JPH0336612B2 - - Google Patents

Info

Publication number
JPH0336612B2
JPH0336612B2 JP21602883A JP21602883A JPH0336612B2 JP H0336612 B2 JPH0336612 B2 JP H0336612B2 JP 21602883 A JP21602883 A JP 21602883A JP 21602883 A JP21602883 A JP 21602883A JP H0336612 B2 JPH0336612 B2 JP H0336612B2
Authority
JP
Japan
Prior art keywords
weight
corrosion
silicone resin
melting point
mold release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21602883A
Other languages
Japanese (ja)
Other versions
JPS60108139A (en
Inventor
Koichi Matsuda
Makoto Fujoshi
Hiroshi Harada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP21602883A priority Critical patent/JPS60108139A/en
Publication of JPS60108139A publication Critical patent/JPS60108139A/en
Publication of JPH0336612B2 publication Critical patent/JPH0336612B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C3/00Selection of compositions for coating the surfaces of moulds, cores, or patterns

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)
  • Lubricants (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、溶融金属の耐食性離型材料(以下、
耐食離型材という)、特にアルミニウム合金、亜
鉛合金、鉛合金等の侵食性金属溶湯に接する鋳鉄
製ルツボ表面や、Al、Mg、Zn、Sn等の軽金属
の溶湯を自然重力鋳造又は低圧鋳造する際に溶い
られる鋳造金型の表面に塗布して溶湯の侵食を防
ぎ、耐久性を向上させることのできる耐食離型材
に関する。 〔従来の技術〕 従来、これらの耐食離型材としては、窒化硼素
(BN)、酸化チタン(TiO2)、黒鉛等の粉末を水、
油、溶剤等に分散させてなる溶液やさらにこれに
結合剤を添加した溶液を耐食離型材としこれを基
材に塗布し焼き付ける方法が知られている。しか
し、この耐食離型材の塗膜は700℃以上の高温に
おいては剥離やクラツクが発生するので、溶融金
属の耐食離型材としての使用が困難であることや
塗膜を基材に焼き付ける場合でも、その昇温と冷
却の速度をゆるやかに行わないと剥離、クラツク
及びふくれ等が発生するので焼き付けに長時間必
要とする欠点があつた。 〔発明が解決しようとする課題〕 本発明は、以上の欠点を解決した耐食離型材を
提供することを目的とするものである。 〔問題を解決するための手段〕 すなわち、本発明は、窒化硼素30〜80重量%、
融点が300〜700℃の低融点釉薬1〜18重量%、残
部が無機質顔料である粉末組成物20〜60重量部と
シリコーン樹脂20〜60重量%、残部がシリコーン
樹脂可溶な有機溶剤である液状組成物80〜40重量
部を含有してなる溶融金属の耐食性離型材料であ
る。 以下、本発明をさらに詳しく説明する。 本発明は、BN、融点が300〜700℃の低融点釉
薬(以下、単に低融点釉薬という)、無機質顔料、
シリコーン樹脂及びシリコーン樹脂可溶な有機溶
剤を含有する耐食離型材であつて、これを基材に
塗布し焼き付けると、耐食性と離型性にすぐれた
塗膜が形成されるものである。 本発明で使用される粉末組成物は、BN、低融
点釉薬及び無機質顔料からなるものである。 BNは、粉末組成物中に30〜80重量%存在させ
る。BNが80重量%をこえると基材との密着性が
低下して剥離やクラツクが発生し、また30重量%
未満では耐食性と離型性が低下する。BNは塗膜
に耐食性と離型性を付与するものであるのでその
純度は90%以上であることが望ましい。粒径につ
いては基材との密着性に大きな影響を及ぼすので
10μ以下とするのが望ましい。 低融点釉薬は、粉末組成物中に1〜18重量%存
在させる。18重量%をこえると離型性や耐熱性が
悪くなり、また1重量%未満では基材との密着性
が低下して塗膜が剥離したりクラツクが発生した
りする。 本発明において、低融点釉薬とは、その融点が
300〜700℃のものである。これの具体例をあげれ
ば、一般にフリツトやクレーとして市販されてい
るAl2O3、MgO、Na2Oなどを含有するホウケイ
酸ガラス質の釉薬や粘土などのうち融点が300〜
700℃のものである。低融点釉薬を使用する理由
は、本発明の耐食離型材を基材に塗布して焼き付
ける際に、塗膜と基材との密着性が低下する400
℃付近の温度で耐食離型材が軟化し、それとシリ
コーン樹脂が熱分解して生成したSiO2とが反応
してその密着性の低下を補うと共に、700〜900℃
の高温においては無機質顔料と反応して基材との
密着性を高めるからである。 無機質顔料は、BNと低融点釉薬の残部、すな
わち粉末組成物中に2〜69重量%存在させる。無
機質顔料が69重量%をこえると相対的にBN含有
量が少なくなるので離型性が低下し、また2重量
%未満では塗膜に剥離やクラツクが発生する。 無機質顔料としては市販のTiO2、Al2O3
BaSO4等の白色顔料、酸化鉄(Fe3O4)等の黒色
顔料を用いることができる。その粒径については
低融点釉薬との反応性や基材との密着性を考慮す
ると10μ以下のものが好ましく、またその融点
は、低融点釉薬のそれよりも高いものがよい。無
機質顔料は、シリコーン樹脂が熱分解して生成し
たSiO2や低融点釉薬と反応して焼き付け時や急
熱急冷の際に発生する塗膜の剥離とクラツクを防
止し、密着力の強い塗膜を得るのに必要なもので
ある。 本発明で使用される液状組成物は、シリコーン
樹脂とシリコーン樹脂可溶な有機溶剤(以下、単
に溶剤という)とからなるものである。 シリコーン樹脂は液状組成物中に20〜60重量%
存在させる。シリコーン樹脂が60重量%をこえる
と熱分解時に発生するガス量が多くなり塗膜にふ
くれが発生する。一方、20重量%未満では低温に
おける基材との密着性が低下し、しかも生成する
SiO2量も少なくなり基材との密着力が低下する。
シリコーン樹脂としては、特殊なものである必要
はなく市販品で十分である。市販品としてはシリ
コーン樹脂を有機溶剤に溶解した液状タイプのも
のや、さらにこれらにアルキル樹脂、アクリル樹
脂、フエノール樹脂、エポキシ樹脂等を混合した
変性シリコーン樹脂があるが、いずれも使用可能
である。粘度としては1000〜5000cP程度がよい。 シリコーン樹脂は、粉末組成物の結合剤として
作用し、常温から約300℃までの温度において基
材との密着性をよくするものであり、また高温に
おいては熱分解してSiO2を生成させ、それと低
融点釉薬や無機質顔料とが反応して安定でかつ基
材との密着性の良好な塗膜を形成する役割を果た
すものである。 溶剤は、液状組成物中に40〜80重量%存在させ
ればよく、40重量%未満では粉末組成物との混合
性と塗布する際の作業性が低下する。一方、80重
量%をこえると分散していた粉末組成物が沈降分
離しやすくなる。溶剤としては、トルエン、キシ
レンのようにシリコーン樹脂と相溶性のあるもの
であればよい。溶剤は粉末組成物と液状組成物と
の混合性と基材に塗布する際の作業性を良好とす
るものである。 本発明の耐食離型材は、上記粉末組成物20〜60
重量部と上記液状組成物80〜40重量部を混合した
ものである。粉末組成物の割合が20重量部より少
ないと離型性を発現するBNや基材への密着性を
つかさどる低融点釉薬と無機質顔料の含有量が少
なくなり、離型性が低下したり剥離やクラツクが
発生したりする。また液状組成物の割合が80重量
部をこえる結果、分散していた粉末組成物が沈降
しやすくなつたりシリコーン樹脂の熱分解ガスに
よつて塗膜にふくれが発生したりするようにな
る。一方、粉末組成物の割合が60重量部をこえる
と、混合性が悪くなつて均一分散ができなくなる
と共に塗布する際の作業性も低下する。また液状
組成物の割合が40重量部未満となつてシリコーン
樹脂の含有量が少なくなるので基材への密着性、
特に低温での密着力が低下する。 本発明の耐食離型材を製造するには、上記した
割合で粉末組成物と液状組成物を混合器に入れ数
時間混合すればよい。本発明の耐食離型材を使用
するには、原液をそのまま又は溶剤で希釈して鋳
鉄、ステンレス、鋼鉄等の基材に適当な手段、例
えば刷毛塗り、スプレー等の塗布手段によつて塗
布し常温で乾燥すればよく、特別の手段を必要と
しない。 〔実施例〕 以下、実施例をあげてさらに具体的に本発明を
説明する。なお、実施例の%及び部はいずれも重
量基準で示した。 実施例 1 BN粉末(粒径5μ以下)50%、低融点釉薬とし
てのフリツトガラス(粒径5μ以下、融点500℃)
5%及び無機質顔料としてBaSO4(粒径5μ以下)
45%の組成からなる粉末組成物40部と、シリコー
ン樹脂40%及び溶剤としてのトルエン60%とから
なる液状組成物60部とを配合してボールミルで均
一に混合した。 これをアルミニウムダイカストマシン用の内容
積2の鋳鉄製ルツボに厚み1mmになるようにス
プレー塗布し200℃で1時間乾燥した。このルツ
ボをダイカストマシンに取り付け、温度700℃に
溶解したアルミニウム合金(ADC12)の鋳込み
を繰り返し実施した。その結果、以下に示す耐食
性は7万回以上であり、また離型性も良好であつ
た。 (1) 耐食性……鋳鉄製ルツボの塗膜が溶融アルミ
