is possible to obtain excellent cement concrete.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はセメント質物質、超微粉、高性能減水剤、水お
よび陶磁器の粉砕品よシ構成されている。
The present invention consists of a cementitious material, an ultrafine powder, a superplasticizer, water, and a ground product of ceramics.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明でいうセメント質物質とは、普通、早強、超早強
、白色もしくは耐硫酸塩等各種ポルトランドセメント、
さらには高炉スラグ、フライアッシュ等を混合した混合
セメントなどが一般に用いられる。また、さらに膨張セ
メントな用いて収縮補償した夛、急硬セメントを用いて
短時間に所要強度を発現させたシ、石膏系の高強度混和
材を併用することもできる。
The cementitious materials referred to in the present invention include various Portland cements such as normal, early strength, super early strength, white or sulfate resistant,
Furthermore, mixed cement containing blast furnace slag, fly ash, etc. is generally used. In addition, it is also possible to use together a material that compensates for shrinkage using expansive cement, a material that develops the required strength in a short period of time using rapid hardening cement, and a high-strength gypsum-based admixture.

膨張セメントの膨張成分としては、エトリンガイト系の
もの、例えば電気化学工業■裏向品名「C8Aす20」
、又は焼成CaOが好ましく、焼成CaO中でも110
0〜1300℃で焼成され、平均結晶径が10μ以下の
ものが好ましい。
The expansion component of the expansion cement is an ettringite type, such as Denki Kagaku Kogyo's reverse product name "C8Asu20".
, or calcined CaO is preferable, and among calcined CaO, 110
It is preferable that the crystal be fired at a temperature of 0 to 1300°C and have an average crystal diameter of 10 μm or less.

急硬セメントの急硬成分としてはカルシウムアルミネー
ト系のものがよく、例えばアルミナセメントやアルミナ
セメントと石膏の組み合せたものおよび電気化学工業■
裏向品名「デンカE8Jや小野田セメント■製商品名「
ジェットセメント」などが用いられる。
The quick-hardening component of quick-hardening cement is preferably calcium aluminate-based, such as alumina cement, a combination of alumina cement and gypsum, and electrochemical cement.
Back side product name "Denka E8J and Onoda Cement product name"
"jet cement" etc. are used.

また、高強度混和材は石膏系のものであル、例えば電気
化学工業■裏向品名「デンカΣ−1000J、日本セメ
ント■製商品名「アサノスーパーミックス」等が有効で
ある。一本発明で使用する超微粉は、セメント質物質(
平均粒径20〜30μ程度)の少なくとも1オーダー細
かい平均粒径な有するものであ少、平均粒径が2オーダ
ー低いものが混線物の流動特性の面から好ましい。具体
的には、シリコン、含シリコン合金及びジルコニアを製
造する際に副生ずるシリカダスト(シリカヒユーム)や
シリカ質ダストが特に好適であシ、炭酸カルシウム、シ
リカゲル、オパール:i[:;i?’=(ヒテタン酸化
アルオニクムなども使用できる。特に、オパール質硅石
、フライアッシュ、スラグな分級器つきジェットミル等
によシ粉砕した超微粉の使用は硬化収縮を改善するとい
う面から有効である。
The high-strength admixture is a gypsum-based material, such as Denka Σ-1000J manufactured by Denki Kagaku Kogyo Co., Ltd., and Asano Super Mix manufactured by Nippon Cement ■, which are effective. 1. The ultrafine powder used in the present invention is a cementitious material (
It is preferable to have an average particle diameter that is at least one order of magnitude smaller (average particle diameter of about 20 to 30 μm), or two orders of magnitude smaller in average particle diameter from the viewpoint of flow characteristics of the mixed material. Specifically, silica dust (silica fume) and siliceous dust, which are produced as by-products during the production of silicon, silicon-containing alloys, and zirconia, are particularly suitable, including calcium carbonate, silica gel, and opal: i[:;i? ' = (Alonicum hytethane oxide, etc. can also be used. In particular, the use of opalescent silica, fly ash, ultrafine powder pulverized by a jet mill with a slag classifier, etc. is effective from the viewpoint of improving curing shrinkage.

