JPH0336763B2 - - Google Patents

Info

Publication number
JPH0336763B2
JPH0336763B2 JP7541285A JP7541285A JPH0336763B2 JP H0336763 B2 JPH0336763 B2 JP H0336763B2 JP 7541285 A JP7541285 A JP 7541285A JP 7541285 A JP7541285 A JP 7541285A JP H0336763 B2 JPH0336763 B2 JP H0336763B2
Authority
JP
Japan
Prior art keywords
water
silica
powder
reaction
absorbing powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7541285A
Other languages
Japanese (ja)
Other versions
JPS61236609A (en
Inventor
Genji Taga
Ryohei Kataoka
Masami Enoguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP7541285A priority Critical patent/JPS61236609A/en
Publication of JPS61236609A publication Critical patent/JPS61236609A/en
Publication of JPH0336763B2 publication Critical patent/JPH0336763B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は合成石英ガラスの原料として好適な、
高純度の重質シリカを効率よく製造する方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a method suitable as a raw material for synthetic quartz glass.
The present invention relates to a method for efficiently producing high-purity heavy silica.

〔技術の背景〕[Technology background]

石英ガラスは優れた光学特性、低熱膨張特性を
有しているため、光フアイバー用基材を始め、半
導体封止材用フイラーとして使用されるようにな
つた。このような封止材用フイラー用の石英ガラ
スは従来より珪砂等の天然シリカ原料を溶融して
得られる石英ガラスが一般に使用されているが、
該シリカ原料に基因するウラン、トリウム等の放
射線元素などの不純物が最近問題とされるように
なつた。即ち、封止材フイラーとして石英ガラス
に含まれるウラン、トリウムなどのアルフア線が
ICのソフトエラーを起す。そのため、かかる不
純物を減少させた高純度のシリカ原料の要求が高
くなつた。
Since quartz glass has excellent optical properties and low thermal expansion properties, it has come to be used as a substrate for optical fibers and as a filler for semiconductor encapsulants. As the quartz glass for such fillers for sealing materials, quartz glass obtained by melting natural silica raw materials such as silica sand has been generally used.
Impurities such as radioactive elements such as uranium and thorium originating from the silica raw material have recently become a problem. In other words, alpha rays such as uranium and thorium contained in quartz glass are used as encapsulant fillers.
Causes IC soft error. Therefore, there has been an increasing demand for high-purity silica raw materials with reduced amounts of such impurities.

〔従来の技術及び発明が解決しようとする問題点〕[Problems to be solved by conventional technology and invention]

従来、高純度のシリカを工業的に製造する方法
として、ハロゲン化珪素を火炎中で燃焼させる方
法が知られている。
Conventionally, a method of burning silicon halide in a flame has been known as a method for industrially producing high-purity silica.

しかしながら、上記方法は、得られるシリカの
粒子が極めて小さく嵩高いという性質を有する。
そのため、これを溶融又は焼結して得られる石英
ガラスは、一般に気泡を多量に含有し、前記用途
に供し難いという問題を有する。また、溶融、焼
結時の収縮が非常に大きく、石英ガラスの製造に
大容量の装置を必要とし、工業的に石英ガラスを
得るための原料としての使用は困難である。
However, the above method has the property that the resulting silica particles are extremely small and bulky.
Therefore, quartz glass obtained by melting or sintering this glass generally contains a large amount of bubbles, and has the problem of being difficult to use for the above-mentioned purposes. In addition, shrinkage during melting and sintering is very large, and large-capacity equipment is required to produce quartz glass, making it difficult to use it as a raw material for industrially obtaining quartz glass.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記問題に鑑み成されたもので、水で
湿潤した吸水性粉体とハロゲン化珪素とを接触さ
せることにより、石英ガラスの製造に適した高純
度の重質シリカを効率よく製造することを可能と
したシリカの製造方法を提供する。
The present invention was developed in view of the above problems, and it is possible to efficiently produce high-purity heavy silica suitable for producing quartz glass by bringing water-absorbing powder moistened with water into contact with silicon halide. To provide a method for producing silica that makes it possible to produce silica.

