JPS63159249A - Manufacture of inorganic hardened body - Google Patents
Manufacture of inorganic hardened bodyInfo
- Publication number
- JPS63159249A JPS63159249A JP61306860A JP30686086A JPS63159249A JP S63159249 A JPS63159249 A JP S63159249A JP 61306860 A JP61306860 A JP 61306860A JP 30686086 A JP30686086 A JP 30686086A JP S63159249 A JPS63159249 A JP S63159249A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- product
- inorganic
- hardened
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 239000012778 molding material Substances 0.000 claims description 21
- 229910010272 inorganic material Inorganic materials 0.000 claims description 14
- 239000011147 inorganic material Substances 0.000 claims description 14
- 238000010304 firing Methods 0.000 claims description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 239000007787 solid Substances 0.000 claims description 6
- 239000011230 binding agent Substances 0.000 claims description 4
- 239000002245 particle Substances 0.000 claims description 3
- 238000007493 shaping process Methods 0.000 claims description 2
- 239000000047 product Substances 0.000 description 38
- 239000000463 material Substances 0.000 description 12
- 239000004568 cement Substances 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 238000005452 bending Methods 0.000 description 8
- 238000000465 moulding Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 229920000609 methyl cellulose Polymers 0.000 description 5
- 239000001923 methylcellulose Substances 0.000 description 5
- 235000010981 methylcellulose Nutrition 0.000 description 5
- 238000001723 curing Methods 0.000 description 4
- 239000000835 fiber Substances 0.000 description 4
- 230000036571 hydration Effects 0.000 description 4
- 238000006703 hydration reaction Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000011398 Portland cement Substances 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000013007 heat curing Methods 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000010425 asbestos Substances 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000000378 calcium silicate Substances 0.000 description 2
- 229910052918 calcium silicate Inorganic materials 0.000 description 2
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000001125 extrusion Methods 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000004014 plasticizer Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 229910052895 riebeckite Inorganic materials 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920002978 Vinylon Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 239000010454 slate Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000007666 vacuum forming Methods 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[技術分野1
本発明は、水硬性無機質材料を主成分としmm建築材な
どとして用いられる無機質硬化体の安価な製造方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field 1] The present invention relates to an inexpensive method for producing an inorganic cured product which is mainly composed of a hydraulic inorganic material and is used as a mm construction material.
[背景技術1
従来より、セメント製品のような無機質硬化体の製造工
程において発生する不良品を粉砕して充填材として混入
し、不良品を再利用する方法が実施されている。しかし
ながら、この不良品の粉砕品は製品の強度の発現に寄与
しないため、第1図に示すように混入量が増加するに従
って強度が低下してしまう、従って、この粉砕品の混入
は10重麓%程度までに限定されてしまっている。[Background Art 1] Conventionally, a method has been implemented in which defective products generated in the manufacturing process of inorganic hardened bodies such as cement products are crushed and mixed as a filler, and the defective products are reused. However, since this defective crushed product does not contribute to the development of the strength of the product, the strength decreases as the amount of contamination increases, as shown in Figure 1. Therefore, the contamination of this crushed product is It is limited to about %.
一方、建造物などの解体により発生するセメント製品の
廃棄物は多量であり、これらは埋め立てに用いられたり
、山中に投棄されるなど資源が無駄になっていた。On the other hand, a large amount of cement product waste is generated from the demolition of buildings, etc., and this waste is often used in landfills or dumped into mountains, resulting in wasted resources.
[発明の目的]
本発明は上記事情に鑑みて為されたものであり、その目
的とするところは、セメン11品のような硬化体を再利
用して、低コストで高強度の無機質硬化体を91Rする
ことにある。[Object of the Invention] The present invention has been made in view of the above circumstances, and its purpose is to reuse a hardened product such as cement 11 to produce a low-cost, high-strength inorganic hardened product. It is to do 91R.