超微粉の使用量は、セメント質物質60〜95重量部に
対して40〜5重量部が好ましく、さらに好ましくは6
5〜90重量部に対して35〜10重量部である。5重
量部未満では、高強度発現効果が小さく、ま゛た、40
重量部をこえると混線物の流動性が著しく低下し、成形
することが困難となシ、かつ、強度発現も不充分となる
The amount of ultrafine powder used is preferably 40 to 5 parts by weight, more preferably 6 to 95 parts by weight of the cementitious material.
The amount is 35 to 10 parts by weight compared to 5 to 90 parts by weight. If it is less than 5 parts by weight, the effect of developing high strength will be small;
If the amount exceeds 1 part by weight, the fluidity of the mixed wire material will be significantly reduced, making it difficult to mold it, and also resulting in insufficient strength development.

本発明における高性能減水剤とはセメントに多量添加し
ても凝結の過遅延や過度の空気連行を伴なわない分散能
力の大きな界面活性剤であッテ、例工ばナフタリンスル
ホン酸ホルムアルデヒド縮合物の塩、メラミンスルホン
酸ホルムアルデヒド縮合物の塩、高分子量りゲニンスル
ホン酸塩、ポリカルボン酸塩等を主成分とするものがあ
げられる。高性能減水剤の使用量は、従来、セメント質
物質に対し固形分として0.3〜1重量−が使用されて
いるが、本発明においては、それよシも多量に添加する
ことが好ましく、1〜5重量部が更に好ましい。高性能
減水剤は、混練物を低水/(セメント+超微粉)比で得
るために必要なものであシ、10重量部を超えると硬化
反応にかえり【悪影響を与える。
The high-performance water reducing agent in the present invention is a surfactant with a large dispersion ability that does not cause too much delay in setting or excessive air entrainment even when added to cement in large quantities. Salts, salts of melamine sulfonic acid formaldehyde condensates, high molecular weight trigeninsulfonic acid salts, polycarboxylic acid salts, etc. are mentioned. Conventionally, the amount of high-performance water reducing agent used is 0.3 to 1 weight as solid content to cementitious material, but in the present invention, it is preferable to add a larger amount than that. More preferably 1 to 5 parts by weight. A high-performance water reducing agent is necessary to obtain a kneaded product with a low water/(cement + ultrafine powder) ratio, and if it exceeds 10 parts by weight, it will adversely affect the curing reaction.

このような高性能減水剤の使用量において、超微粉を組
み合せることによシ、水/(セメント+超微粉)比が2
5%以下でも通常の方法により成形可能な流動性のある
混線物を得ることができる。
In the amount of high-performance water reducer used, by combining ultrafine powder, the water/(cement + ultrafine powder) ratio can be reduced to 2.
Even if the amount is less than 5%, a fluid mixed material that can be molded by a conventional method can be obtained.

本発明で使用する水は成形上必要なものであ夛、高強度
硬化体を得るためにはできるだけ少量で良く、セメント
質物質と超微粉との混合物100重量部に対し水12.
5〜30重量部が好ましく、15〜28重量部が更に好
ましい。水量が30重量部よシ多いと高強度硬化体を得
ることが困難であ勺、12.5重量部よシ少ないと通常
の流し込み等の成形が困難となる。なお、圧密成形等に
おいては、これに制限されるものではなく12.5重量
部より少ない場合においても成形が可能となる。また、
押し出し成形等の通常セメントコンクリートに用いられ
ている成形方法を用いることも可能である。
The amount of water used in the present invention is necessary for molding, and in order to obtain a high-strength hardened product, the amount of water used is as small as possible.12.
It is preferably 5 to 30 parts by weight, and more preferably 15 to 28 parts by weight. If the amount of water is more than 30 parts by weight, it will be difficult to obtain a high-strength cured product, and if it is less than 12.5 parts by weight, it will be difficult to mold by ordinary pouring or the like. In addition, in compression molding, etc., it is not limited to this, and molding is possible even when the amount is less than 12.5 parts by weight. Also,
It is also possible to use forming methods normally used for cement concrete, such as extrusion.

