JPH0336792B2 - - Google Patents
Info
- Publication number
- JPH0336792B2 JPH0336792B2 JP24809983A JP24809983A JPH0336792B2 JP H0336792 B2 JPH0336792 B2 JP H0336792B2 JP 24809983 A JP24809983 A JP 24809983A JP 24809983 A JP24809983 A JP 24809983A JP H0336792 B2 JPH0336792 B2 JP H0336792B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- inorganic
- parts
- cement
- curing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 36
- 239000004568 cement Substances 0.000 claims description 16
- 238000004040 coloring Methods 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 16
- 239000000377 silicon dioxide Substances 0.000 claims description 16
- 239000000049 pigment Substances 0.000 claims description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 239000002994 raw material Substances 0.000 claims description 13
- 239000000835 fiber Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 239000004743 Polypropylene Substances 0.000 claims description 9
- -1 polypropylene Polymers 0.000 claims description 9
- 229920001155 polypropylene Polymers 0.000 claims description 9
- 239000012783 reinforcing fiber Substances 0.000 claims description 7
- 150000007529 inorganic bases Chemical class 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000012615 aggregate Substances 0.000 claims description 5
- 238000005507 spraying Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 9
- 239000002344 surface layer Substances 0.000 description 9
- 230000008859 change Effects 0.000 description 7
- 239000010425 asbestos Substances 0.000 description 6
- 229910052895 riebeckite Inorganic materials 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000010422 painting Methods 0.000 description 3
- 238000011041 water permeability test Methods 0.000 description 3
- 239000004606 Fillers/Extenders Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000839 emulsion Substances 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 240000004160 Capsicum annuum Species 0.000 description 1
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 description 1
- 235000007862 Capsicum baccatum Nutrition 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001728 capsicum frutescens Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Aftertreatments Of Artificial And Natural Stones (AREA)
Description
この発明は無機質板材の着色方法に関する。
一般に無機質板材は暗灰色〜白色の無彩色の地
色であり、意匠性に乏しいため、着色されること
が多い。
この着色手段として、エマルジヨン塗料などに
よる塗装があるが、塗装による着色は、吸水性を
有する無機質板材の表面を塗膜で覆つて耐水性を
付与出来るといつた利点を有する反面、経時的に
塗膜が剥離するといつた本質的な難点があり長期
の耐用寿命に問題がある。
一方、無機質板材、ないしは、無機質板材の表
面層に着色顔料を混入し、板材自体を着色してし
まう手段も種々提案されかつ、実施されている
が、この手段による場合、材料自体に比較的高価
である着色顔料を大量に添加する必要があり、特
に前者のものにあつては、板材が高価となりすぎ
適当でなく、また、これら着色には、増量材又は
体質顔料として多くの炭酸カルシユームが使用さ
れているので、耐凍害性、耐透水性が悪くなり、
かつ、強度も低いといつた欠点を有し、さらに、
石綿を補強繊維として用いた場合、将来の表面風
化などによりこれら石綿が飛散することも考えら
れ公害防止上不都合であると言つた問題もある。
この発明は上記問題点に鑑み、無機質板材を着
色するにあたり、材料自体を着色することにより
塗装による欠点を解消すると同時に、これら顔料
を用いた場合における耐凍害性、耐透水性及び強
度等の問題をも解消し得る無機質板材の着色方法
を得ることを目的としてなされたものであつて、
