JPH0337139A - Production of optical fiber and carbon coater - Google Patents

Production of optical fiber and carbon coater

Info

Publication number
JPH0337139A
JPH0337139A JP1168770A JP16877089A JPH0337139A JP H0337139 A JPH0337139 A JP H0337139A JP 1168770 A JP1168770 A JP 1168770A JP 16877089 A JP16877089 A JP 16877089A JP H0337139 A JPH0337139 A JP H0337139A
Authority
JP
Japan
Prior art keywords
optical fiber
reaction tube
carbon
raw material
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1168770A
Other languages
Japanese (ja)
Inventor
Takeshi Shimomichi
毅 下道
Keiji Ohashi
圭二 大橋
Shinji Araki
荒木 真治
Hideo Suzuki
秀雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1168770A priority Critical patent/JPH0337139A/en
Publication of JPH0337139A publication Critical patent/JPH0337139A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To enable stable production of optical fiber coated with carbon coating film by feeding an oxygen-containing gas from the bottom of the reaction tube to remove soot on the inner wall of the reactor by combustion, when carbon thin film is formed on the surface of a bare optical fiber by passing a bare optical fiber through the cylindrical reaction tube and feeding a starting gas forming carbon by decomposition to form a carbon thin film on the surface of the optical fiber. CONSTITUTION:A glass bare line for optical fiber 11 is passed through a cylindrical reaction tube 12 downward from the tube top to the bottom, while a hydrocarbon gas which forms carbon by pyrolysis is fed from the pipe 14. The hydrocarbon gas from the feeding pipe 14 is pyrolyzed in the reaction tube 12 with the heat from the heater 10 outside the tube and the generated carbon forms carbon coating film on the surface of the optical fiber 11. At this time, excess carbon deposits on the lower part of the reaction tube 12 in the form of soot and clogs the exhaustion pipe 15 and an oxygen-containing gas is fed from the inlet 19 to the lower inlet 20 to burn the soot deposited whereby the exhaustion pipe is prevented from being clogged to continue stable production of optical fibers which is coated with carbon coating film.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、その表面に炭素被膜を形成した光ファイバ
の製造方法と、この製造方法を実施するのに好適に用い
られる炭素被覆装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing an optical fiber having a carbon coating formed on its surface, and a carbon coating device suitably used to carry out this manufacturing method.

[従来の技術] 一般に石英系光ファイバでは、水素と接触すると水素分
子がファイバ内に拡散して分子振動を起こし、これによ
り吸収損失が増大するといった欠点がある。また、拡散
した水素分子がドーバントとして含有されているP t
 Os、Ge0t、B、0.などと反応し、OH基とし
てファイバガラス内に取り込まれることから、OH基の
吸収により伝送損失が増大してしまうといった欠点もあ
る。
[Prior Art] In general, silica-based optical fibers have the disadvantage that when they come into contact with hydrogen, hydrogen molecules diffuse into the fiber and cause molecular vibration, which increases absorption loss. In addition, P t containing diffused hydrogen molecules as a dopant
Os, Ge0t, B, 0. Since it reacts with the like and is incorporated into the fiber glass as OH groups, it also has the disadvantage that transmission loss increases due to absorption of the OH groups.

このような欠点を解消するため、炭化水素あるいはハロ
ゲン化炭化水素等を熱分解して先ファイバ裸線表面に水
素透過阻止作用を何する炭素被膜を形成し、これによっ
て光ファイバの耐水素特性を向上せしめることが既に本
発明者らによって提案されている。
In order to eliminate these drawbacks, hydrocarbons or halogenated hydrocarbons, etc. are thermally decomposed to form a carbon film on the surface of the bare end fiber that acts to prevent hydrogen permeation, thereby improving the hydrogen resistance properties of the optical fiber. Improvements have already been proposed by the present inventors.

第3図は上記方法を実施するのに好適に用いられる熱C
VD装置の一例を示したしのであって、第3図中枠号l
は光ファイバ棟線、2は被覆装置である。光フアイバ裸
線1は図示略の光フアイバ紡糸炉により光フアイバ母材
から紡糸されたものであって、光フアイバ紡糸炉の下方
に設けられた被覆装置2内に導入されるものである。被
覆装置2は概略円筒状の・反応管3と、この反応管3の
外周部に設けられて原料ガスを熱分解する発熱体4とか
らなるものである。反応管3には、奇の両端部に内部雰
囲気を一定に保つため不活性ガス等を一定流速で供給、
排出する雰囲気調整室5.5がそれぞれ設けられており
、これら雰囲気調整室5.5の間には、反応管3内部に
炭化水素化合物からなる原料ガスを供給する原料ガス供
給管6と、原料ガスが熱分解して発生した分解ガスを未
反応の原料ガスと共に反応管3より排出する分解ガス排
気管7とがそれぞれ接続されている。
Figure 3 shows the heat C which is preferably used to carry out the above method.
An example of a VD device is shown below, and the frame number l in FIG.
2 is an optical fiber ridge line, and 2 is a coating device. The bare optical fiber 1 is spun from an optical fiber base material in an optical fiber spinning furnace (not shown), and is introduced into a coating device 2 provided below the optical fiber spinning furnace. The coating device 2 consists of a generally cylindrical reaction tube 3 and a heating element 4 provided on the outer periphery of the reaction tube 3 to thermally decompose the raw material gas. An inert gas or the like is supplied at a constant flow rate to both ends of the reaction tube 3 to keep the internal atmosphere constant.
Atmosphere adjustment chambers 5.5 for discharging are provided, and between these atmosphere adjustment chambers 5.5, a raw material gas supply pipe 6 for supplying a raw material gas consisting of a hydrocarbon compound into the reaction tube 3 and a raw material A cracked gas exhaust pipe 7 for discharging cracked gas generated by thermal decomposition of the gas from the reaction tube 3 together with unreacted raw material gas is connected to each of the pipes.