本発明において、湿潤とは吸水性粉体が粉体と
しての流動性を維持する範囲内で水を担持してい
る状態をいう。一般には、吸水性粉体が吸油量以
下の量の水を吸収した状態である。尚、吸油量は
JIS6220によつて測定した値をいう。
In the present invention, "wet" refers to a state in which the water-absorbing powder carries water within a range that maintains its fluidity as a powder. Generally, the water-absorbing powder is in a state in which it has absorbed an amount of water that is less than the oil absorption amount. In addition, the oil absorption amount is
This refers to the value measured according to JIS6220.

本発明において、用いられる吸水性粉体として
は吸水性を有するものであれば特に制限されない
が、一般に吸油量は0.5c.c./g以上、好ましくは
1c.c./g以上を有していれば充分であり、また、
得られるシリカの用途において悪影響を及ぼす不
純物の量が可及的に少ない粉体を使用することが
望ましい。かかる吸水性粉体を具体的に例示すれ
ば、ヒユームドシリカと称される乾式法による無
水珪酸、ホワイトカーボンと称される湿式法によ
る含水珪酸、後述する反応において生成するシリ
カ等のシリカ粉が一般的であり、そのほか、アル
ミナ、含水珪酸アルミニウム、珪酸カルシウムな
ども使用できる。
In the present invention, the water-absorbing powder used is not particularly limited as long as it has water-absorbing properties, but generally it has an oil absorption of 0.5 cc/g or more, preferably 1 c.c./g or more. is sufficient, and
It is desirable to use a powder containing as few impurities as possible that would have an adverse effect on the use of the resulting silica. Specific examples of such water-absorbing powders include anhydrous silicic acid produced by a dry process called fumed silica, hydrated silicic acid produced by a wet process called white carbon, and silica powder such as silica produced in the reaction described below. In addition, alumina, hydrated aluminum silicate, calcium silicate, etc. can also be used.

また、焼成などによつて除去が可能な多孔質樹
脂などの有機物も使用することができる。かかる
吸水性粉体は、得られるシリカの使用目的に応じ
て、適宜選択して使用すればよい。例えば、用途
として純粋なシリカが必要な場合にはシリカ粉を
選択して使用すればよい。また、多成分系粉体を
製造する目的の場合には、シリカ以外の例えば、
アルミナ、ジルコニア等の吸水性粉体を使用すれ
ばよい。
Furthermore, organic materials such as porous resins that can be removed by firing or the like can also be used. Such water-absorbing powder may be appropriately selected and used depending on the intended use of the obtained silica. For example, if pure silica is required for the purpose, silica powder may be selected and used. In addition, for the purpose of producing multi-component powder, other than silica, for example,
Water-absorbing powder such as alumina or zirconia may be used.

また、上述した吸水性粉体は粒径1mm以下、好
ましくは1〜100μものが一般的である。
Further, the above-mentioned water-absorbing powder generally has a particle size of 1 mm or less, preferably 1 to 100 μm.

本発明において、使用されるハロゲン化珪素と
しては四塩化珪素、トリクロルシラン、ジクロロ
シラン等が挙げられ、このうち反応性、経済性等
の面で特に四塩化珪素が好適である。また、上記
ハロゲン化珪素は一般にガス状で使用され、この
場合にハロゲン化珪素を不活性ガスで希釈して使
用してもよい。
In the present invention, silicon halides used include silicon tetrachloride, trichlorosilane, dichlorosilane, etc. Among these, silicon tetrachloride is particularly preferred in terms of reactivity, economy, etc. Further, the silicon halide is generally used in a gaseous state, and in this case, the silicon halide may be diluted with an inert gas before use.