セメント、骨材、補強繊維等と水とを混合して所
定厚さの無機質原板を成形し、次いでこの原板上
にセメントとシリカ分の混合比1:08〜1.2かつ
セメントとシリカ分の合計量205〜220重量部、ポ
リプロピレン繊維0.01〜5.0重量部、着色顔料0.1
〜20.0重量部を混合して成る着色無機質原料を供
給し、硬化に必要な水分を散布供給した後圧縮し
て表面着色層を成形し、これを自然養生にて一次
養生後、高温高圧蒸気養生することにより最終的
に硬化させることを特徴とするものである。
次に、この発明を実施例として乾式製法につい
て説明するが、抄造法によつても良いことは勿論
である。
図面はこの発明の方法の実施に用いられる装置
の側面図である。なお、図示例は、いわゆる乾式
製法によるものであるが、他の製法、例えば抄造
法によつても良いことは勿論である。
この発明の無機質板材の着色方法は、走行する
成形用ベルトコンベア1上に、セメント、骨材、
補強繊維等を混合した乾燥原料2を、ホツパ2A
より供給し、水3を散布してロール4で圧縮し、
所定厚さの無機質原板20を成形し、次いでこの
原板20上に、セメントとシリカ分の混合比1:
0.8〜1.2かつセメントとシリカ分との合計量205
〜220重量部、ポリプロピレン繊維0.01〜5.0重量
部及び着色顔料0.1〜20.0重量部を混合して成る
着色無機質原料5をホツパ5Aより供給し、さら
に硬化に必要な水分6を散布供給した後、ロール
7により圧縮して表面着色層25を成形し、これ
をコンベア1より取り出して、自然養生にて一次
養生後、オートクレイブ8により高温高圧蒸気養
生することにより最終的に硬化させることより構
成されている。
上記において、無機質原板20の材料素材とし
ては、セメント、骨材補強繊維につき通常慣行的
に行なわれている配合のもので良く、また、補強
繊維としては、ガラス繊維、石綿など任意のもの
が使用されあるいは、これら補強繊維を全く省略
したものであつても良い。
また、表面着色用の着色無機質原料5におい
て、セメントとシリカ分が205重量部より少ない
と製品強度が不足し、220重量部より多いと顔料
との関係で着色効果が少なくなる。セメントとシ
リカとの配合比を1:0.8〜1.2とするのはセメン
トのシリカ反応を促進しマトリツクスの結合強度
を増すためである。上記シリカ分としては珪砂、
微粉珪砂が使用され反応性向上の見地よりブレー
ン値の大きい微粉珪砂の使用が好ましい。また、
ポリプロピレン繊維は、着色原料の流動性調整、
及び一次養生前における無機質原板の曲げ強度、
特にヘアークラツクの発生の防止のためと、高温
高圧蒸気養生時に、熱により溶融させ、これを繊
維の存在した空洞内面に膜状に付着させ表面着色
層の耐水性を発揮させるために配合され、配合量
を0.01〜5重量部とするのは、0.01重量部より少
ないと上記効果が得られず、また、5重量部より
多くなると、着色無機質原料の流動性が悪くなり
均一な層状散布が出来なくなり、また高温高圧蒸
気養生後における着色層の強度低下が著るしくな
るからである。
なお、上記ポリプロピレン繊維は、フイブリル
化したパルプ状の形態をなすものが最も好適であ
るが、太さ0.5〜15デニール、0.5〜3mm長さのも
のまでであれば特に不都合はない。
また顔料は、べんがらを始めとして、各種のも
のが使用されるが、添加量を0.1〜20重量部とす
るのは、0.1重量部より少ないと、充分な着色が
出来ず、また、20重量部より多くしても着色の点
ではあまり変化はない反面、顔料は高価であるた
め経済的に無駄となるからである。
また、一次養生は常温状態で2〜3日間行なわ
れ、オートクレイブによる高温高圧蒸気養生は、
ポリプロピレン繊維の溶融点との関係より180℃
以上の温度で行なわれる。
なお、一次養生後、高温高圧養生前に、エマル
ジヨン塗料による表面塗装を行なつても良い。
この発明は以上説明したように無機質原板上
に、着色無機質原料層を設け、これを一体化して
成形したものであるから、顔料等の添加は、着色
表面層のみで良く、顔料の使用量が節約出来ると
いつた利点を有するほか、表面着色層には、ポリ
プロピレン繊維が含有され、これが、無機質板材
成形過程にあつては、板材の曲げ強度を付与し、
未硬化における板材の取扱いを容易にすると共
に、硬化後においては、溶融して、表面層のマト
リツクス内における繊維による空洞内面に付着
し、これによつて、耐吸水性を付与するから、無
機質板材の耐凍害性、耐吸水性を向上させ、しか
も、少なくとも着色表面層には、石綿は全く含ま
れていないので、長期使用による表面風化が生じ
ても、公害などか発生するおそれも全くないなど
種々の利点を有する。
ちなみに、本願発明により表面着色された無機
質板材と、ポリプロピレン繊維を含まない無機質
着色表面層を有する無機質板材とにつき凍結融解
試験、透水試験を行なつたところ次のような結果
が得られた。
(イ) 試供品
セメント、骨材、石綿を混合して成形した厚
さ4mmの無機質原板上に、セメントとしてポル
トランドセメント、シリカ分としてブレーン値
5000g/cm2及び12000g/cm2の二種の微粉珪砂
を使用し、各々これらの混合比1:1でこの混
合物230重量部、ポリプロピレン繊維1重量部、
顔料を10重量部配合して成る、無機質原料によ
り厚さ1mmの表面層を乾式法により成形し、三
日間自然養生後、直ちに190℃、6気圧の高温
高圧下で、9時間オートクレイブにより蒸気養
生し、厚さ5mmの無機質板材を得た。
(ロ) 比較例
表面層無機質原料として、実施例と同じ材質
としたセメントとシリカ分の合計量100重量部、
炭酸カルシウム95重量部、石綿37重量部、顔料
12重量部とし、他は試供品と同一とした無機質
板材を得た。
(a) 一次元凍結融解試験
試供品を、6時間置きに、+20℃から−20
℃まで変化する室内におき、これを一サイク
ルとして、一次元凍結融解試験を行ない、評
価点評価により結果を見たところ、表1のよ
うな結果が得られた。
なお、評価点は、「変化なし」を5点、「変
化少」を4点、「変化中」を3点、「変化大」
を2点、「変化非常に大」を1点とした。
