JPS6048550B2 - Corrosion-resistant paint for high-temperature molten metals - Google Patents

Corrosion-resistant paint for high-temperature molten metals

Info

Publication number
JPS6048550B2
JPS6048550B2 JP21486681A JP21486681A JPS6048550B2 JP S6048550 B2 JPS6048550 B2 JP S6048550B2 JP 21486681 A JP21486681 A JP 21486681A JP 21486681 A JP21486681 A JP 21486681A JP S6048550 B2 JPS6048550 B2 JP S6048550B2
Authority
JP
Japan
Prior art keywords
corrosion
paint
molten metal
film
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21486681A
Other languages
Japanese (ja)
Other versions
JPS58117261A (en
Inventor
豊信 水谷
正男 吉沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP21486681A priority Critical patent/JPS6048550B2/en
Publication of JPS58117261A publication Critical patent/JPS58117261A/en
Publication of JPS6048550B2 publication Critical patent/JPS6048550B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は溶融金属に接触する面を保護すべく、高温で耐
蝕性を備えた皮膜を形成するための塗料に関するものて
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coating material for forming a corrosion-resistant film at high temperatures to protect surfaces that come into contact with molten metal.

金属は溶融状態において著しい侵蝕作用を示すことはよ
く知られている。
It is well known that metals exhibit significant corrosive behavior in their molten state.

したがつて金属の製錬、溶解あるいは鋳造作業などにお
いて、溶融金属に接触する機器面は耐蝕性のある材料で
構成する必要がある。溶融金属の耐蝕材料として、従来
ステンレス系鋼材もしくは窯業耐火物等が用いられてい
るが、鋼材ては焼鈍、酸化、電蝕等の劣化現象が不可避
的に進行し、また耐火物ではその組成中の金属酸化物が
低い酸素圧のもとで酸素を解離し、溶融金属中に拡散し
て溶融滓を形成し、これが耐火物と反応することにより
侵蝕が行はれる。
Therefore, in metal smelting, melting, or casting operations, equipment surfaces that come into contact with molten metal must be made of corrosion-resistant materials. Conventionally, stainless steel materials or ceramic refractories have been used as corrosion-resistant materials for molten metal, but steel materials inevitably undergo deterioration phenomena such as annealing, oxidation, and electrolytic corrosion, and refractories suffer from corrosion during their composition. Erosion occurs when metal oxides dissociate oxygen under low oxygen pressure, diffuse into the molten metal, form molten slag, and react with the refractory.

また耐火物−L−−jJ−πノ4−−LッL日Λ d戸
:ヨ、Lを4イ申フ7Li−11n、施工法が難しいば
かりでなく、複雑形状の機器には利用することができな
い。本発明は、上記の事情に鑑み、とくに溶融金属に対
して良好な耐蝕性を示し、高温に耐え、下地物体に強固
に接着し、長期に渉つて変質しない無機質焼結皮膜を形
成するための塗料を提供しようとするものである。本発
明の耐蝕性塗料の組成は、第1に溶融金属に対しすぐれ
た耐蝕性をもつ物質すなわち溶融金属に対し実質的に不
活性な無機化合物で且つ溶銑に対する付着仕事量が65
■rglcイ以上の前記無機化合物を塗料固形分中ほぼ
30〜75重量%を含有させたもの(以下これを特定の
無機化合物という)を配合すること、第2にこの物質の
粉末を塗膜として安定に定着させるための耐熱性バイン
ダーとしてシリコーン系樹脂を配合すること、そして第
3に塗装された塗膜が、加熱により下地面に強固で、緻
密な無機質焼結皮膜を形成することのできる焼結促進剤
を配合すること、および第4に高温・において焼結促進
剤と共に無機質焼結皮膜の形成を促進強化する鉱化剤を
配合することてある。
In addition, refractory materials - L - J - π - 4 - - LL day Λ d door: Yo, L 4 - 7Li - 11n, the construction method is not only difficult, but also used for equipment with complex shapes. I can't. In view of the above circumstances, the present invention has been developed to form an inorganic sintered film that exhibits particularly good corrosion resistance against molten metal, withstands high temperatures, firmly adheres to the underlying object, and does not deteriorate over a long period of time. The aim is to provide paint. The composition of the corrosion-resistant paint of the present invention is, firstly, a substance that has excellent corrosion resistance against molten metal, that is, an inorganic compound that is substantially inert to molten metal, and has an adhesion work of 65 to molten metal.
■Blending an inorganic compound with a grade of RGLC A or higher in an amount of approximately 30 to 75% by weight in the solid content of the paint (hereinafter referred to as a specific inorganic compound), and secondly, using a powder of this substance as a coating film. A silicone resin is blended as a heat-resistant binder for stable fixation, and thirdly, the applied coating film is sintered to form a strong, dense inorganic sintered film on the underlying surface when heated. A fourth method is to incorporate a sintering accelerator and a mineralizing agent that promotes and strengthens the formation of an inorganic sintered film together with the sintering accelerator at high temperatures.