[発明の開示]
本発明の無機質硬化体の製造方法は、全固形分に対して
、10重1%以上の水硬性無機質材料と10〜50重量
%の粒径300μm以下に粉砕され水硬性無機質材料を
結合材とする硬化体とに水を加え混線して成形材料を調
製し、この成形材料を戊形賦形した後400℃以上の焼
成温度で焼成することを特徴とするものであり、この構
成により上記目的が達成されたものである。[Disclosure of the Invention] The method for producing an inorganic cured body of the present invention comprises: 10% by weight or more of hydraulic inorganic material and 10 to 50% by weight of hydraulic inorganic material pulverized to a particle size of 300 μm or less based on the total solid content. A molding material is prepared by mixing the material with a hardened body as a binder by adding water, and after forming the molding material into a hollow shape, it is fired at a firing temperature of 400 ° C. or higher, This configuration achieves the above object.
本発明における水硬性j!!fi質材料とは、水と反応
して硬化する結合材をいい、特に限定はしないが、セメ
ント、スラグ、石膏等を挙げることができる。この内、
セメントとしては普通ポルトランドセメンt、アルミナ
セメント、早強セメント、ジェットセメント、高炉セメ
ントなどを用いることができる。この水硬性無機質材料
は調製する成形材料の全固形分に対して10重量%であ
る。Hydraulic property j in the present invention! ! The fibrous material refers to a binding material that hardens by reacting with water, and includes, but is not particularly limited to, cement, slag, gypsum, and the like. Of these,
As the cement, ordinary Portland cement, alumina cement, early strength cement, jet cement, blast furnace cement, etc. can be used. The amount of this hydraulic inorganic material is 10% by weight based on the total solid content of the molding material to be prepared.
水硬性無機質材料を結合材とする硬化体とは、本発明に
よって得られる無機質硬化体やスレート等の一般のセメ
ント系の建材、もしくは建造物の解体などで発生するコ
ンクリートの硬化体等を挙げることができる。この硬化
体は、調製する成形材料の全固形分に対し・て1G−5
0重量%配合する。The hardened body using a hydraulic inorganic material as a binder includes the inorganic hardened body obtained by the present invention, general cement-based building materials such as slate, and the hardened concrete generated during the demolition of buildings. I can do it. This cured product is 1G-5 based on the total solid content of the molding material to be prepared.
Add 0% by weight.
10重量%未満であると、焼成工程を加えなくても十分
な強度が得られ、資源の再利用を図るという本発明の趣
旨に沿わないものであり、50重量%を超えると十分な
強度を得ることができないものである。又、この硬化体
は300μ論以下に粉砕される。If it is less than 10% by weight, sufficient strength can be obtained without adding a firing process, which does not meet the purpose of the present invention of reusing resources, and if it exceeds 50% by weight, sufficient strength cannot be obtained. It is something that cannot be obtained. Further, this cured product is crushed to a size of 300 μm or less.
300μmを超える大きさのものであれば、最終品の強
度が確保できな(なってしまうからである。If the size exceeds 300 μm, the strength of the final product cannot be ensured.
この水硬性無機質材料及び硬化体には骨材を配合しても
よい、配合される骨材としては、いわゆる火成岩、けい
砂、シャモット、シヱルベン、煉瓦粉、抗火石などを用
いることができ、特に成形品を焼成する際に焼成温度よ
りも低温で化学変化や急激な重量及び寸法変化を起こさ
ない耐熱性のものが好ましい、この骨材は、得に限定は
されないが、水硬性無機質材料100重量部に対して5
0〜200重量部の範囲で使用される。骨材が50重量
部未満のときは、高温の焼成工程において成形品が破壊
したり、クラックが発生したりして強度の低下が着しい
、逆に200重量部を超えると、パイングー成分量が少
なくなりすぎて強度が低下してしまう恐れがある。Aggregates may be added to this hydraulic inorganic material and hardened material. As the aggregates, so-called igneous rock, silica sand, chamotte, sillben, brick powder, anti-flame stone, etc. can be used, and in particular, It is preferable to use a heat-resistant aggregate that does not cause chemical changes or rapid weight and dimensional changes at a temperature lower than the firing temperature when firing the molded product.This aggregate is not particularly limited, but may be a hydraulic inorganic material 100% by weight. 5 for part
It is used in a range of 0 to 200 parts by weight. If the amount of aggregate is less than 50 parts by weight, the molded product may break or crack during the high-temperature firing process, resulting in a decrease in strength.On the other hand, if it exceeds 200 parts by weight, the amount of pine goo will If it becomes too small, there is a risk that the strength will decrease.