The present invention relates to a method for coloring inorganic board materials. In general, inorganic board materials have an achromatic background color ranging from dark gray to white, and are often colored because they lack aesthetic appeal. As a means of coloring, there is painting with emulsion paint, etc. However, coloring by painting has the advantage of being able to cover the surface of the water-absorbing inorganic board with a coating film and impart water resistance, but it There is an inherent difficulty in peeling off the film, which poses a problem in long-term service life. On the other hand, various methods have been proposed and implemented in which coloring pigments are mixed into the surface layer of the inorganic board material or the surface layer of the inorganic board material to color the board material itself, but when this method is used, the material itself is relatively expensive. It is necessary to add large amounts of coloring pigments, especially the former, as the plate material becomes too expensive and is not suitable.In addition, a large amount of calcium carbonate is used as an extender or extender pigment for these colorings. As a result, frost damage resistance and water permeability resistance deteriorate,
Moreover, it has the disadvantage of low strength, and furthermore,
When asbestos is used as reinforcing fibers, there is a problem in that the asbestos may be scattered due to future surface weathering, which is inconvenient in terms of pollution prevention. In view of the above-mentioned problems, this invention solves the problems caused by painting by coloring the material itself, and at the same time solves the problems such as frost damage resistance, water permeability resistance, strength, etc. when using these pigments. This was done with the aim of obtaining a method for coloring inorganic board materials that can also eliminate the
Cement, aggregate, reinforcing fibers, etc. are mixed with water to form an inorganic base plate of a predetermined thickness, and then a mixture of cement and silica at a mixing ratio of 1:08 to 1.2 and a total amount of cement and silica is placed on this base plate. 205-220 parts by weight, polypropylene fiber 0.01-5.0 parts by weight, color pigment 0.1
A colored inorganic raw material made by mixing ~20.0 parts by weight is supplied, water necessary for curing is sprayed and supplied, and then compressed to form a surface colored layer. After primary curing in natural curing, high temperature and high pressure steam curing. It is characterized in that it is finally cured by doing this. Next, a dry manufacturing method will be described using this invention as an example, but it goes without saying that a paper manufacturing method may also be used. The drawing is a side view of the apparatus used to carry out the method of the invention. The illustrated example uses a so-called dry manufacturing method, but it goes without saying that other manufacturing methods, such as a papermaking method, may also be used. In the method for coloring inorganic plate materials of the present invention, cement, aggregate,
Dry raw material 2 mixed with reinforcing fiber etc. is transferred to hopper 2A.