ニウムに侵食されるまでの鋳込み回数。 (2) 離型性……鋳鉄製ルツボに付着したアルミニ
ウムの剥がれやすさの目視観察。 比較例 1 TiO2(粒径5μ以下)40%、結合剤としてのカオ
リナイト20%及び分散媒としてのボイル油(アマ
ニ油)40%の組成からなる耐食離型材を用いたこ
と以外は実施例1と同様に行つたところ、耐食性
は7千回であつた。また離型性は不良であつた。 実施例 2 実施例1と同一の耐食離型材を容量3の鋳鉄
製金型(SKD−6)表面に厚み1mmになるよう
にスプレー塗布し、温度200℃で1時間乾燥した。 次いで、この金型に温度700〜780℃に溶解した
アルミニウム合金(AC4C)を入れ自然重力鋳造
した。その結果、鋳造回数は50回可能であり、ま
た離型性も良好であつた。 なお、鋳造回数は、金型より取出した製品の表
面状態を調べ焼付の発生した回数により行つた。 比較例 2 黒鉛粉末を水に分散させてなる市販の金型被覆
材を用いたころ以外は実施例2と同様に行つたと
ころ、鋳造回数は12回であつた。 実施例3〜6 比較例3〜5 BN粉末(粒径5μ以下)、フリツトガラス(粒
径5μ以下、融点500℃)、無機質顔料としての酸
化鉄(粒径5μ以下)、シリコーン樹脂及びトルエ
ンを第1表に示す割合としボールミルで均一に混
合した。 これを厚み200μにして鉄板にスプレー塗布し
常温で乾燥後温度700℃の炉に入れ、30分間焼き
付けた。 得られた基材の密着性を、塗膜にテープを張り
つけそれを剥がすことによつて評価した後、基材
をアルミニウム合金浴(700℃)に浸漬し、10分
後に冷却する操作を100回繰り返して基材表面へ
のアルミニウムの付着状況を調べた。それらの結
果を第1表に示す。
[Industrial Application Field] The present invention provides a corrosion-resistant mold release material for molten metal (hereinafter referred to as
Corrosion-resistant mold release material), especially for cast iron crucible surfaces that come into contact with molten corrosive metals such as aluminum alloys, zinc alloys, and lead alloys, and when performing natural gravity casting or low-pressure casting of molten light metals such as Al, Mg, Zn, and Sn. This invention relates to a corrosion-resistant mold release material that can be applied to the surface of a casting mold to prevent corrosion of molten metal and improve durability. [Conventional technology] Conventionally, as these corrosion-resistant mold release materials, powders of boron nitride (BN), titanium oxide (TiO 2 ), graphite, etc. are mixed with water,
A method is known in which a solution obtained by dispersing the material in oil, a solvent, etc., or a solution in which a binder is added thereto is used as a corrosion-resistant mold release material, and the material is coated on a base material and baked. However, the paint film of this corrosion-resistant mold release material peels and cracks at high temperatures of 700°C or higher, making it difficult to use as a corrosion-resistant mold release material for molten metal, and even when baking the paint film onto a base material. If the rate of heating and cooling is not slow, peeling, cracking, blistering, etc. will occur, resulting in the drawback that baking requires a long time. [Problems to be Solved by the Invention] An object of the present invention is to provide a corrosion-resistant mold release material that solves the above drawbacks. [Means for solving the problem] That is, the present invention provides boron nitride in an amount of 30 to 80% by weight,
1-18% by weight of a low melting point glaze with a melting point of 300-700°C, the remainder being an inorganic pigment, 20-60 parts by weight, a silicone resin, 20-60% by weight, and the remainder being an organic solvent in which the silicone resin is soluble. This is a corrosion-resistant mold release material for molten metal containing 80 to 40 parts by weight of a liquid composition. The present invention will be explained in more detail below. The present invention includes BN, a low melting point glaze with a melting point of 300 to 700°C (hereinafter simply referred to as a low melting point glaze), an inorganic pigment,
It is a corrosion-resistant mold release material containing a silicone resin and a silicone resin-soluble organic solvent, and when applied to a substrate and baked, a coating film with excellent corrosion resistance and mold release properties is formed. The powder composition used in the present invention consists of BN, a low melting point glaze, and an inorganic pigment. BN is present in the powder composition at 30-80% by weight. When BN exceeds 80% by weight, the adhesion with the base material decreases, causing peeling and cracking, and when BN exceeds 80% by weight,
If it is less than that, corrosion resistance and mold releasability will deteriorate. Since BN imparts corrosion resistance and mold releasability to the coating film, its purity is desirably 90% or higher. The particle size has a great effect on the adhesion to the base material.
It is desirable that the thickness be 10μ or less. The low melting point glaze is present in the powder composition at 1-18% by weight. If it exceeds 18% by weight, the mold releasability and heat resistance will deteriorate, and if it is less than 1% by weight, the adhesion to the substrate will decrease and the coating will peel or crack. In the present invention, a low melting point glaze refers to a glaze whose melting point is