以下本発明の塗料について詳しく説明する。本発明の塗
料に用いる前記特定の無機化合物の選択は、多くの実験
より得られた知見にもとつい門てなされたものである。
本発明の耐蝕性塗料の組成中第1の要件である溶融金属
に対し前記特定の無機化合物は、(1)溶融金属に対し
で濡れの小さいもの(2)溶融金属への溶出金属の少い
もの(3)溶融金属との反応生成物が発生しにくいもの
であることが必要である。
The coating material of the present invention will be explained in detail below. The selection of the specific inorganic compound used in the coating material of the present invention was made based on knowledge obtained from many experiments.
The first requirement in the composition of the corrosion-resistant paint of the present invention is that the specific inorganic compound has (1) low wettability to the molten metal, and (2) low metal leaching to the molten metal. Item (3) It is necessary that reaction products with molten metal are unlikely to be generated.

前記(1)の濡れ性は、固体(上記第1の要件の無機等
)一液体(溶融金属)の二相間を引きはなす作用(仕事
量)にかかわるものであり、基準として溶鉄に対する付
着仕事量が65■Rgldである無機化合物、例えばM
gO,.2CaO,.SiO。
The wettability mentioned in (1) above is related to the action (work amount) of separating two phases: solid (inorganic etc. according to the first requirement above) and liquid (molten metal). is 65■Rgld, such as M
gO,. 2CaO,. SiO.

、ZrO。、TiO2、ZrO2、SjO2、SiCN
Si3N4、BN)AINのものがよい。(2)の溶融
金属への溶出金属の少いものをあけたのは、セラミック
を形成する金属酸化物は酸素の解離は少いものとされて
いるが、低い酸素圧のもとては自己成分(MexOy)
より02を解離する。たとえはAl溶融体及びMg溶融
体はきわめて還元力が強く、通常SiO2、N。O。−
SiO。のSiO。を還元して変質させるが、MgOは
溶融A1によつては還元されにくいものであり、またN
。O。はその逆に溶融MgOにより還元されるものであ
る。この点NやMgの溶融体に対して有効なものは解離
酸素のない窒化物(Sl3N,、BN)AIN)や炭化
物(SIC)がよく、また金属酸化物の中では02解離
の少いMgON2CaO=SiO2、ZrO2TiO2
がよい。(3)溶融金属と反応生成物を発生しないもの
−をあげたのは、MgT=!P(7)MgOと反応して
反応生成物MgO.Al2O3(スピネル)、Al中の
Al2O3と反応してAl。O3−SIO。系化合物の
発生を防ぐためであり、前記(2)の場合と同様に金属
酸化物よりMgO)2Ca0−SiO。、ZrO。、T
iO。が、金属炭化!物よりSICがそして窒化物より
Sl。N,、BN,.AINが選はれる。したがつて以
上のことから、本発明において特に望ましいものとして
はMgO)2Ca0−SiO2、ZrO2、TjO2、
SiC,.Si3N4、BN)AINを挙けることがで
きる。本発明塗料の第2の要件である耐熱バインダーと
してシリコーン系樹脂を用いるのは、塗装工法上、一般
の有機高分子をビヒクルとする塗料と同様、通常の塗装
法たとえば刷け塗り、ローラコート、スプレー、浸漬等
の方法が利用できること、4下地上に塗料を強固にかつ
安定して定着させることができること、および次に述べ
る第3の要件と関連するが、塗膜を加熱により良好な無
機質焼結皮膜に移行させる場合に、シリコーン系樹脂の
シロキサン成分が重要な役割を果すことによる。
, ZrO. , TiO2, ZrO2, SjO2, SiCN
Si3N4, BN) AIN is preferable. The reason for choosing (2) with less metal leached into the molten metal is that metal oxides that form ceramics are said to have little oxygen dissociation, but they tend to self-dissociate under low oxygen pressure. Ingredients (MexOy)
02 is further dissociated. For example, Al and Mg melts have very strong reducing power, and are usually SiO2, N. O. −
SiO. of SiO. However, MgO is difficult to be reduced by molten A1, and N
. O. On the contrary, it is reduced by molten MgO. In this respect, nitrides (Sl3N,,BN)AIN) and carbides (SIC), which have no dissociated oxygen, are effective for N and Mg melts, and among metal oxides, MgON2CaO, which has less 02 dissociation. =SiO2, ZrO2TiO2
Good. (3) Those that do not generate reaction products with molten metal are listed as MgT=! P(7) reacts with MgO to form a reaction product MgO. Al2O3 (spinel), reacts with Al2O3 in Al to form Al. O3-SIO. This is to prevent the generation of MgO)2Ca0-SiO from metal oxides, as in the case of (2) above. , ZrO. , T
iO. But metal carbonization! SIC than nitride and Sl than nitride. N,,BN,. AIN is selected. Therefore, from the above, particularly desirable materials in the present invention are MgO)2Ca0-SiO2, ZrO2, TjO2,
SiC,. Si3N4, BN) AIN can be mentioned. The second requirement of the paint of the present invention, which is the use of a silicone resin as a heat-resistant binder, is due to the fact that it is used in the same way as paints using general organic polymer vehicles, such as brush painting, roller coating, etc. It is possible to use methods such as spraying and dipping, and it is possible to firmly and stably fix the paint on the substrate.Related to the third requirement mentioned below, the paint film can be heated to have a good inorganic sintering property. This is because the siloxane component of silicone resin plays an important role when transferring to the conjunctival membrane.