その他、繊維を配合してもよいが、この繊維としてアス
ベスト、つオラストナイト等の無W1繊維、ポリプロピ
レン、ビニロン等の有機繊維を用いることができる。又
、所望により種々の添加剤を配合する。Other fibers may be blended, and as these fibers, non-W1 fibers such as asbestos and thorastonite, and organic fibers such as polypropylene and vinylon can be used. Additionally, various additives may be added as desired.
又、成形法によっては可塑剤を配合する。可塑剤として
はメチルセルロース、ヒドロキシプロピルメチルセルロ
ース、カルボキシメチルセルロース、ヒドロキシエチル
セルロースなど、水に溶解し増粘効果のあるものが好ま
しい。Also, depending on the molding method, a plasticizer may be added. Preferred plasticizers are those that dissolve in water and have a thickening effect, such as methylcellulose, hydroxypropylmethylcellulose, carboxymethylcellulose, and hydroxyethylcellulose.
これらに、水を加えて成形材料を調製する。水は成形可
能な範囲の成形性を成形材料に与え且っ水硬性無機質材
料の硬化に必要な量以上であればよく、できるだけ少量
配合するのが好ましい。Water is added to these to prepare a molding material. Water may be added in an amount equal to or greater than that necessary to impart moldability to the molding material within a moldable range and to harden the hydraulic inorganic material, and it is preferable to add as little water as possible.
この成形材料は加圧成形、押出成形、注型等、常法にし
たがって成形される。成形品の表面には成形と同時に模
様付けを行ったり、二次的に加圧成形やロールプレス等
により模様付けを行うことができる。This molding material is molded according to conventional methods such as pressure molding, extrusion molding, and casting. A pattern can be applied to the surface of the molded product at the same time as molding, or a pattern can be applied secondarily by pressure molding, roll pressing, or the like.
このようにして得られた成形品は、必要であれば、予備
的に水和硬化させる。硬化の程度は取り扱いできる程度
具トであればよい。The molded article thus obtained is preliminarily hydrated and cured, if necessary. The degree of curing may be as long as it can be handled.
次に、この成形品を400℃以上の温度で焼成する。焼
成温度が400℃以上であるとしたのは、硬化体の粉砕
品の中に含まれる^120.やFe20sを含むすべて
の水和生成物及びカルシウムシリケート水和生成物の2
0%程度の保有水分が脱水するからで、この脱水生成物
は後で水利反応を起こさせることにより再び硬化させる
。焼成を700℃以上の温度で行うとカルシウムシリケ
ートのすべての保有水分を脱水できるので、焼成温度は
好ましくは700℃以上である。尚、1000℃以上で
焼成するとセメント成分の焼結が始まり水和硬化が難し
くなるため1000℃以下での焼成が望ましい、この焼
成の前に成形品の表面に釉薬を施したり、その他の塗料
を塗装して表面化粧を同時に行ってもかまわない。Next, this molded article is fired at a temperature of 400° C. or higher. The reason why the firing temperature was set at 400°C or higher is because the pulverized product contains ^120. 2 of all hydration products including Fe20s and calcium silicate hydration products.
This is because approximately 0% of retained water is dehydrated, and this dehydrated product is later hardened again by causing a water utilization reaction. If the calcination is performed at a temperature of 700°C or higher, all the moisture retained in the calcium silicate can be dehydrated, so the calcination temperature is preferably 700°C or higher. If fired at temperatures above 1000°C, the cement components will begin to sinter, making hydration hardening difficult, so it is desirable to fire at temperatures below 1000°C.Before firing, do not apply glaze or other paints to the surface of the molded product. It is okay to paint and make up the surface at the same time.