このような被覆装置2によって光ファイバ裸線lに炭素
被膜を形成するには、光ファイバ裸線lを反応管3の原
料ガス供給管6を設けた側より導入し、反応管3の中心
軸に沿って分解ガス排気管7を設けた側に向けて移送す
るととともに、原料ガスを反応管3内に供給する。次い
で、発熱体4を原料ガスの分解温度以上に発熱せしめて
原料ガスを加熱分解し、光ファイバ裸線lの表面に炭素
被膜を形成する。
In order to form a carbon coating on the bare optical fiber l using such a coating device 2, the bare optical fiber l is introduced from the side of the reaction tube 3 where the raw material gas supply pipe 6 is provided, and the central axis of the reaction tube 3 is The raw material gas is transferred along the direction toward the side where the cracked gas exhaust pipe 7 is provided, and the raw material gas is supplied into the reaction tube 3. Next, the heating element 4 is made to generate heat above the decomposition temperature of the raw material gas to thermally decompose the raw material gas, thereby forming a carbon film on the surface of the bare optical fiber 1.

[発明が解決しようとする課題] ところで、上記の炭素被膜の形成方法および被覆装置に
あっては以下に述べるような不都合がある。
[Problems to be Solved by the Invention] By the way, the above carbon film forming method and coating apparatus have the following disadvantages.

光ファイバ裸線への炭素の堆積効率を上げるため反応管
を細くすると、光ファイバ棟線に堆積せずに粒子化して
形成されたススが反応管内壁に付着して堆積し、これに
より短時間で反応管が閉塞して炭素被膜を有する光ファ
イバの連続製造が行えなくなる。
When the reaction tube is made thinner in order to increase the efficiency of carbon deposition onto the bare optical fiber, the soot formed as particles without being deposited on the optical fiber ridge adheres to the inner wall of the reaction tube and accumulates, resulting in a short period of time. This causes the reaction tube to become clogged, making continuous production of carbon-coated optical fibers impossible.

また、ススの堆積による反応管の閉塞を防止するため反
応管径を大きくすると、反応管内壁側の方が高温であり
よって反応管内壁側で優先的に原料ガスの分解が生じる
ことから、反応管の中心軸上を通る光ファイバ裸線への
炭素の堆積効率が低くなる。このため、光フアイバ裸線
表面に所定の厚さ以上の膜を生成させるには、原料ガス
の濃度を上げる必要があるが、そうすると反応管内壁に
ススが多量に堆積し、やはり反応管径の小さい場合と同
様に反応管が閉塞することになる。
In addition, if the diameter of the reaction tube is increased to prevent blockage of the reaction tube due to soot accumulation, the inner wall of the reaction tube is at a higher temperature and the raw material gas is preferentially decomposed on the inner wall of the reaction tube. The efficiency of carbon deposition on the bare optical fiber passing along the central axis of the tube becomes low. For this reason, in order to generate a film with a specified thickness or more on the surface of a bare optical fiber, it is necessary to increase the concentration of the raw material gas, but this results in a large amount of soot being deposited on the inner wall of the reaction tube, which also increases the diameter of the reaction tube. The reaction tube will become clogged in the same way as when it is small.

そして、このような反応管の閉塞に起因して、均一な炭
素被膜を有する長尺な光ファイバの製造が困難になる。
Due to such clogging of the reaction tube, it becomes difficult to manufacture a long optical fiber having a uniform carbon coating.

[課題を解決するための手段] そこでこの発明における請求項1記載の光ファイバの製
造方法では、一方の側に炭化水素化合物からなる原料ガ
スを供給する供給管が、他方の側に分解した原料ガスを
排気するための排気管がそれぞれ設けられ、かつこれら
供給管と排気管との間にその長さ方向に沿って上記原料
ガスを熱分解して炭素被覆を行う反応部が形成された反
応管に、光ファイバを上記供給管を設けた側より導入し
て排気管を設けた側に向けて移送するととともに、原料
ガスを供給管より供給し、次いで上記反応部にて原料ガ
スを加熱分解して光フアイバ表面に炭素被膜を形成する
とともに、反応部の排気管側にて酸素を含むガスを反応
管内壁に沿って供給することを上記課題の解決手段とし
た。
[Means for Solving the Problems] Therefore, in the method for manufacturing an optical fiber according to claim 1 of the present invention, a supply pipe for supplying a raw material gas made of a hydrocarbon compound to one side is connected to a supply pipe for supplying a raw material gas made of a hydrocarbon compound to the other side. A reaction system in which an exhaust pipe for exhausting gas is provided, and a reaction section is formed along the length of the supply pipe and the exhaust pipe to thermally decompose the raw material gas and form a carbon coating. An optical fiber is introduced into the tube from the side where the supply pipe is provided and is transferred toward the side where the exhaust pipe is provided, and the raw material gas is supplied from the supply pipe, and then the raw material gas is thermally decomposed in the reaction section. The above problem was solved by forming a carbon film on the surface of the optical fiber and supplying oxygen-containing gas along the inner wall of the reaction tube on the exhaust pipe side of the reaction section.