It is 300-700℃. A specific example of this is borosilicate glass glazes and clays containing Al 2 O 3 , MgO, Na 2 O, etc., which are generally commercially available as frits and clays, and which have melting points of 300 to 300.
It is 700℃. The reason for using a low melting point glaze is that when the corrosion-resistant mold release material of the present invention is applied to a base material and baked, the adhesion between the coating film and the base material decreases400
The corrosion-resistant mold release material softens at temperatures around 700 to 900 °C, and reacts with SiO 2 produced by thermal decomposition of silicone resin to compensate for the loss of adhesion.
This is because at high temperatures, it reacts with the inorganic pigment and increases its adhesion to the base material. The inorganic pigment is present in the balance of the BN and the low melting point glaze, i.e. 2 to 69% by weight in the powder composition. If the inorganic pigment exceeds 69% by weight, the BN content will be relatively low, resulting in poor mold releasability, and if it is less than 2% by weight, peeling or cracking will occur in the coating film. Commercially available inorganic pigments include TiO 2 , Al 2 O 3 ,
White pigments such as BaSO 4 and black pigments such as iron oxide (Fe 3 O 4 ) can be used. The particle size is preferably 10 μm or less in consideration of reactivity with the low melting point glaze and adhesion to the substrate, and the melting point is preferably higher than that of the low melting point glaze. Inorganic pigments react with SiO 2 produced by thermal decomposition of silicone resin and low-melting-point glazes, preventing peeling and cracking of the coating film that occurs during baking or rapid heating and cooling, and creates a coating film with strong adhesion. is necessary to obtain. The liquid composition used in the present invention consists of a silicone resin and an organic solvent (hereinafter simply referred to as a solvent) in which the silicone resin is soluble. Silicone resin is 20-60% by weight in liquid composition
Make it exist. If the silicone resin content exceeds 60% by weight, the amount of gas generated during thermal decomposition increases, causing blistering in the coating film. On the other hand, if it is less than 20% by weight, the adhesion to the base material at low temperatures will decrease, and moreover, it will form.
The amount of SiO 2 also decreases and the adhesion to the base material decreases.
The silicone resin does not need to be a special one, and commercially available products are sufficient. Commercially available products include liquid types made by dissolving silicone resins in organic solvents, and modified silicone resins made by mixing these with alkyl resins, acrylic resins, phenolic resins, epoxy resins, etc., but any of these can be used. The viscosity is preferably about 1000 to 5000 cP. Silicone resin acts as a binder for the powder composition and improves adhesion to the substrate at temperatures from room temperature to about 300°C, and also thermally decomposes at high temperatures to generate SiO 2 . It reacts with the low melting point glaze and inorganic pigment to form a coating film that is stable and has good adhesion to the substrate. The solvent may be present in the liquid composition in an amount of 40 to 80% by weight; if the amount is less than 40% by weight, the miscibility with the powder composition and the workability during application will deteriorate. On the other hand, if it exceeds 80% by weight, the dispersed powder composition tends to settle and separate. Any solvent may be used as long as it is compatible with the silicone resin, such as toluene and xylene. The solvent improves the miscibility of the powder composition and the liquid composition and the workability when coating the composition on a substrate. The corrosion-resistant mold release material of the present invention comprises the above powder composition 20 to 60%