3, sprinkled with water 3, compressed with roll 4,
An inorganic base plate 20 of a predetermined thickness is formed, and then a mixture ratio of cement and silica is 1:1 on this base plate 20.
0.8 to 1.2 and total amount of cement and silica 205
A colored inorganic raw material 5 consisting of a mixture of ~220 parts by weight, 0.01 to 5.0 parts by weight of polypropylene fibers, and 0.1 to 20.0 parts by weight of a colored pigment is supplied from a hopper 5A, and after being sprayed and supplied with water 6 necessary for curing, it is rolled. 7 to form a surface colored layer 25, this is taken out from the conveyor 1, and after primary curing in natural curing, it is finally cured by high temperature and high pressure steam curing in an autoclave 8. There is. In the above, the material for the inorganic base plate 20 may be any compound normally used for cement and aggregate reinforcing fibers, and any reinforcing fibers such as glass fiber or asbestos may be used. Alternatively, these reinforcing fibers may be omitted altogether. Furthermore, in the colored inorganic raw material 5 for surface coloring, if the cement and silica content is less than 205 parts by weight, the product strength will be insufficient, and if it is more than 220 parts by weight, the coloring effect will be reduced due to the relationship with the pigment. The reason why the mixing ratio of cement and silica is 1:0.8 to 1.2 is to promote the silica reaction of cement and increase the bonding strength of the matrix. The above silica content includes silica sand,
Finely divided silica sand is used, and from the viewpoint of improving reactivity, it is preferable to use finely divided silica sand having a large Blaine value. Also,
Polypropylene fibers are used to adjust the fluidity of coloring raw materials,
and the bending strength of the inorganic original plate before primary curing,
It is especially formulated to prevent the formation of hair cracks, and during high-temperature, high-pressure steam curing, it is melted by heat and adheres to the inner surface of the cavity where the fibers were present in a film form, thereby demonstrating the water resistance of the surface colored layer. The reason why the amount is 0.01 to 5 parts by weight is that if it is less than 0.01 parts by weight, the above effects cannot be obtained, and if it is more than 5 parts by weight, the fluidity of the colored inorganic raw material will deteriorate and uniform layered dispersion will not be possible. This is also because the strength of the colored layer decreases significantly after curing in high-temperature, high-pressure steam. The polypropylene fibers are most preferably in the form of fibrillated pulp, but there are no particular disadvantages as long as they have a thickness of 0.5 to 15 deniers and a length of 0.5 to 3 mm. Various types of pigments are used, including red pepper, but the reason why the amount added is 0.1 to 20 parts by weight is because if it is less than 0.1 part by weight, sufficient coloring cannot be achieved. This is because, although increasing the amount does not change much in terms of coloring, it is economically wasteful because pigments are expensive. In addition, the primary curing is carried out at room temperature for 2 to 3 days, and the high temperature and high pressure steam curing in an autoclave is
180℃ due to the relationship with the melting point of polypropylene fibers
It is carried out at a temperature higher than that. Incidentally, after the primary curing and before the high temperature and high pressure curing, the surface may be coated with an emulsion paint. As explained above, in this invention, a colored inorganic raw material layer is provided on an inorganic base plate, and this is integrally molded. Therefore, pigments, etc. need only be added to the colored surface layer, and the amount of pigment used can be reduced. In addition to having the advantage of saving money, the surface colored layer contains polypropylene fibers, which gives the board bending strength during the inorganic board forming process.
Inorganic boards make it easier to handle the board when uncured, and after curing, it melts and adheres to the inner surface of the cavity made of fibers in the matrix of the surface layer, thereby imparting water absorption resistance. It has improved frost damage resistance and water absorption resistance, and at least the colored surface layer does not contain any asbestos, so there is no risk of pollution even if the surface weathers due to long-term use. It has various advantages. Incidentally, freeze-thaw tests and water permeability tests were conducted on an inorganic board material whose surface was colored according to the present invention and an inorganic board material having an inorganic colored surface layer that does not contain polypropylene fibers, and the following results were obtained. (b) Sample sample Portland cement as cement and Blaine value as silica on an inorganic base plate with a thickness of 4 mm made by mixing cement, aggregate, and asbestos.