本発明の特徴は、前記ハロゲン化珪素と水で湿
潤した吸水性粉体とを接触させることにある。即
ち、湿潤した吸水性粉体を使用することにより、
高い反応率で水とハロゲン化珪素を反応させて、
重質なシリカを生成させることが可能となるので
ある。従つて、吸水性粉体がその吸油量を超える
水を担持している場合には、その粉体表面に存在
する水層のみでシリカの生成反応が起こり、反応
率が低下するばかりでなく、粉体同志の付着が激
しく、塊化するため、均一な反応ができにくくな
る。また担持させる水があまり少ないとシリカの
生成量及び生成速度が減少して効率が低下する傾
向がある。従つて、吸水性粉体に担持させる水の
量は、該粉体の吸水量の10〜100%、好ましくは
20〜80%、更に好ましくは30〜50%とすることが
望ましい。
A feature of the present invention is that the silicon halide is brought into contact with water-absorbing powder moistened with water. That is, by using moist water-absorbing powder,
By reacting water and silicon halide at a high reaction rate,
This makes it possible to produce heavy silica. Therefore, if a water-absorbing powder carries water exceeding its oil absorption capacity, the silica production reaction will occur only in the water layer existing on the surface of the powder, and the reaction rate will not only decrease; Powder particles adhere strongly to each other and form clumps, making it difficult to perform a uniform reaction. Furthermore, if the amount of supported water is too small, the amount and rate of silica production tend to decrease, resulting in a decrease in efficiency. Therefore, the amount of water supported on the water-absorbing powder is 10 to 100% of the water absorption amount of the powder, preferably
It is desirable to set it to 20-80%, more preferably 30-50%.

かかる吸水性粉体とハロゲン化珪素との接触方
法は特に限定されるものではなく、公知の固−気
反応における方法が特に制限なく採用される。例
えば、ハロゲン化珪素と吸水性粉体とを向流で接
触させる方法、流動床を利用する方法、ハロゲン
化珪素の雰囲気中で吸水性粉体を撹拌翼等の撹拌
手段により撹拌する方法などの流動方式、吸水性
粉体よりなる固定床にハロゲン化珪素を通過させ
る方法などの固定方式が一般的である。このう
ち、特に、撹拌翼を有する反応槽を利用する方法
が、反応の制御が容易であり、吸水性粉体中の未
反応の水の量をコントロールすることができ好ま
しい。
The method of contacting the water-absorbing powder with the silicon halide is not particularly limited, and any known solid-gas reaction method may be employed without particular limitation. For example, a method of bringing silicon halide and water-absorbing powder into contact with each other in countercurrent, a method of using a fluidized bed, a method of stirring water-absorbing powder in an atmosphere of silicon halide using a stirring means such as a stirring blade, etc. Fixed methods such as a fluidized method and a method in which silicon halide is passed through a fixed bed of water-absorbing powder are common. Among these, the method using a reaction tank having a stirring blade is particularly preferable because the reaction can be easily controlled and the amount of unreacted water in the water-absorbing powder can be controlled.

また、上記の接触方法において、吸水性粉体に
担持された水とハロゲン化珪素との反応によつて
減少した水を補給しながら行なうことも好ましい
態様である。かかる態様によれば、生成するシリ
カの粒度を任意に調整することができる。この場
合、水の補給は吸水性粉体の流動性を維持し得る
範囲内で行なうことが必要である。
In addition, in the above-mentioned contact method, it is also a preferred embodiment to carry out the contact while replenishing the water that has been reduced by the reaction between the water supported on the water-absorbing powder and the silicon halide. According to this aspect, the particle size of the produced silica can be adjusted as desired. In this case, it is necessary to supply water within a range that can maintain the fluidity of the water-absorbing powder.

本発明において、吸水性粉体とハロゲン化珪素
との接触は、連続的に行なつてもよいし、バツチ
で行なつてもよい。連続的に行なう場合には、吸
水性粉体を連続又は断続的に供給すればよいが、
該吸水性粉体の少なくとも一部として生成するシ
リカを分級し、そのうちの微粉を反応系に供給す
ることも可能である。また、この場合、シリカの
分級は反応装置外にサイクロンのような分級器を
設けて行なつてもよいし、反応装置内で行なつて
もよい。
In the present invention, the contact between the water-absorbing powder and the silicon halide may be carried out continuously or in batches. In the case of continuous operation, the water-absorbing powder may be supplied continuously or intermittently, but
It is also possible to classify the silica produced as at least a part of the water-absorbing powder and supply the fine powder thereof to the reaction system. Furthermore, in this case, the silica may be classified by providing a classifier such as a cyclone outside the reaction apparatus, or may be carried out within the reaction apparatus.

また、このように吸水性粉体を連続的又は断続
的に反応系に供給する場合に、供給する吸水性粉
体は前記した補給水と混合してスラリー状で供給
することが望ましい。この場合、スラリーの水は
直ちに反応系内の吸水性粉体に吸収されて湿潤状
態が維持される。
Further, when the water-absorbing powder is continuously or intermittently supplied to the reaction system as described above, it is desirable that the supplied water-absorbing powder is mixed with the above-mentioned make-up water and supplied in the form of a slurry. In this case, the water in the slurry is immediately absorbed by the water-absorbing powder in the reaction system to maintain a wet state.