This is a mixture of 80 to 40 parts by weight of the above liquid composition. If the proportion of the powder composition is less than 20 parts by weight, the content of BN, which exhibits mold releasability, and the low melting point glaze and inorganic pigment, which control adhesion to the base material, will be low, resulting in decreased mold releasability or peeling. Cracks may occur. Further, if the proportion of the liquid composition exceeds 80 parts by weight, the dispersed powder composition tends to settle and the coating film becomes blistered due to the thermal decomposition gas of the silicone resin. On the other hand, if the proportion of the powder composition exceeds 60 parts by weight, the mixability becomes poor and uniform dispersion becomes impossible, and workability during application also decreases. In addition, since the proportion of the liquid composition is less than 40 parts by weight and the content of silicone resin is reduced, the adhesion to the substrate is improved.
In particular, the adhesion strength at low temperatures decreases. In order to manufacture the corrosion-resistant mold release material of the present invention, the powder composition and the liquid composition may be placed in a mixer at the above-mentioned ratio and mixed for several hours. To use the corrosion-resistant mold release material of the present invention, apply the undiluted solution as it is or dilute it with a solvent to a base material such as cast iron, stainless steel, or steel by an appropriate coating method such as brushing or spraying at room temperature. It only needs to be dried, and no special measures are required. [Example] Hereinafter, the present invention will be explained in more detail with reference to Examples. In addition, all percentages and parts in Examples are shown on a weight basis. Example 1 50% BN powder (particle size 5μ or less), fritted glass as a low melting point glaze (particle size 5μ or less, melting point 500℃)
5% and BaSO 4 as inorganic pigment (particle size less than 5μ)
40 parts of a powder composition consisting of 45% composition and 60 parts of a liquid composition consisting of 40% silicone resin and 60% toluene as a solvent were blended and mixed uniformly in a ball mill. This was spray-coated to a thickness of 1 mm in a cast iron crucible with an internal volume of 2 for an aluminum die-casting machine, and dried at 200°C for 1 hour. This crucible was attached to a die-casting machine, and aluminum alloy (ADC12) molten at a temperature of 700°C was repeatedly cast. As a result, the corrosion resistance shown below was 70,000 times or more, and the mold releasability was also good. (1) Corrosion resistance: The number of times the cast iron crucible is cast until its coating is corroded by molten aluminum. (2) Mold releasability: Visual observation of the ease with which aluminum attached to a cast iron crucible peels off. Comparative Example 1 Example except that a corrosion-resistant mold release material having a composition of 40% TiO 2 (particle size 5μ or less), 20% kaolinite as a binder, and 40% boiled oil (linseed oil) as a dispersion medium was used. When the test was carried out in the same manner as in 1, the corrosion resistance was 7,000 times. Moreover, the mold releasability was poor. Example 2 The same corrosion-resistant mold release material as in Example 1 was spray applied to the surface of a cast iron mold (SKD-6) with a capacity of 3 to a thickness of 1 mm, and dried at a temperature of 200°C for 1 hour. Next, an aluminum alloy (AC4C) molten at a temperature of 700 to 780°C was placed in this mold and natural gravity casting was performed. As a result, it was possible to perform casting 50 times, and the mold releasability was also good. The number of castings was determined by checking the surface condition of the product taken out from the mold and determining the number of times seizure occurred. Comparative Example 2 The same procedure as in Example 2 was conducted except that a commercially available mold covering material made of graphite powder dispersed in water was used, and the number of castings was 12. Examples 3 to 6 Comparative Examples 3 to 5 BN powder (particle size 5μ or less), fritted glass (particle size 5μ or less, melting point 500°C), iron oxide as an inorganic pigment (particle size 5μ or less), silicone resin, and toluene The proportions shown in Table 1 were uniformly mixed using a ball mill. This was spray-coated to a thickness of 200 μm on an iron plate, dried at room temperature, and then placed in a furnace at a temperature of 700°C and baked for 30 minutes. The adhesion of the obtained substrate was evaluated by applying tape to the coating film and peeling it off.The substrate was then immersed in an aluminum alloy bath (700℃) and cooled after 10 minutes, 100 times. The state of adhesion of aluminum to the surface of the base material was repeatedly examined. The results are shown in Table 1.