本発明における陶磁器の粉砕品としては、陶磁器を所定
の粒度に粉砕したものがあシ、とくに窯業工場における
不良品の粉砕品は経済的である。又、骨材をつくること
を目的とし焼成した陶磁器の粉砕品なども使用可能であ
る。粒度は一般のコンクリート用骨材として使用されて
いるもので良(,13m以下が好ましい。ここで、陶磁
器とは、磁器、陶器、せっ器および土器があるが、機械
的強度の面から通常磁器、陶器、せり器に分類されるも
のが好ましい。磁器としては例えば   ′     
  級食器、高圧碍子、理化学用具等の硬質磁器や、例
えば低圧碍子、建築用タイル、食器、美術工芸品等の軟
質磁器があり、陶器としては衛生陶器、食器、建築用タ
イル、美術工芸品などかあp、せり器としてはポンプ部
品、反応管、陶管、排水管、外装タイルなどかあり、こ
れらを製造する工場において、出る不良品を粉砕するこ
とによシ目的の骨材を得ることが可能である。もちろん
、最初から目的の骨材を得るために陶磁器と同様の焼成
を行ない粉砕することも可能である。
The pulverized ceramic products of the present invention are those obtained by pulverizing ceramics to a predetermined particle size, and in particular, pulverized products of defective products produced in ceramic factories are economical. It is also possible to use crushed ceramics that have been fired for the purpose of making aggregates. The particle size is suitable for use as aggregate for general concrete (preferably 13m or less. Ceramics here include porcelain, earthenware, stoneware, and earthenware, but from the viewpoint of mechanical strength, porcelain is usually used. Preferably, those classified as porcelain, pottery, or serpentine.For example, porcelain is
There are hard porcelains such as high-grade tableware, high-voltage insulators, and scientific tools, and soft porcelains such as low-voltage insulators, architectural tiles, tableware, and arts and crafts. Ceramics include sanitary ware, tableware, architectural tiles, arts and crafts, etc. There are pump parts, reaction tubes, ceramic tubes, drainage pipes, exterior tiles, etc., and the aggregate for the purpose is obtained by crushing the defective products produced at the factories that manufacture these. is possible. Of course, in order to obtain the desired aggregate from the beginning, it is also possible to perform firing and pulverization in the same way as ceramics.

すなわち、主として粘土−石英一長石一陶石などを配合
したものを成形乾燥後1,300〜1,450℃程度の
高温で一部が溶化するまで十分に焼き締める方法や石英
、陶石、ロウ石および少量の長石質原料などを配合し、
1.200〜1.300℃あるいはそれ以上の温度で焼
き締める方法、あるいは低級な粘土すなわち石英や鉄分
を含んだ粘土を主成分とし1.Zoo〜1.300℃程
度で焼き締める方法によシ得られた塊状品を粉砕するこ
とKよっても可能であシ、さらにその際二度焼成も含め
て釉薬を用いることもできる。
In other words, a method in which a mixture of clay, quartz, feldspar, pottery stone, etc. is molded and dried and then sufficiently baked at a high temperature of about 1,300 to 1,450°C until a part of it is dissolved; Contains stones and small amounts of feldspathic raw materials,
1. A method of baking at a temperature of 200 to 1.300°C or higher, or a method using low-grade clay, that is, clay containing quartz or iron as the main component.1. It is also possible to pulverize a lump obtained by a method of baking at a temperature of about 1.300° C., and in this case, it is also possible to use a glaze, including double baking.

なお、特殊陶磁器であるコージェライト、ジルコニア、
ジルコン磁器、リシャ磁器、ステア100重量部に対し
、500重量部が好ましい。
In addition, special ceramics such as cordierite, zirconia,
It is preferably 500 parts by weight based on 100 parts by weight of zircon porcelain, Richa porcelain, and steer.

500重量部を越えると一定の流動性を得るだめの水量
が増加し高強度を得ることが難しい。
If it exceeds 500 parts by weight, the amount of water required to obtain a certain level of fluidity increases, making it difficult to obtain high strength.