また、請求項2記載の炭素被覆装置では、光ファイバを
通過させつつその表面に炭素被膜を形成する反応管と、
この反応管内部を加熱する加熱部とを具備してなり、上
記反応管の一方の側に炭化水素化合物からなる原料ガス
を供給する供給管を、他方の側に分解した原料ガスを排
気するための排気管をそれぞれ設け、かつこれら供給管
と排気管との間にその長さ方向に沿って上記原料ガスを
熱分解して炭素被覆を行う反応部を形威し、該反応部の
排気管側に酸素を含むガスを反応管内壁に沿って供給す
る酸素ガス供給口を設けたことを上記課題の解決手段と
した。
The carbon coating device according to claim 2 further includes a reaction tube that forms a carbon coating on the surface of the optical fiber while passing the optical fiber therethrough;
A heating section for heating the inside of the reaction tube, a supply pipe for supplying a raw material gas made of hydrocarbon compounds to one side of the reaction tube, and a supply pipe for exhausting decomposed raw material gas to the other side. A reaction section for thermally decomposing the raw material gas and coating it with carbon is formed along the length direction between the supply pipe and the exhaust pipe, and an exhaust pipe of the reaction section is provided. The solution to the above problem was to provide an oxygen gas supply port on the side of the reactor tube for supplying oxygen-containing gas along the inner wall of the reaction tube.

「作用 〕 この発明における請求項1記載の光ファイバの製造方法
(こよれば、反応部の排気管側にて酸素を含むガスを反
応管内壁に沿って供給することから、酸素を導入した位
置より排気管にかけての反応管内壁に堆積したススが燃
焼し、二酸化炭素となって排気される。
"Function" The method for manufacturing an optical fiber according to claim 1 of the present invention (according to this, since the gas containing oxygen is supplied along the inner wall of the reaction tube on the exhaust pipe side of the reaction section, the position where oxygen is introduced is The soot that has accumulated on the inner wall of the reaction tube toward the exhaust pipe is burned and exhausted as carbon dioxide.

また請求項2記載の炭素被覆装置にあっても、反応部の
排気管側に酸素を含むガスを反応管内壁に沿って供給す
る酸素ガス供給口を設けたことから、酸素を供給するこ
とによって請求項1の場合と同様に、酸素を供給した位
置より排気管にかけての反応管内壁に堆積したススが燃
焼して排気される。
Furthermore, in the carbon coating apparatus according to claim 2, since an oxygen gas supply port is provided on the exhaust pipe side of the reaction section to supply oxygen-containing gas along the inner wall of the reaction tube, it is possible to supply oxygen. As in the case of claim 1, soot deposited on the inner wall of the reaction tube from the point where oxygen is supplied to the exhaust pipe is burned and exhausted.

[実施例] 以下、この発明を請求項2に記載した炭素被覆装置に基
づいて説明する。
[Example] Hereinafter, the present invention will be explained based on the carbon coating apparatus according to claim 2.

第1図は請求項2に記載した発明の炭素被覆装置の一実
施例を示す図であって、第1図中枠号10は炭素被覆装
置(以下、被覆装置と略称する)、1.1は光ファイバ
裸線である。
FIG. 1 is a diagram showing an embodiment of the carbon coating device of the invention described in claim 2, and frame number 10 in FIG. is a bare optical fiber.

被覆装置11は概略円筒状の反応管12と、この反応管
12の外周部に設けられた発熱源13とからなるもので
ある。反応管12には、その光フアイバ裸線11を導入
する側に、反応管12の内部雰囲気を一定に保つため不
活性ガスを一定流速で供給ずろための雰囲気調整室(図
示時)が設けられており、さらにこの雰囲気調整室の下
方には、光フアイバ裸線11が導入される側に原料ガス
を供給する原料ガス供給管14が、またこれと反対の側
に、原料ガスの分解ガスを未反応の原料ガス等とともに
排出する分解ガス排気管15がそれぞれ接続されている
The coating device 11 consists of a generally cylindrical reaction tube 12 and a heat generating source 13 provided on the outer periphery of the reaction tube 12. The reaction tube 12 is provided with an atmosphere adjustment chamber (as shown) on the side into which the bare optical fiber 11 is introduced, for supplying an inert gas at a constant flow rate in order to keep the internal atmosphere of the reaction tube 12 constant. Furthermore, below this atmosphere adjustment chamber, there is a raw material gas supply pipe 14 that supplies raw material gas to the side where the bare optical fiber 11 is introduced, and to the opposite side, a raw material gas supply pipe 14 that supplies decomposed gas of the raw material gas. A cracked gas exhaust pipe 15 for exhausting unreacted raw material gas and the like is connected to each of them.