Two types of finely divided silica sand of 5,000 g/cm 2 and 12,000 g/cm 2 were used at a mixing ratio of 1:1, and 230 parts by weight of this mixture, 1 part by weight of polypropylene fibers,
A surface layer with a thickness of 1 mm is formed by a dry method using an inorganic raw material containing 10 parts by weight of pigment, and after natural curing for 3 days, it is immediately steamed in an autoclave at 190°C and 6 atm high temperature and high pressure for 9 hours. After curing, an inorganic board with a thickness of 5 mm was obtained. (b) Comparative example The total amount of cement and silica made of the same material as in the example was 100 parts by weight as the surface layer inorganic raw material,
Calcium carbonate 95 parts by weight, asbestos 37 parts by weight, pigment
An inorganic plate material was obtained in which the amount was 12 parts by weight and the other parts were the same as the sample. (a) One-dimensional freeze-thaw test Samples were heated from +20°C to -20°C every 6 hours.
A one-dimensional freeze-thaw test was carried out by placing the sample in a room where the temperature was changed to a temperature of 0.degree. The evaluation points are 5 points for "no change," 4 points for "little change," 3 points for "change in progress," and 3 points for "major change."
``The change was very large'' was given a 1 point.
【表】
(b) ASTM凍結融解試験
ASTM C666に基づき、上記と同一の試供
品につき、凍結融解試験を行ない、評価点評
価により結果を見たことろ、表2のような結
果が得られた。[Table] (b) ASTM Freeze-Thaw Test Based on ASTM C666, a freeze-thaw test was conducted on the same sample as above, and the results shown in Table 2 were obtained based on evaluation points. .
【表】
(c) 透水試験
試供品の着色層表面(200mm×200mm)の中
央に50φmmのパイプを立て、このパイプと表
面層との接触部分をエポキシ樹脂でシール
し、このパイプの中に、水を60c.c.入れて規定
時間放置後重量変化を測定することによつ
て、透水試験を行なつたところ、表3のよう
な結果が得られた。[Table] (c) Water permeability test A 50φmm pipe is placed in the center of the colored layer surface (200mm x 200mm) of the sample, the contact area between this pipe and the surface layer is sealed with epoxy resin, and inside this pipe, A water permeability test was conducted by adding 60 c.c. of water and measuring the change in weight after standing for a specified period of time, and the results shown in Table 3 were obtained.
【表】
(d) 表面付着強度
JIS A6910に準じて表面着色層と原板との
付着強度試験を行なつたところ、表4のよう
な結果が得られた。
表 4
本発明品(イ)……25Kg/cm2
比較例(ロ)……12Kg/cm2 [Table] (d) Surface adhesion strength When the adhesion strength test between the surface colored layer and the original plate was conducted according to JIS A6910, the results shown in Table 4 were obtained. Table 4 Invention product (a)...25Kg/ cm2 Comparative example (b)...12Kg/ cm2
図面は、この発明の実施に用いられる装置の側
面図である。
1……成形用ベルトコンベヤ、2……乾燥原
料、2A……ホツパ、3,6……水、4,7……
ロール、5……着色無機質原料、8……オートク
レイブ、20……無機質原材、25……表面着色
層。
The drawing is a side view of the apparatus used to practice the invention. 1... Forming belt conveyor, 2... Dry raw material, 2A... hopper, 3, 6... Water, 4, 7...
Roll, 5... Colored inorganic raw material, 8... Autoclave, 20... Inorganic raw material, 25... Surface colored layer.