本発明の方法によつて得られるシリカの粒度
は、供給される吸水性粉体の粒径、吸水量、ハロ
ゲン化珪素との接触時間等によつて調整すること
が可能であり、目的に応じて適宜決定すればよ
い。例えば、本発明の方法によつて得られたシリ
カを溶融・一体化して石英ガラスとし、光フアイ
バー用基材に使用する場合には1〜20μが、個々
の粒子のまま乾燥、溶融又は焼結して半導体封止
材用フイラーとして使用する場合には1〜100μ
が好ましい。
The particle size of the silica obtained by the method of the present invention can be adjusted depending on the particle size, water absorption amount, contact time with silicon halide, etc. of the water-absorbing powder supplied, and can be adjusted depending on the purpose. It may be determined as appropriate. For example, when silica obtained by the method of the present invention is melted and integrated to form quartz glass and used as a base material for optical fibers, 1 to 20 μm of silica is dried, melted, or sintered as individual particles. 1 to 100μ when used as a filler for semiconductor encapsulant.
is preferred.

〔作用及び効果〕[Action and effect]

以上の説明より理解される如く、本発明によれ
ば吸水性粉体上に高純度の重質シリカを高反応率
で生成させることができ、容易に高純度の重質シ
リカ或いは重質なシリカ複合粉体を得ることがで
きる。因に、本発明においてヒユームドシリカを
吸水性粉体として使用した場合には、その嵩比容
積を2c.c./g以下に下げた重質シリカを得ること
ができる。また、反応率が高いため、得られるシ
リカ中の水分が少なく、乾燥が極めて容易となる
というメリツトも有する。更に、反応がマイルド
で粒径の制御も容易であるというメリツトも有す
る。
As understood from the above explanation, according to the present invention, high purity heavy silica can be produced on water-absorbing powder at a high reaction rate, and high purity heavy silica or heavy silica can be easily produced on water-absorbing powder. A composite powder can be obtained. Incidentally, when fumed silica is used as a water-absorbing powder in the present invention, heavy silica whose bulk specific volume is lowered to 2 c.c./g or less can be obtained. Furthermore, since the reaction rate is high, the obtained silica has little water content and has the advantage of being extremely easy to dry. Furthermore, it has the advantage that the reaction is mild and the particle size can be easily controlled.

本発明の方法により、上述した効果が得られる
理由については明らかではないが、本発明者等は
水を吸水性粉体の内部に担持させてハロゲン化珪
素と接触させるため、両者の反応が適度に制御さ
れて均一な反応が行われるためと推定している。
Although it is not clear why the above-mentioned effects can be obtained by the method of the present invention, the present inventors carried water inside the water-absorbing powder and brought it into contact with the silicon halide, so that the reaction between the two is moderate. It is assumed that this is because the reaction is controlled uniformly.

本発明の方法によつて得られたシリカは前記し
た用途の他、無機粉体として使用される公知の分
野にも特に制限なく使用される。
The silica obtained by the method of the present invention can be used in any known field in which it is used as an inorganic powder, in addition to the above-mentioned applications, without any particular restriction.

実施例 1 下部に四塩化ケイ素導入管、上部蓋に水入口及
び排ガス出口を有する内容積2.3のガラス製反
応槽に、あらかじめヒユームドシリカ(徳山曹達
(株)製 レオロシールQS−102(商品名)比表面積
200m2/g、嵩比容積(JIS K−6220による)14
c.c./g、吸油量3.2c.c./gの超微粉乾式シリカ)
1gにつきイオン交換水1gを吸水させた嵩比容
積9c.c./gの粉体を140g入れ、撹拌により該粉
体を流動させながら四塩化ケイ素導入管へ四塩化
ケイ素とチツ素の混合気体を2/分で導入し
た。
Example 1 Humid silica (Tokuyama Soda) was placed in advance in a glass reaction tank with an internal volume of 2.3 mm, which had a silicon tetrachloride inlet pipe in the lower part and a water inlet and exhaust gas outlet in the upper lid.
Rheolo Seal QS-102 (product name) specific surface area manufactured by Co., Ltd.
200m 2 /g, bulk specific volume (according to JIS K-6220) 14
cc/g, ultrafine powder dry silica with oil absorption of 3.2cc/g)
Add 140 g of powder with a bulk specific volume of 9 c.c./g in which 1 g of ion-exchanged water has been absorbed per 1 g, and while fluidizing the powder by stirring, a mixed gas of silicon tetrachloride and nitrogen is introduced into the silicon tetrachloride inlet pipe. was introduced at 2/min.