焼成した後は、成形品の強度を回復させるために再水利
処理する方が望ましい。再水利処理は、湿熱養生、水中
養生、オートクレーブ養生等通常の方法で行なうことが
できる。After firing, it is preferable to perform rewater treatment to restore the strength of the molded product. Rewatering treatment can be carried out by conventional methods such as moist heat curing, underwater curing, and autoclave curing.
このようにして低コストで高強度の無機質硬化体が製造
される。In this way, a high-strength inorganic cured body is produced at low cost.
次に、本発明の実施例を示すが、本発明は以下の実施例
に限定されるものではない。Next, examples of the present invention will be shown, but the present invention is not limited to the following examples.
(実施例1)
普通ポルトランドセメン) 100重量部、8号けい砂
20重量部、アスベス)20重量部及びメチルセルロー
ス4重量部を水と混合し混練して調製した成形材料を真
空押出成形により成形賦形し、得られた成形品を80℃
で7日間温熱養生を行った後粉砕し、60メツシユのふ
るいを通過したものを硬化体の粉砕品として用いた。(Example 1) A molding material prepared by mixing and kneading 100 parts by weight of ordinary Portland cement, 20 parts by weight of No. 8 silica sand, 20 parts by weight of asbeth, and 4 parts by weight of methyl cellulose was molded by vacuum extrusion molding. Shape the obtained molded product at 80℃
After heat curing for 7 days, the material was pulverized and passed through a 60-mesh sieve and used as a pulverized hardened product.
次に、この粉砕された硬化体100重量部、普通ポルト
ランドセメント100重量部、8号けい砂20′重量部
、アスベスト20重量部及びメチルセルロース4重量部
を水と混合し混練して成形材料を調製した。Next, 100 parts by weight of this pulverized hardened material, 100 parts by weight of ordinary Portland cement, 20 parts by weight of No. 8 silica sand, 20 parts by weight of asbestos, and 4 parts by weight of methyl cellulose were mixed with water and kneaded to prepare a molding material. did.
この後、この成形材料を真空成形して得られた成形品を
7日間自然養生後400℃で焼成し、1日間吸水させた
後3日間温熱養生を行って無機質硬化体を製造した。Thereafter, the molded product obtained by vacuum forming the molding material was naturally aged for 7 days, then baked at 400°C, allowed to absorb water for 1 day, and then heat cured for 3 days to produce an inorganic cured body.
この無機質硬化体の曲げ強度を測定した。結果を第1表
に示す。The bending strength of this inorganic cured body was measured. The results are shown in Table 1.
(実施例2)
粉砕された硬化体を140重量部配合して成形材料を調
製し、焼成温度を700℃とした以外は実施例1と同様
にして無機質硬化体を製造した。このものの曲げ強度を
測定した。第1表に併せ示す。(Example 2) A molding material was prepared by blending 140 parts by weight of the pulverized hardened body, and an inorganic hardened body was produced in the same manner as in Example 1, except that the firing temperature was 700°C. The bending strength of this product was measured. It is also shown in Table 1.
(実施例3)
粉砕された硬化体゛を501!量部配合して成形材料を
調製し、焼成温度を700℃とした以外は実施例1と同
様にして無機質硬化体を製造した。このものの曲げ強度
を測定した。第1表に併せ示す。(Example 3) 501 pieces of crushed hardened material! A cured inorganic body was produced in the same manner as in Example 1, except that a molding material was prepared by blending the following amounts and the firing temperature was 700°C. The bending strength of this material was measured. It is also shown in Table 1.
(実施例4)
メチルセルロースを使用しないで硬化体及び成形材料を
調製し、注型成形とした以外は実施例2と同様にして無
機質硬化体を製造した。このものの自げ強度を測定した
。第1表に併せ示す。(Example 4) An inorganic cured body was produced in the same manner as in Example 2, except that a cured body and a molding material were prepared without using methylcellulose, and cast molding was performed. The self-strength of this material was measured. It is also shown in Table 1.