また、この反応管12の外周面上にはこれを覆って発熱
体16か設けられており、さらにこの発熱体16の外周
部には酸素ガス供給管17が外挿されている。
Further, a heating element 16 is provided on the outer peripheral surface of the reaction tube 12 so as to cover it, and an oxygen gas supply pipe 17 is further inserted into the outer peripheral part of the heating element 16.

発熱体1Gは、発熱源13によって発熱せしめられるも
ので、反応管12内を加熱し、て原料ガスを加熱分解す
るものである。また、この発熱体16に覆われた反応管
12の内部は、原料ガスを分解して光ファイバ裸線it
に炭素被膜を形成するための反応部18となっている。
The heating element 1G generates heat by the heat generating source 13, and heats the inside of the reaction tube 12 to thermally decompose the raw material gas. In addition, the inside of the reaction tube 12 covered with this heating element 16 decomposes the raw material gas and produces a bare optical fiber.
This serves as a reaction section 18 for forming a carbon film on the surface.

酸素ガス供給管17は、原料ガス供給管13側に酸素ガ
スを供給するための導入管19を設け、かつその反対側
を閉塞したものであり、その閉塞した側の端部17aに
て反応管12および発熱体16を貫通して形成された酸
素ガス供給口20を介して反応管12内に連通ずるもの
である。ここで、酸素ガス供給口20は発熱体t6の中
心位置より下側(分解ガス排気管i5側)に配置される
もので、好ましくは発熱体16の長さQ、に対し発熱体
16の下端から酸素ガス供給口20まての距離Q、が、
1/3〜115となるよう配置されるものである。そし
て、この実施例においては、Q、が12.の約1/4と
されている。また、酸素ガス供給管17の閉塞された端
部17aは、該酸素ガス供給管17内を伝って流れる酸
素ガスが酸素ガス供給口20を逼って反応管12内に流
入した際、反応管12の内壁面に沿って流れるよう下側
が窄まった状態に形成されたものである。
The oxygen gas supply pipe 17 has an introduction pipe 19 for supplying oxygen gas on the side of the raw material gas supply pipe 13 and is closed on the opposite side, and the end 17a on the closed side is connected to the reaction tube. 12 and the heating element 16 to communicate with the inside of the reaction tube 12 via an oxygen gas supply port 20 formed through the heating element 16 . Here, the oxygen gas supply port 20 is arranged below the center position of the heating element t6 (on the cracked gas exhaust pipe i5 side), and preferably at the lower end of the heating element 16 with respect to the length Q of the heating element 16. The distance Q from to the oxygen gas supply port 20 is,
It is arranged so that it becomes 1/3 to 115. In this example, Q is 12. It is said to be about 1/4 of the Further, when the oxygen gas flowing through the oxygen gas supply pipe 17 passes through the oxygen gas supply port 20 and flows into the reaction tube 12, the closed end 17a of the oxygen gas supply pipe 17 The lower side is narrowed so that it flows along the inner wall surface of 12.

発熱源13は例えば赤外線集光炉なとからなるもので、
上記発熱体16を発熱せしめ、これにより反応管12内
部を原料ガスの分解温度以上に加熱するものである。な
お、発熱源13に赤外線集光炉を用いた場合には、発熱
体16として赤外線を透過しない材料が用いられるもの
とされる。
The heat source 13 is composed of, for example, an infrared concentrator,
The heating element 16 generates heat, thereby heating the inside of the reaction tube 12 to a temperature higher than the decomposition temperature of the raw material gas. Note that when an infrared condensing furnace is used as the heat generating source 13, a material that does not transmit infrared rays is used as the heating element 16.

光ファイバ棟線llは、第3図に示した光ファイバ裸線
lと同様に図示時の光フアイバ紡糸炉によって光フアイ
バ母材から紡糸されたもので、光フアイバ紡糸炉の下方
に設けられた上記被覆装置10内に導入されるものであ
る。
The optical fiber ridge line ll is spun from an optical fiber base material by the optical fiber spinning furnace shown in the figure, similar to the optical fiber bare line 1 shown in FIG. 3, and is provided below the optical fiber spinning furnace. It is introduced into the coating apparatus 10 described above.

次に、このような構成の被覆装置による光フアイバ裸線
11への炭素被膜の形成を、本発明の請求項1に記載し
た光ファイバの製造方法に基づいて説明する。
Next, the formation of a carbon coating on the bare optical fiber 11 using the coating device having such a configuration will be explained based on the method for manufacturing an optical fiber according to claim 1 of the present invention.