【表】 ○…塗膜に全く異常が認められない
×…塗膜に剥離・クラツクが発生した
〔発明の効果〕 本発明の耐食離型材は、従来品に比べて耐食性
と離型性にすぐれているので塗膜寿命を大幅に延
長させることができ、金型被覆材として使用すれ
ば、鋳造回数を著しく延長させることができる。
[Table] ○…No abnormalities observed in the coating film.
×...Peeling and cracking occurred in the paint film [Effect of the invention] The corrosion-resistant mold release material of the present invention has superior corrosion resistance and mold release properties compared to conventional products, so it can significantly extend the life of the paint film. If used as a mold covering material, the number of casting cycles can be significantly extended.

Claims (1)

【特許請求の範囲】[Claims] 1 窒化硼素30〜80重量%、融点が300〜700℃の
低融点釉薬1〜18重量%、残部が無機質顔料であ
る粉末組成物20〜60重量部とシリコーン樹脂20〜
60重量%、残部がシリコーン樹脂可溶な有機溶剤
である液状組成物80〜40重量部を含有してなる溶
融金属の耐食性離型材料。
1. 20-60 parts by weight of a powder composition containing 30-80% by weight of boron nitride, 1-18% by weight of a low-melting glaze with a melting point of 300-700°C, the balance being an inorganic pigment, and 20-60 parts by weight of a silicone resin.
A corrosion-resistant mold release material for molten metal comprising 60% by weight and 80 to 40 parts by weight of a liquid composition in which the remainder is an organic solvent soluble in silicone resin.
JP21602883A 1983-11-18 1983-11-18 Corrosion resistant mold parting material for molten metal Granted JPS60108139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21602883A JPS60108139A (en) 1983-11-18 1983-11-18 Corrosion resistant mold parting material for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21602883A JPS60108139A (en) 1983-11-18 1983-11-18 Corrosion resistant mold parting material for molten metal