以上の配合の他に、各株繊維や網の配合も可能である。In addition to the above-mentioned combinations, it is also possible to mix fibers and nets of each strain.

繊維としては、スチール繊維、ステンレス繊維、石綿や
アルミナ繊維などの各糧天然および合成鉱物繊維、炭素
繊維、ガラス繊維、及ヒポリプロピレン、ビニロン、ア
クリロニトリル、セルロースなどの天然又は合成の有機
繊維等があげられる。また、補強として従来よシ用いら
れている鋼棒やFRPロッド棒を用いることも可能であ
シ、特に大朧の組み立て定盤においてはなくてはならな
いものである。
Examples of fibers include steel fibers, stainless steel fibers, various natural and synthetic mineral fibers such as asbestos and alumina fibers, carbon fibers, glass fibers, and natural or synthetic organic fibers such as polypropylene, vinylon, acrylonitrile, and cellulose. It will be done. It is also possible to use conventionally used steel rods or FRP rods as reinforcement, and these are especially indispensable for Ooboro's assembly surface plate.

また、他の機能、例えば摺動性を付与するものとして二
硫化モリブデン、六方晶窒化硼素などの、云わゆる固体
潤滑剤を配合することも可能であシ、さらには油しみ込
み性のあるカーボンなどを用いることも可能である。
In addition, it is also possible to add so-called solid lubricants such as molybdenum disulfide and hexagonal boron nitride to provide other functions, such as sliding properties. It is also possible to use

その他、熱伝導性、電気伝導性などの特殊な性能を付与
するものを配合させることも可能である。上記各材料の
混合および混練方法は均一に混合及び混線できれば、い
ずれの方法でも良く、添加屓序にも特に制限されるもの
ではない。
In addition, it is also possible to incorporate substances that impart special properties such as thermal conductivity and electrical conductivity. The above-mentioned materials may be mixed and kneaded by any method as long as they can be mixed and kneaded uniformly, and the order of addition is not particularly limited.

成形物の養生は各種の養生方法が可能であシ常温養生、
常圧蒸気養生、高温高圧養生、高温養生のいずれの方法
も採用することができ、必要なうは、これらの組み合せ
を行なって高強度硬化体を得ることもできる。
Various curing methods are possible for curing the molded product, including room temperature curing,
Any of the methods of normal pressure steam curing, high temperature and high pressure curing, and high temperature curing can be employed, and if necessary, a combination of these methods can be used to obtain a high strength cured product.

以上説明したセメント質物質、超微粉、高性能減水剤、
水および陶磁器粉砕品を組み合せることによF) 1.
300 Kyt/d以上の超高強度を安定的に得ること
が可能であシ、しかも耐熱性の向上によシタ00℃程度
までの焼成が可能であシ、施釉することも可能となる。
The cementitious substances, ultrafine powder, high performance water reducing agent,
F) by combining water and ceramic pulverized products.1.
It is possible to stably obtain ultra-high strength of 300 Kyt/d or more, and due to improved heat resistance, it is possible to fire up to about 00°C, and it is also possible to glaze.

また、施釉し一度焼成したものを再水和させ製品を得る
ことも可能となる。
It is also possible to obtain a product by rehydrating a glazed and fired product.

上記組成物は超高強度でかつ耐熱性が要求されるケ所へ
の利用が可能であシ、かつ施釉することで機能および美
的面よシ表面性状の要求されるケ所への利用が可能であ
る。前者の一例とし【は、耐熱性の要求される工場など
の床、プレスなどの型や注湯型があシ、後者のものとし
ては建材、射出成形などの型への利用などが揚げ”られ
る。
The above composition can be used in places where ultra-high strength and heat resistance are required, and by glazing it can be used in places where functionality, aesthetics, and surface properties are required. . Examples of the former include flooring in factories that require heat resistance, molds for presses, and pouring molds; examples of the latter include building materials and molds for injection molding. .

〔実施例〕〔Example〕

以下実施例によシ本発明を説明する。 The present invention will be explained below with reference to Examples.