まず、光フアイバ裸線11を反応管12の原料ガス供給
管13を設けた側より導入して反応管12の中心軸に沿
って分解ガス排気管14を設けた側に向けて移送すると
ともに、雰囲気調整室より光ファイバ裸線11の進行方
向に沿って不活性ガスを通気し、反応管12内の雰囲気
を一定に保つ。またこれと同時に、原料ガスを反応管3
内に適宜な流量で供給し、かつ酸素ガスを導入管19に
、雰囲気調整室より流れる不活性ガスと原料ガスとの合
計の流量に比較して十分に少ない流量で供給する。する
と原料ガスは、雰囲気調整室より流れる不活性ガスにの
って光フアイバ裸線11の進行方向に流れるものとなる
。一方酸素ガスAは、酸素ガス供給管17を伝ってその
端部17aに至り、進路を変更し酸素ガス供給口20を
通過して反応管12に流入する。この場合に反応管12
に流入した酸素ガスAは、不活性ガスおよび原料ガスの
合計の流量に比較して十分に少ない流量で反応管12内
に流入するよう予めその供給量が設定されていることか
ら、反応管12の中心軸上を移動する光ファイバ裸線1
1の近傍にまで至ることなく、第1図中矢印で示すよう
に反応管12の内壁に沿って分解ガス排気管15側に流
れるものとなる。
First, the bare optical fiber 11 is introduced from the side of the reaction tube 12 where the raw material gas supply pipe 13 is installed, and is transferred along the central axis of the reaction tube 12 toward the side where the cracked gas exhaust pipe 14 is installed. An inert gas is passed through the atmosphere adjustment chamber along the traveling direction of the bare optical fiber 11 to keep the atmosphere inside the reaction tube 12 constant. At the same time, the raw material gas is transferred to the reaction tube 3.
Oxygen gas is supplied to the inlet pipe 19 at a flow rate sufficiently lower than the total flow rate of the inert gas and raw material gas flowing from the atmosphere adjustment chamber. Then, the raw material gas flows in the traveling direction of the bare optical fiber 11 along with the inert gas flowing from the atmosphere adjustment chamber. On the other hand, oxygen gas A travels along the oxygen gas supply pipe 17 to reach its end 17a, changes course, passes through the oxygen gas supply port 20, and flows into the reaction tube 12. In this case, the reaction tube 12
Since the supply amount of the oxygen gas A that has flowed into the reaction tube 12 is set in advance so that it flows into the reaction tube 12 at a flow rate that is sufficiently lower than the total flow rate of the inert gas and the raw material gas, the oxygen gas A that has flowed into the reaction tube 12 is Bare optical fiber 1 moving on the central axis of
1, but flows along the inner wall of the reaction tube 12 toward the cracked gas exhaust pipe 15, as shown by the arrow in FIG.

なお、この場合に原料ガスには炭化水素が用いられるが
、炭化水素として具体的にはベンゼン等の炭化水素や、
ジクロロメタン等のハロゲン化炭化水素、さらには水素
基を全てハロゲン基に置換したハロゲン化炭素などが用
いられる。また酸素ガスとしては、純粋酸素に限定され
ることなく、酸素と不活性ガスとの混合ガスも用いるこ
とができる。
In this case, hydrocarbons are used as the raw material gas, and specific examples of hydrocarbons include hydrocarbons such as benzene,
Halogenated hydrocarbons such as dichloromethane, and further halogenated carbons in which all hydrogen groups are replaced with halogen groups, are used. Further, the oxygen gas is not limited to pure oxygen, and a mixed gas of oxygen and an inert gas can also be used.

また、光フアイバ裸線11の導入および各ガスの供給に
先立ち、発熱源13を作動させて発熱体16を発熱せし
め、反応管12内の反応部18を原料ガスの分解温度以
上に加熱しておく。すると、反応部18において原料ガ
スが分解することに上り生成した炭素は、光ファイバ裸
線11の進行に伴って先ファイバ裸線1iの表面に漸次
付着し堆積するものとなる。そしてこの場合、酸素ガス
が流入する酸素ガス供給口20より後(下側)の反応部
18においても、酸素ガスが表面に炭素を堆積した光フ
アイバ裸線11のR傍にまで到達することなく、反応管
12内壁に沿って流れることから、上述した光フアイバ
裸線11への炭素の堆積か引き続き行われるとともに、
堆積した炭素と酸素ガスとの反応が防ILされる。
Furthermore, prior to introducing the bare optical fiber 11 and supplying each gas, the heat generating source 13 is activated to cause the heating element 16 to generate heat, and the reaction section 18 in the reaction tube 12 is heated to a temperature higher than the decomposition temperature of the raw material gas. put. Then, carbon generated by the decomposition of the raw material gas in the reaction section 18 gradually adheres and accumulates on the surface of the first bare fiber 1i as the bare optical fiber 11 advances. In this case, even in the reaction section 18 after (below) the oxygen gas supply port 20 into which oxygen gas flows, the oxygen gas does not reach the R side of the bare optical fiber 11 on which carbon is deposited. Since the carbon flows along the inner wall of the reaction tube 12, the above-mentioned carbon deposition on the bare optical fiber 11 continues, and
The reaction between the deposited carbon and oxygen gas is prevented.