(実施例5)
メチルセルロースを使用しないで硬化体及び成形材料を
調製し、抄造成形とした以外は実施例2と同様にして無
機質硬化体を製造した。このものの曲げ強度を測定した
。第1表に併せ示す。(Example 5) An inorganic cured body was produced in the same manner as in Example 2, except that a cured body and a molding material were prepared without using methylcellulose, and paper molding was performed. The bending strength of this product was measured. It is also shown in Table 1.
(比較例1)
硬化体を200重量部配合して成形材料を調製し、得ら
れた成形品を焼成しないで80℃で3日間湿熱養生を打
った以外は実施例1と同様にして無機質硬化体を製造し
た。このものの曲げ強度を測定した。第1表に併せ示す
。(Comparative Example 1) A molding material was prepared by blending 200 parts by weight of the cured product, and inorganic curing was carried out in the same manner as in Example 1, except that the molded product obtained was not baked but subjected to moist heat curing at 80°C for 3 days. manufactured a body. The bending strength of this material was measured. It is also shown in Table 1.
(比較例2)
硬化体を配合しないで成形材料を調製し、注型成形によ
り成形品製造した以外は比較例1と同様にしてIl’l
l質硬化体を製造した。このものの曲げ強度を測定した
。第1表に併せ示す。(Comparative Example 2) Il'l was prepared in the same manner as in Comparative Example 1, except that a molding material was prepared without adding a cured product, and a molded product was manufactured by cast molding.
A solid hardened body was produced. The bending strength of this product was measured. It is also shown in Table 1.
(比較例3)
硬化体を配合しないで成形材料を調製し、抄造成形によ
り成形品製造した以外は比較例1と同様にして無機質硬
化体を製造した。このものの曲げ強度を測定した。第1
表に併せ示す。(Comparative Example 3) An inorganic cured body was produced in the same manner as in Comparative Example 1, except that a molding material was prepared without adding a cured body, and a molded product was produced by paper forming. The bending strength of this material was measured. 1st
Also shown in the table.
第1表の結果、本発明の実施例にあっては粉砕された硬
化体を配合しても、粉砕された硬化体を配合していない
比較例2及び3と遜色のない強度が確保され、強度が低
下しないことがわかる。As a result of Table 1, in the examples of the present invention, even if the pulverized hardened material was blended, strength comparable to Comparative Examples 2 and 3 in which the pulverized hardened material was not blended was ensured. It can be seen that the strength does not decrease.
[発明の効果]
本発明にあっては、全固形分に対して、10重量%以上
の水硬性無機質材料と10〜50重量%の粒径300μ
m以下に粉砕され水硬性無機質材料を結合材とする硬化
体とに水を加え混練して成形材料を調製し、この成形材
料を成形賦形した後400℃以上の焼成温度で焼成する
ことを特徴とするものであり、400℃以上で焼成する
ので、硬化体の粉砕品の中に含まれる水和生成物の保有
水分を脱水させることができ、従って、この硬化体を多
量に用いても得られた無機質の強度を低下させることが
なく、この結果従来では埋め立てに用いられたり、山中
に投棄されていたセメント製品の硬化体を有効利用して
低コストで高強度の無機質硬化体を製造することができ
る。[Effects of the Invention] In the present invention, 10% by weight or more of hydraulic inorganic material and 10 to 50% by weight of a particle size of 300μ based on the total solid content.
A molding material is prepared by adding water and kneading a hardened product that has been crushed to a size of less than m and has a hydraulic inorganic material as a binder, and after shaping this molding material, it is fired at a firing temperature of 400°C or higher. Since it is fired at a temperature of 400°C or higher, it is possible to dehydrate the water contained in the hydration product contained in the crushed product of the hardened product. Therefore, even if this hardened product is used in large quantities, The strength of the obtained inorganic material does not decrease, and as a result, we can effectively utilize the hardened cement products that were conventionally used in landfills or dumped in the mountains to produce high-strength hardened inorganic materials at low cost. can do.
tJs1図は従来における粉砕された硬化体の配合割合
と得られた無機質硬化体の曲げ強度との関係を示すグラ
フである。The tJs1 diagram is a graph showing the relationship between the blending ratio of the pulverized hardened body and the bending strength of the obtained inorganic hardened body in the conventional art.