実施例 1 各1陶磁器を製作している窯業工場において不良品とし
て排出されたものを、1.2 am以下になるようクラ
ッシャーにて粉砕し、以下の配合にて、真空オムニミキ
サー(千代田技研製)で混練、脱泡後、4X4X15.
の供試体を作夷した。なお、養生は、20℃801RH
1日後50℃湿空養生3日とした。結果は表−1に示す
ごとくであシ、陶磁器粉砕品の骨材を使用することによ
シ高強度が可能となっている。
Example 1 Each piece of ceramics produced by a ceramic factory produced defective products, which were crushed using a crusher to a particle size of 1.2 am or less. ) After kneading and defoaming, 4X4X15.
A specimen was constructed. In addition, curing is at 20℃801RH
One day later, it was cured in a humid air at 50°C for 3 days. The results are shown in Table 1, and high strength can be achieved by using crushed ceramic aggregate.

表中、実験AI、2.5は比較例、実験43.4.6.
7.8は本発明の実施例 く使用材料〉 セメント :白色ポルトランドセメント(秩父セメント
社製) 超 微 粉ニジリカヒユーム(日本重化製)高性能減水
剤:β−ナフタレンスルホン酸塩ホルマリン縮合物系セ
ルフロー 110P、(第一工業製薬) 陶磁器粉砕品 :1.2m以下 珪   砂:3.4.5号珪砂(等量混合)水  :水
道水 実施例 2 実験ム7の配合によシ10X20X110■の供試体を
作成し、20℃湿空1日、50’C湿空3日後100℃
で1日乾燥後曲げ強度を測定した。さらに、400℃、
500℃、700t?:、900℃において20分間放
置後曲げ強度を測定した。なお、試験はスパン8o■と
じ、東洋以上のごとく、高温においてもすぐれた強度を
示すことが明らかとなっている。
In the table, Experiment AI, 2.5 is a comparative example, Experiment 43.4.6.
7.8 Materials used in the examples of the present invention> Cement: White Portland cement (manufactured by Chichibu Cement Co., Ltd.) Ultra-fine powdered rainbow kahuyum (manufactured by Nippon Heavy Industries, Ltd.) High performance water reducing agent: β-naphthalene sulfonate formalin condensate based cellulose 110P, (Daiichi Kogyo Seiyaku) Ceramic crushed product: 1.2 m or less Silica Sand: No. 3.4.5 silica sand (mixed in equal amounts) Water: Tap water Create a sample, 1 day at 20°C in humid air, 3 days at 50'C in humid air, then 100°C
After drying for one day, the bending strength was measured. Furthermore, 400℃,
500℃, 700t? : The bending strength was measured after being left at 900°C for 20 minutes. In addition, the test was conducted with a span of 8o, and it was found that it exhibited excellent strength even at high temperatures, as compared to Toyo.

実施例 3 実験14の配合を用い流し込みによシ図のようなプレス
成型の試作型を作製し、厚さ2■の鋼板のプレス試験を
実施した。図面中1は鋼製の枠であり、2は実験ム4の
配合による本発明実施例により作製した減である。この
型を川崎油工製600PP−123のプレス機にセット
し、P圧300t、C圧60tにょ9、厚さ2■の銅版
をプレスしたところ鋼板のプレス成型が可能であシ、製
品を得ることができた。
Example 3 Using the formulation of Experiment 14, a prototype mold for press molding as shown in the diagram was prepared by pouring, and a press test was conducted on a 2-inch thick steel plate. In the drawing, 1 is a steel frame, and 2 is a frame manufactured according to an example of the present invention using the experimental composition 4. This mold was set in a press machine manufactured by Kawasaki Yuko 600PP-123, and a P pressure of 300 tons, a C pressure of 60 tons, and a 2 cm thick copper plate was pressed. It was possible to press-form a steel plate, and a product was obtained. I was able to do that.