このように反応部17において光フアイバ裸線11の表
面に漸次炭素が付着堆積することにより、反応管12か
ら導出される光ファイバはその表面に炭素被膜を形成し
たものとなる。そしてこの後、炭素被膜上にさらに紫外
線硬化型樹脂やナイロンなどの有機ポリマーが被覆され
ることにより、光フアイバ心線となる。
As carbon is gradually deposited on the surface of the bare optical fiber 11 in the reaction section 17, the optical fiber led out from the reaction tube 12 has a carbon coating formed on its surface. Thereafter, the carbon coating is further coated with an organic polymer such as an ultraviolet curable resin or nylon, thereby forming a cored optical fiber.

また、分解ガスおよび原料ガスの未反応分は分解ガス排
気管15より排出される。一方反応管12の内壁に沿っ
て流れる酸素ガスは、反応管12内壁に付着し堆積した
ススと反応し、二酸化炭素となって分解ガス排気管15
より排気される。そしてこれにより、反応管12におけ
る酸素ガス供給口20より分解ガス排気管15側の内壁
では、堆積したススが酸素ガスと反応し燃焼して排気さ
れることから、ススの堆積が抑制される。
Furthermore, unreacted portions of the cracked gas and raw material gas are discharged from the cracked gas exhaust pipe 15. On the other hand, the oxygen gas flowing along the inner wall of the reaction tube 12 reacts with the soot that has adhered and accumulated on the inner wall of the reaction tube 12 and becomes carbon dioxide.
More exhaust. As a result, on the inner wall of the reaction tube 12 on the side of the cracked gas exhaust pipe 15 from the oxygen gas supply port 20, the accumulated soot reacts with oxygen gas, burns, and is exhausted, so that the accumulation of soot is suppressed.

ところで、反応管12内面でのススの堆積は、反応部1
8下端から分解ガス排気管15までの間で最も多く見ら
れることが本発明者等によって確認されている。すなわ
ち、原料ガスが熱分解して生成したカーボンラジカルの
一部が、反応部18を通過することにより周囲温度の低
下に伴って冷却され、これによりススとなって反応管1
2内面に堆積するとともに、カーボン樹枝状晶の成長を
も引き起こすからである。しかし、上述したごとく本発
明によれば、このようなススの堆積を抑制し、ススの堆
積に伴う反応管12の閉塞を未然に防1ヒすることがで
きる。
By the way, soot buildup on the inner surface of the reaction tube 12 occurs in the reaction section 1.
The inventors of the present invention have confirmed that this phenomenon is most frequently observed between the lower end of the cracked gas exhaust pipe 15 and the cracked gas exhaust pipe 15. That is, some of the carbon radicals generated by thermal decomposition of the raw material gas pass through the reaction section 18 and are cooled as the ambient temperature decreases, thereby turning into soot and flowing into the reaction tube 1.
This is because, in addition to being deposited on the inner surface of No. 2, it also causes the growth of carbon dendrites. However, as described above, according to the present invention, such soot accumulation can be suppressed and the reaction tube 12 can be prevented from being clogged due to soot accumulation.

(実験例) 第1図に示した被覆装置を用い、以下の条件で光ファイ
バ裸線の表面に炭素被膜を形成した。
(Experimental Example) Using the coating apparatus shown in FIG. 1, a carbon coating was formed on the surface of a bare optical fiber under the following conditions.

反応管として内径30xytのものを用い、原料ガスと
して1.2−ジクロルエチレンを用いて5U分の流量で
供給し、また発熱体温度を1300°Cとして行い、さ
らに純度20%以上の酸素を0.5Q/分の流量で導入
した。
A reaction tube with an inner diameter of 30 x yt was used, 1,2-dichloroethylene was used as the raw material gas, and 1,2-dichloroethylene was supplied at a flow rate of 5 U, and the temperature of the heating element was 1300°C. It was introduced at a flow rate of 0.5 Q/min.

このようにして得られた炭素被膜を打する光ファイバの
、紡糸長と炭素膜抵抗との関係を調べ、その結果を第2
図に示した。
The relationship between the spinning length and the carbon film resistance of the optical fiber that is spun with the carbon film obtained in this way was investigated, and the results were used in the second
Shown in the figure.

なお、比較のため第1図に示した装置を用い、酸素を導
入せず、他の条件は上記条件と同一にして炭素被膜を有
する光ファイバを形成し、その紡糸長と炭素膜抵抗との
関係を調べてその結果を第2図に併記した。
For comparison, an optical fiber with a carbon film was formed using the apparatus shown in Figure 1 without introducing oxygen and under the same conditions as above, and the relationship between the spinning length and the carbon film resistance was calculated. The relationship was investigated and the results are also shown in Figure 2.

紡糸長と炭素膜抵抗との関係においては、紡糸条件が同
一である場合、炭素膜の電気抵抗値が低いほど光ファイ
バ裸線に対しての炭素の堆積効率が良いことを示し、抵
抗値が高い場合には光ファイバ裸線上への炭素の付着(
堆積)量が極めて少ないことを示すことが知られている
。したがって、第2図に示した結果より本発明の製造方
法によって得られた光ファイバは、紡糸長にかかわりな
く常に低い抵抗値を有することから、この光ファイバに
は光フアイバ裸線上に炭素が効率良く、しかも−・定し
た量が堆積していることか確認された。
Regarding the relationship between the spinning length and the carbon film resistance, when the spinning conditions are the same, the lower the electrical resistance value of the carbon film, the better the carbon deposition efficiency on the bare optical fiber. If the temperature is high, carbon adhesion on the bare optical fiber (
It is known that the amount of sedimentation is extremely small. Therefore, from the results shown in Fig. 2, the optical fiber obtained by the manufacturing method of the present invention always has a low resistance value regardless of the spinning length. It was confirmed that a good and constant amount had been deposited.