四塩化ケイ素と水の反応により槽内の温度は上
昇するが、水が消費され槽内温度が下り始めると
ともに上部水入口よりイオン交換水を0.8c.c./分
の速度で滴下した。反応において、粉体は終始流
動性を有していた。10時間反応後、反応槽内の粉
体をイオン交換水で洗浄、濾過、乾燥して573g
のシリカ粉体を得た。反応に要した液体四塩化ケ
イ素は984c.c.、水480c.c.であつた。消費した四塩化
ケイ素当りの収率は97%であつた。得られたシリ
カ粉体の嵩比容量は1.0c.c./gであつた。また、
ウランの含有量は1ppb以下であつた。
The temperature inside the tank rose due to the reaction between silicon tetrachloride and water, but as the water was consumed and the temperature inside the tank began to drop, ion-exchanged water was dripped at a rate of 0.8 cc/min from the upper water inlet. During the reaction, the powder had fluidity throughout. After 10 hours of reaction, the powder in the reaction tank was washed with ion-exchanged water, filtered, and dried to give 573g.
silica powder was obtained. The amount of liquid silicon tetrachloride required for the reaction was 984 c.c., and the amount of water required was 480 c.c. The yield per silicon tetrachloride consumed was 97%. The bulk specific capacity of the obtained silica powder was 1.0 cc/g. Also,
The uranium content was less than 1 ppb.

実施例 2 実施例1と同様な反応槽を用い、これに実施例
1と同じヒユームドシリカ1gにつきイオン交換
水1gを吸水させた粉体100gを入れ、撹拌下に
該粉体を流動させながら、四塩化ケイ素導入管へ
四塩化ケイ素とチツ素の混合気体を2/分で導
入した。
Example 2 Using a reaction tank similar to that in Example 1, 100 g of a powder obtained by absorbing 1 g of ion-exchanged water per 1 g of the same fumed silica as in Example 1 was added, and while the powder was being fluidized under stirring, it was A mixed gas of silicon tetrachloride and nitrogen was introduced into the silicon chloride inlet tube at a rate of 2/min.

四塩化ケイ素と水の反応により槽内の温度は上
昇するが、水が消費され槽内温度が下り始めると
ともに上部水入口よりヒユームドシリカのイオン
交換水懸濁液(ヒユームドシリカ濃度20重量%)
を1c.c./分の速度で滴下した。
The temperature inside the tank rises due to the reaction between silicon tetrachloride and water, but as the water is consumed and the temperature inside the tank begins to drop, an ion exchange water suspension of humid silica (humid silica concentration 20% by weight) is released from the upper water inlet.
was added dropwise at a rate of 1 c.c./min.

反応時間の経過とともに槽内の粉体の嵩容積は
減少するが、反応時間が6時間以上になると槽内
の粉体の嵩容積は増加し始めた。これ以後反応槽
の側壁に設けたオーバーフロー管より内容物の嵩
容積増加分を連続的に槽外へ取り出した。反応に
おいて粉体は常に流動性を保つていた。
The bulk volume of the powder in the tank decreased as the reaction time progressed, but when the reaction time exceeded 6 hours, the bulk volume of the powder in the tank began to increase. Thereafter, the increased volume of the contents was continuously taken out of the tank through an overflow pipe provided on the side wall of the reaction tank. The powder always maintained fluidity during the reaction.

四塩化ケイ素の供給量は液体四煙化ケイ素換算
で112c.c./時、ヒユームドシリカ懸濁液供給量60
c.c./時のとき、58g(乾燥重量)/時でシリカ粉
体が連続的に取出された。取り出されたシリカ粉
体の嵩比容積は1.6c.c./gであつた。また、ウラ
ンの含有量は1ppb以下であつた。
The supply amount of silicon tetrachloride is 112 c.c./hour in terms of liquid silicon tetrachloride, and the supply amount of fumed silica suspension is 60 c.c./hour.
At cc/hr, 58 g (dry weight)/hr of silica powder was removed continuously. The bulk specific volume of the silica powder taken out was 1.6 cc/g. Additionally, the uranium content was less than 1 ppb.