Publications (2)

Publication Number Publication Date
JPS60108139A JPS60108139A (en) 1985-06-13
JPH0336612B2 true JPH0336612B2 (en) 1991-06-03

Family

ID=16682161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21602883A Granted JPS60108139A (en) 1983-11-18 1983-11-18 Corrosion resistant mold parting material for molten metal

Country Status (1)

Country Link
JP (1) JPS60108139A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS636093A (en) * 1986-06-27 1988-01-12 Shin Etsu Chem Co Ltd Boron nitride-containing composition

Also Published As

Publication number Publication date
JPS60108139A (en) 1985-06-13

Similar Documents

Publication Publication Date Title
US3243397A (en) Mold and core coating composition from calcined hydrated aluminum silicate, mica, and bentonite
US3035318A (en) Method of casting metal in a coated mold, and composition and method for coating the casting mold
WO2021051790A1 (en) Coating for high-purity aluminum smelting casting, and preparation method therefor and application thereof
EP0482984A1 (en) Refractory material bonded by a sialon matrix and process for its production
US3203815A (en) High-temperature protective coating for metals
US4037015A (en) Heat insulating coating material
US7238390B2 (en) Coating precursor and method for coating a substrate with a refractory layer
JPH02504368A (en) Covered consumable sand core for die casting
JPH0336612B2 (en)
US4587287A (en) Coating composition
SE452163B (en) SOLVENT PAINT WITH ZINC AND MANGANE PIGMENT (II, III) OXID
CN109020554A (en) Stainless steel crucible coating and preparation method thereof for Melting of Al-li Alloy
JPH061952A (en) Heat-resistant coating
JPS58225167A (en) Coating composition
US3649307A (en) Binder for zinc-rich paint
JPH11199880A (en) Releasing agent for casting mold
US2681869A (en) Surface-modifying metal articles by action of an impregnating or alloying metal and composition therefor
JPH0681839B2 (en) Lubricant release agent
JPS6048550B2 (en) Corrosion-resistant paint for high-temperature molten metals
JPS63182237A (en) Mold release agent composition
US3850684A (en) Protective coating for materials exposed to molten aluminum and its alloys
CN1161946A (en) Coating resisting molten-metal aluminium liquid corrosion and coating method thereof
JP3819046B2 (en) Anticorrosion paint composition
JPH05126320A (en) Burner cap for portable gas burner
JPS60108478A (en) Coating composition for protecting sensor