また酸素を流さずに炭素被膜を形成した比較例では、途
中より急激に抵抗値が大きくなることから、製造途中よ
り炭素の光フアイバ裸線上への堆積効率が著しく低下し
たことが認められた。
In addition, in a comparative example in which a carbon film was formed without flowing oxygen, the resistance value suddenly increased midway through the process, indicating that the efficiency with which carbon was deposited onto the bare optical fiber decreased significantly during the manufacturing process.

[発明の効果コ 以上説明したように、この発明に才jける請求項1記載
の先ファイバの製造方法は、反応部の排気管+1111
にて酸素を含むガスを反応管内壁に沿−)て供給するも
のであるから、酸素を導入した位置より排気管にかけて
の反応管内壁に堆積したススを燃焼して排気することが
でき、よってススの堆積に起因4る反応管の閉塞を防止
して炭素被膜を有4−る光ファイバの連続製造を可能と
することができ、したがって長尺で均一な炭素被膜を有
ケる光ファイバを製造することができる。
[Effects of the Invention] As explained above, the method for producing a tip fiber according to claim 1 according to the present invention provides
Since the gas containing oxygen is supplied along the inner wall of the reaction tube at the point where the oxygen is introduced, the soot that has accumulated on the inner wall of the reaction tube from the point where oxygen is introduced to the exhaust pipe can be burned and exhausted. It is possible to prevent clogging of the reaction tube caused by soot accumulation, and to enable continuous production of optical fibers with a carbon coating.Therefore, long optical fibers with a uniform carbon coating can be produced. can be manufactured.

また請求項2記載の炭素被覆装置は、反応部の排気管側
に酸素を含むガスを反応管内壁に沿って供給する酸素ガ
ス供給口を設けたものであるから、請求項1記載の発明
と同様に酸素を供給することによって酸素を供給した位
置より排気管にかIJでの反応管内壁に堆積したススを
燃焼して排気ケることができ、よってススの堆積に起因
する反応管の閉塞を防止して炭素被膜を有する光ファイ
バの連続製造を可能とすることができる。したがって、
反応管の内径を小さくして先ファイバへの炭素の堆積効
率を高めることができ、これにより炭素被膜を形成した
光ファイバの製造を容易にすることができる。
Further, the carbon coating device according to claim 2 is provided with an oxygen gas supply port on the exhaust pipe side of the reaction section for supplying oxygen-containing gas along the inner wall of the reaction tube. Similarly, by supplying oxygen, it is possible to burn and exhaust soot that has accumulated in the exhaust pipe or on the inner wall of the reaction tube at IJ from the point where oxygen is supplied. It is possible to prevent this and enable continuous production of optical fibers having a carbon coating. therefore,
By reducing the inner diameter of the reaction tube, the efficiency of carbon deposition onto the tip fiber can be increased, thereby making it easier to manufacture an optical fiber with a carbon coating formed thereon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図(よこの発明に係る図であって、第
1図は請求項2記載の炭素被覆製置の一実施例を示す概
略構成図、第2図は炭素被膜を形成した光ファイバの紡
糸長と炭素膜抵抗との関係を示すグラフ、第3図は従来
の炭素′II!、覆装置の一例を示す概略構成図である
。 10・・・・・・炭素被覆装置、it・・・光ファイバ
裸線、12・・・・・・反応管、13・・・・・・発熱
源、14・・・・・・原料ガス供給管、15・・・・・
・分解ガス排気管、16・・・・・発熱体、18・・・
・・・反応部、20・・・・・・酸素ガス供給口、A・
・・・・・酸素ガス。
Fig. 1 and Fig. 2 (views according to the present invention; Fig. 1 is a schematic diagram showing an embodiment of carbon coating production according to claim 2; Fig. 2 is a diagram showing a carbon coating according to an embodiment of the present invention; A graph showing the relationship between the spinning length of an optical fiber and the carbon film resistance, and FIG. 3 is a schematic diagram showing an example of a conventional carbon coating device. 10...Carbon coating device, it... Bare optical fiber, 12... Reaction tube, 13... Heat generation source, 14... Raw material gas supply pipe, 15...
・Cracked gas exhaust pipe, 16... Heating element, 18...
... Reaction section, 20 ... Oxygen gas supply port, A.
...Oxygen gas.