Claims (1)
質材料と10〜50重量%の粒径300μm以下に粉砕
され水硬性無機質材料を結合材とする硬化体とに水を加
え混練して成形材料を調製し、この成形材料を成形賦形
した後400℃以上の焼成温度で焼成することを特徴と
する無機質硬化体の製造方法。(1) Water is added to the total solid content of 10% by weight or more of a hydraulic inorganic material and 10 to 50% by weight of a cured product that has been ground to a particle size of 300 μm or less and has the hydraulic inorganic material as a binder. A method for producing an inorganic cured body, which comprises preparing a molding material, shaping the molding material, and then firing it at a firing temperature of 400° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61306860A JPS63159249A (en) | 1986-12-23 | 1986-12-23 | Manufacture of inorganic hardened body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61306860A JPS63159249A (en) | 1986-12-23 | 1986-12-23 | Manufacture of inorganic hardened body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63159249A true JPS63159249A (en) | 1988-07-02 |
Family
ID=17962121
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61306860A Pending JPS63159249A (en) | 1986-12-23 | 1986-12-23 | Manufacture of inorganic hardened body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63159249A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02229754A (en) * | 1989-03-03 | 1990-09-12 | Sumitomo Cement Co Ltd | Inorganic binder for producing pottery |
JPH04114959A (en) * | 1990-08-31 | 1992-04-15 | Daiken Trade & Ind Co Ltd | Production of inorganic baked product |
-
1986
- 1986-12-23 JP JP61306860A patent/JPS63159249A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02229754A (en) * | 1989-03-03 | 1990-09-12 | Sumitomo Cement Co Ltd | Inorganic binder for producing pottery |
JPH04114959A (en) * | 1990-08-31 | 1992-04-15 | Daiken Trade & Ind Co Ltd | Production of inorganic baked product |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0543666B2 (en) | ||
CN102491707B (en) | Method of preparing baking-free load-bearing bricks through steam curing of semidry desulfurization residues | |
CN111217566B (en) | Method for preparing high-temperature-resistant concrete building block by using carbon dioxide | |
JPH0225876B2 (en) | ||
JPS63159249A (en) | Manufacture of inorganic hardened body | |
US4166750A (en) | Anhydrite concrete and method for preparing building elements | |
JP4180870B2 (en) | Inorganic board and method for producing the same | |
KR100539588B1 (en) | Method for manufacturing high-intensity concrete using lightweight aggregate | |
JPH07108827B2 (en) | Method for producing a porous fired and hardened body using coal ash as a main raw material | |
JP3428320B2 (en) | Manufacturing method of greening base concrete | |
JPS60215567A (en) | Manufacture of ceramic sintered body | |
JP4556016B2 (en) | Energy-saving manufacturing method and molded body of ceramic-based molded body | |
JPH0280363A (en) | Ceramics product which prevents efflorescence and its production | |
CN116496072A (en) | Light and strength linkage adjustment method for full-solid waste environment-friendly bricks | |
JPS60260458A (en) | Hydraulic formed body from volcanic soil as main component | |
CN1046149A (en) | Naturally-cured powdered coal ash brick | |
JPH11314979A (en) | Production of cement hardened body | |
JPH08208284A (en) | Production of light-weight foamed concrete | |
JPS63256562A (en) | Manufacture of thick roof tile | |
CN115991587A (en) | Composite material, use thereof for self-curing and construction method for building structures | |
JP4463587B2 (en) | Inorganic molded body for recycling and recycling method thereof | |
JP4220781B2 (en) | Low density calcium silicate hydrate strength accelerator additive for cementitious products | |
JPS61275151A (en) | Manufacture of cement formed product | |
JPS63100081A (en) | Manufacture of hydraulic matter | |
JPS63239141A (en) | Manufacture of lightweight calcium silicate formed body |