〔発明の効果〕〔Effect of the invention〕

以上のごとく、本発明によシ超高強度セメントコンクリ
ートを安定し【得ることが可能であシ、又、高温になっ
ても曲げ強度の低下もなく耐熱性がすぐれておシ、高温
焼成が可能な超高強度セメントコンクリート組成物及び
製品を得ることができる。
As described above, according to the present invention, it is possible to obtain ultra-high strength cement concrete that is stable, has excellent heat resistance without decreasing bending strength even at high temperatures, and can be fired at high temperatures. Possible ultra-high strength cement concrete compositions and products can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明のプレス型の断面図の例である。 符号 The drawing is an example of a cross-sectional view of the press die of the present invention. sign

Claims (1)

【特許請求の範囲】[Claims] 1、)セメント質物質、超微粉、高性能減水剤、水およ
び陶磁器粉砕品よりなる超高強度セメントコンクリート
組成物。
1.) Ultra-high strength cement concrete composition consisting of cementitious material, ultrafine powder, high performance water reducing agent, water and ceramic pulverized product.
JP60046882A 1985-03-09 1985-03-09 Superhigh strength cement concrete composition Pending JPS61205654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60046882A JPS61205654A (en) 1985-03-09 1985-03-09 Superhigh strength cement concrete composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60046882A JPS61205654A (en) 1985-03-09 1985-03-09 Superhigh strength cement concrete composition

Publications (1)

Publication Number Publication Date
JPS61205654A true JPS61205654A (en) 1986-09-11

Family

ID=12759724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60046882A Pending JPS61205654A (en) 1985-03-09 1985-03-09 Superhigh strength cement concrete composition

Country Status (1)

Country Link
JP (1) JPS61205654A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119957A (en) * 1990-09-07 1992-04-21 Ohbayashi Corp High-strength concrete
JP2008266130A (en) * 2007-03-26 2008-11-06 Hiroshima Univ High-strength concrete
CN104058650A (en) * 2014-05-29 2014-09-24 安徽华塑股份有限公司 Heat-resistant fiber concrete and preparation method thereof
US9188390B2 (en) 2012-08-23 2015-11-17 Chai-Long Yu Aluminum-based material melting apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04119957A (en) * 1990-09-07 1992-04-21 Ohbayashi Corp High-strength concrete
JP2008266130A (en) * 2007-03-26 2008-11-06 Hiroshima Univ High-strength concrete
US9188390B2 (en) 2012-08-23 2015-11-17 Chai-Long Yu Aluminum-based material melting apparatus
CN104058650A (en) * 2014-05-29 2014-09-24 安徽华塑股份有限公司 Heat-resistant fiber concrete and preparation method thereof
CN104058650B (en) * 2014-05-29 2016-03-23 安徽华塑股份有限公司 A kind of heat resistance fiber concrete and preparation method thereof

Similar Documents

Publication Publication Date Title
EP3476812A1 (en) The process of production of the aggregate for concrete and mortar
KR101911206B1 (en) Manufacturing method of building material using stone waste
JP2004292307A (en) Hydraulic composition
CN111217565A (en) Method for preparing high-temperature-resistant concrete by using waste glass
US5228914A (en) Pumice containing composition
JPS61205654A (en) Superhigh strength cement concrete composition
JPH0231026B2 (en)
JP2001261414A (en) Concrete having self-wetting/aging function and its executing method
JPH04119957A (en) High-strength concrete
JPH0794341B2 (en) High strength mortar concrete
JP4166180B2 (en) concrete
JPH05238787A (en) High-strength cement composition
JPH049747B2 (en)
JP2002053352A (en) Concrete structure hardly causing crack
JPH0280363A (en) Ceramics product which prevents efflorescence and its production
JPS61205683A (en) Cement product
JPH08133825A (en) Producing method of cement-based burned building material
JPH058137B2 (en)
Al-Husseinawi et al. Research Article The Impact of Molar Proportion of Sodium Hydroxide and Water Amount on the Compressive Strength of Slag/Metakaolin (Waste Materials) Geopolymer Mortar
JP2864862B2 (en) Cement compositions and cement extruded products
JPS61197173A (en) Surface plate
JP2002037655A (en) Mortar/concrete product and method for producing the same
JPS6265962A (en) High strength cement composition
JPS6261736A (en) Press forming mold for high-strength cement
JPH04357146A (en) Production of hardened body of cement having high bulk specific gravity