Claims (2)

【特許請求の範囲】[Claims] (1)一方の側に炭化水素化合物からなる原料ガスを供
給する供給管が、他方の側に分解した原料ガスを排気す
るための排気管がそれぞれ設けられ、かつこれら供給管
と排気管との間にその長さ方向に沿って上記原料ガスを
熱分解して炭素被覆を行う反応部が形成された反応管に
、光ファイバを上記供給管を設けた側より導入して排気
管を設けた側に向けて移送するととともに、原料ガスを
供給管より供給し、次いで上記反応部にて原料ガスを加
熱分解して光ファイバ表面に炭素被膜を形成するととも
に、反応部の排気管側にて酸素を含むガスを反応管内壁
に沿って供給することを特徴とする光ファイバの製造方
法。
(1) A supply pipe for supplying raw material gas consisting of hydrocarbon compounds is provided on one side, and an exhaust pipe for exhausting decomposed raw material gas is provided on the other side, and these supply pipes and exhaust pipes are connected to each other. An optical fiber was introduced from the side where the supply pipe was provided, and an exhaust pipe was provided in the reaction tube, in which a reaction section for thermally decomposing the raw material gas and coating with carbon was formed along its length. At the same time, the raw material gas is supplied from the supply pipe, and then the raw material gas is thermally decomposed in the reaction section to form a carbon film on the surface of the optical fiber, and oxygen is removed from the exhaust pipe side of the reaction section. A method for producing an optical fiber, characterized in that a gas containing gas is supplied along the inner wall of a reaction tube.
(2)光ファイバを通過させつつその表面に炭素被膜を
形成する反応管と、この反応管内部を加熱する加熱部と
を具備してなり、上記反応管の一方の側に炭化水素化合
物からなる原料ガスを供給する供給管を、他方の側に分
解した原料ガスを排気するための排気管をそれぞれ設け
、かつこれら供給管と排気管との間にその長さ方向に沿
って上記原料ガスを熱分解して炭素被覆を行う反応部を
形成した炭素被覆装置において、 上記反応部の排気管側に酸素を含むガスを反応管内壁に
沿って供給する酸素ガス供給口を設けたことを特徴とす
る炭素被覆装置。
(2) It is equipped with a reaction tube that forms a carbon film on the surface of the optical fiber while passing through it, and a heating section that heats the inside of the reaction tube, and one side of the reaction tube is made of a hydrocarbon compound. A supply pipe for supplying the raw material gas is provided with an exhaust pipe for exhausting the decomposed raw material gas on the other side, and the raw material gas is disposed between the supply pipe and the exhaust pipe along the length thereof. A carbon coating apparatus having a reaction section that performs carbon coating by thermal decomposition, characterized in that an oxygen gas supply port is provided on the exhaust pipe side of the reaction section to supply a gas containing oxygen along the inner wall of the reaction tube. carbon coating equipment.
JP1168770A 1989-06-30 1989-06-30 Production of optical fiber and carbon coater Pending JPH0337139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1168770A JPH0337139A (en) 1989-06-30 1989-06-30 Production of optical fiber and carbon coater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1168770A JPH0337139A (en) 1989-06-30 1989-06-30 Production of optical fiber and carbon coater

Publications (1)

Publication Number Publication Date
JPH0337139A true JPH0337139A (en) 1991-02-18

Family

ID=15874135

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1168770A Pending JPH0337139A (en) 1989-06-30 1989-06-30 Production of optical fiber and carbon coater

Country Status (1)

Country Link
JP (1) JPH0337139A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112374766A (en) * 2020-11-13 2021-02-19 重庆理工大学 Device for depositing thin film on inner wall of small-sized round tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112374766A (en) * 2020-11-13 2021-02-19 重庆理工大学 Device for depositing thin film on inner wall of small-sized round tube

Similar Documents

Publication Publication Date Title
JPH09500082A (en) Method for producing improved vitreous silica
JP2798486B2 (en) Method and apparatus for producing hermetic coated optical fiber
JPH05124841A (en) Production of hermetically coated optical fiber
JP2000272925A (en) Production of silica by decomposition of organosilane
JPH0337139A (en) Production of optical fiber and carbon coater
NZ501486A (en) Forming optical fibre preform by deposition of vapour produced by combustionless hydrolysis
ES481361A1 (en) Method and apparatus for making optical glass articles
JP2966035B2 (en) Silicon carbide coating on filament
EP0066479B1 (en) Process for the opalisation of lamps by the vapour phase
JP2644018B2 (en) Optical fiber manufacturing method
JP3134524B2 (en) Hermetic coated optical fiber manufacturing equipment
JP3039975B2 (en) Optical fiber manufacturing method
JPS582171B2 (en) Manufacturing method of optical fiber base material
JP2999042B2 (en) Method for producing vapor grown carbon fiber and apparatus for producing vapor grown carbon fiber used in the method
JPH02275725A (en) Production of vitreous fine granule accumulation
US20210101827A1 (en) Method of depositing a coating utilizing a coating apparatus
JP3417962B2 (en) Manufacturing method of synthetic quartz glass member
JPH02160642A (en) Production of optical fiber
JPH0640750A (en) Producing device for hermetic coat optical fiber
JP3039948B2 (en) Optical fiber manufacturing method
JPH0312345A (en) Production of hermetically-coated optical fiber
JPH02167843A (en) Production of element wire of optical fiber
JP2683070B2 (en) Optical fiber manufacturing method
JPH0269339A (en) Coating device for optical fiber
JP2684789B2 (en) Manufacturing method of carbon coated optical fiber