Claims (1)

【特許請求の範囲】 1 水で湿潤した吸水性粉体とハロゲン化珪素と
を接触させることを特徴とするシリカの製造方
法。 2 吸水性粉体の吸油量が0.5c.c./g以上である
特許請求の範囲第1項記載の方法。 3 吸水性粉体がシリカ粉である特許請求の範囲
第1項記載の方法。 4 ハロゲン化珪素が四塩化珪素である特許請求
の範囲第1項記載の方法。 5 吸水性粉体とハロゲン化珪素との反応を撹拌
下に行なう特許請求の範囲第1項記載の方法。 6 吸水性粉体に水を供給しながら行なう特許請
求の範囲第1項記載の方法。
[Claims] 1. A method for producing silica, which comprises bringing a water-absorbing powder moistened with water into contact with a silicon halide. 2. The method according to claim 1, wherein the water-absorbing powder has an oil absorption amount of 0.5 cc/g or more. 3. The method according to claim 1, wherein the water-absorbing powder is silica powder. 4. The method according to claim 1, wherein the silicon halide is silicon tetrachloride. 5. The method according to claim 1, wherein the reaction between the water-absorbing powder and the silicon halide is carried out under stirring. 6. The method according to claim 1, which is carried out while supplying water to the water-absorbing powder.
JP7541285A 1985-04-11 1985-04-11 Production of silica Granted JPS61236609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7541285A JPS61236609A (en) 1985-04-11 1985-04-11 Production of silica

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7541285A JPS61236609A (en) 1985-04-11 1985-04-11 Production of silica

Publications (2)

Publication Number Publication Date
JPS61236609A JPS61236609A (en) 1986-10-21
JPH0336763B2 true JPH0336763B2 (en) 1991-06-03

Family

ID=13575432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7541285A Granted JPS61236609A (en) 1985-04-11 1985-04-11 Production of silica

Country Status (1)

Country Link
JP (1) JPS61236609A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2532933B2 (en) * 1988-11-29 1996-09-11 高純度シリコン株式会社 Method for producing high-purity silica

Also Published As

Publication number Publication date
JPS61236609A (en) 1986-10-21

Similar Documents

Publication Publication Date Title
US5242671A (en) Process for preparing polysilicon with diminished hydrogen content by using a fluidized bed with a two-step heating process
CN102203009B (en) An apparatus and process for hydrogenation of a silicon tetrahalide and silicon to the trihalosilane
EP1088789A2 (en) Porous silica granule, its method of production and its use in a method for producing quartz glass
JP2001220126A (en) Crystalline synthetic silica powder and glass compact using the same
JP2001220157A (en) Amorphous synthetic silica powder and glass compact using the same
GB1570615A (en) Sodium pereborate monohydrate
EP1414745B1 (en) Silica-based particulates
JPH0336763B2 (en)
US2573057A (en) Process of preparing white finely divided amorphous silica
US4377563A (en) Method of preparing silicon carbide
JPS5855329A (en) Manufacture of silicon tetrachloride
EP0344336B1 (en) An absorbent for chlorosilane compound
JPH0336765B2 (en)
KR0166367B1 (en) Polysilicon and process therefor
JP2820865B2 (en) Method for producing quartz glass foam
US3329622A (en) Novel product and process
US3560151A (en) Process for the production of finely divided silicon dioxide
JPH07502006A (en) Microparticulate silicone with halogen bonded to its surface, its manufacturing method and its uses
US3372126A (en) Process for preparing spheroidal fluorinating agents containing calcium fluoride and suitable for fluid-beds and product resulting therefrom
JPH0336764B2 (en)
US3215493A (en) Process of agglomerating fine crystals and cryolite product
US3681036A (en) Method of making silicon halides
CN107601512A (en) A kind of production method of compound and silicon tetrachloride
RU2235684C2 (en) Method of preparing fine high-porous silica
JPS6259515A (en) Production of high-purity silicic acid hydrate