Claims (1)
て所定厚さの無機質原板を成形し、次いでこの原
板上にセメントとシリカ分の混合比1:0.8〜1.2
かつセメントとシリカ分の合計量205〜220重量
部、ポリプロピレン繊維0.01〜5.0重量部、着色
顔料0.1〜20.0重量部を混合して成る着色無機質
原料を供給し、硬化に必要な水分を散布供給した
後、圧縮して表面着色層を成形し、これを自然養
生にて一次養生後、高温高圧蒸気養生することに
より最終的に硬化させることを特徴とする無機質
板材の着色方法。1. Mix cement, aggregate, reinforcing fibers, etc. with water to form an inorganic base plate of a predetermined thickness, and then apply the mixture of cement and silica on this base plate at a mixing ratio of 1:0.8 to 1.2.
A colored inorganic raw material prepared by mixing a total of 205 to 220 parts by weight of cement and silica, 0.01 to 5.0 parts by weight of polypropylene fibers, and 0.1 to 20.0 parts by weight of colored pigment was supplied, and water necessary for curing was supplied by spraying. A method for coloring an inorganic plate material, which is then compressed to form a surface coloring layer, which is firstly cured by natural curing, and then finally cured by high temperature and high pressure steam curing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24809983A JPS60137880A (en) | 1983-12-23 | 1983-12-23 | Method of coloring inorganic board material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24809983A JPS60137880A (en) | 1983-12-23 | 1983-12-23 | Method of coloring inorganic board material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60137880A JPS60137880A (en) | 1985-07-22 |
JPH0336792B2 true JPH0336792B2 (en) | 1991-06-03 |
Family
ID=17173198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24809983A Granted JPS60137880A (en) | 1983-12-23 | 1983-12-23 | Method of coloring inorganic board material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60137880A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6465083A (en) * | 1987-09-03 | 1989-03-10 | Kubota Ltd | Method for decorating inorganic building material |
JPH01246186A (en) * | 1987-11-05 | 1989-10-02 | Keihan Concrete Kogyo Kk | Colored concrete block |
JPH01122979A (en) * | 1987-11-05 | 1989-05-16 | Keihan Concrete Kogyo Kk | Colored concrete blocks |
JPH01121444A (en) * | 1987-11-05 | 1989-05-15 | Keihan Concrete Kogyo Kk | Colored building material |
JPH01121443A (en) * | 1987-11-05 | 1989-05-15 | Keihan Concrete Kogyo Kk | Colored building material |
JPH0538481A (en) * | 1991-08-06 | 1993-02-19 | Kubota Corp | Decoration method for cement roofing material |
-
1983
- 1983-12-23 JP JP24809983A patent/JPS60137880A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60137880A (en) | 1985-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1061089A (en) | Noncombustible and smokeless building composite material and method for the manufacture thereof | |
US4122231A (en) | Noncombustible, smokeless building composite material and its method of manufacture | |
JPH0336792B2 (en) | ||
US4185141A (en) | Production of coated structural elements comprising inorganic binders | |
US5853473A (en) | Patching composition for concrete surfaces | |
US4402753A (en) | Composition and method for curing concrete | |
SU1006462A1 (en) | Coating composition | |
US610776A (en) | William thomson | |
RU2114084C1 (en) | Method of making decorative and facing building articles | |
CA2060317A1 (en) | Compositions comprising a phenolic resin and cement | |
JP3468734B2 (en) | Inorganic plate and method for producing the inorganic plate | |
US343695A (en) | Manufacture of artificial stone and marble | |
CA1219006A (en) | Construction composition | |
US4475952A (en) | Treating concrete | |
SU643339A1 (en) | Method of making decorative concrete articles | |
JPH0371395B2 (en) | ||
US2331356A (en) | Colored surface coated glazed granules, useful as roofing granules, and process of making the same | |
SU1719218A1 (en) | Process for manufacturing concrete construction products with decorative layer | |
US2038106A (en) | Cement cork shingle | |
US2104353A (en) | Composition of matter for artificial stone | |
JPH0146479B2 (en) | ||
JPH0327200A (en) | Inorganic board | |
JPS5845148A (en) | Manufacture of undercoating material for construction | |
JPS593956B2 (en) | Method for manufacturing decorative fiber cement board with unevenness | |
US2198601A (en) | Roof and siding material |