シリコーン系樹脂としては、例えばメチルシリコーン系
樹脂、アルキルシリコーンを中心としたストレートシリ
コーン系樹脂、シリコーンポリエステル樹脂等の変性シ
リコン樹脂等の溶液およびエマルジョン、サスペンショ
ン等が用いられる。本発明塗料の第3の要件は、塗膜を
良好な無機質焼結皮膜とするため焼結促進剤を塗料に配
合することである。前記特定の無機化合物が溶融金属に
良好な耐蝕性を示すとしても、それが下地に強固に接着
し、定着して無気孔の無機質皮膜が良好に形成され、か
つその皮膜が溶融金属に対しする耐蝕性の付与されたも
のになることが重要であり、それには焼・結促進剤が重
要な役割を果す。
As the silicone resin, for example, solutions, emulsions, suspensions, etc. of methyl silicone resin, straight silicone resin mainly consisting of alkyl silicone, and modified silicone resin such as silicone polyester resin are used. The third requirement for the paint of the present invention is that a sintering accelerator be added to the paint in order to form a good inorganic sintered film. Even if the above-mentioned specific inorganic compound exhibits good corrosion resistance to molten metal, it must firmly adhere to the base and settle to form a good pore-free inorganic film, and the film must be resistant to molten metal. It is important to have corrosion resistance, and sintering/sintering accelerators play an important role in this.

SiO2質物はセラミックス粒子としては、そのままて
は溶融金属により還元されたり、反応生成物を形成する
傾向がある。
As ceramic particles, SiO2 substances tend to be reduced by molten metal or to form reaction products.

しかしSiO。がガラス化して無気孔の緻密なものとな
ると、SiO。が還元成分であるとはいえ侵蝕がきわめ
て少くなる。たとえばAl溶融体(950゜C)に3時
間接触した場合、シヤモツト質(Al2O。−SiO。
系気孔率22%)のものが侵蝕層厚さ0.18cmであ
るのに対し、シリカガラス単独では0.01crrL以
下てある。本発明においては、シリコーン樹脂が加熱に
よりシロキサン化(SiO,)し、これが焼結促進剤と
作用して効率よくガラス化して焼結皮膜を形成する。こ
れにより形成されれた無機質焼結皮膜は溶融金属に対し
て良好な耐蝕性を示すようになる。焼結促進剤は塗料皮
膜の無機質焼結皮膜化の促進剤である。即ち前記シリコ
ーン樹脂の加熱による分解の際生ずるシロキサン(非晶
質シリカ)と作用し、塗料皮膜の無機質焼結皮膜化を促
進するものである。この焼結促進剤は単独に又は鉱化剤
として併用して塗料に配合される。焼結促進剤は300
℃付近より軟化し、シリコーン樹脂の加熱による分解生
成物であるシロキサンと反応してガラス状融体を生じ、
そのガラス状融体が前記特定の無機物を融着して無機質
焼結皮膜を下地上に形成する。
However, SiO. When it becomes vitrified and becomes dense and non-porous, it becomes SiO. Even though it is a reducing component, corrosion is extremely low. For example, when in contact with an Al melt (950°C) for 3 hours, chamorous (Al2O.-SiO) is formed.
The thickness of the eroded layer is 0.18 cm in the case of porosity of 22%), whereas it is less than 0.01 crrL in case of silica glass alone. In the present invention, the silicone resin is converted into siloxane (SiO,) by heating, and this acts with the sintering accelerator to efficiently vitrify and form a sintered film. The inorganic sintered film thus formed exhibits good corrosion resistance against molten metal. The sintering accelerator is an accelerator for converting the paint film into an inorganic sintered film. That is, it acts with the siloxane (amorphous silica) produced when the silicone resin is decomposed by heating, and promotes the formation of the paint film into an inorganic sintered film. This sintering accelerator is incorporated into the paint either alone or in combination as a mineralizer. Sintering accelerator is 300
It softens around ℃ and reacts with siloxane, which is a decomposition product of silicone resin by heating, to produce a glassy melt.
The glassy melt fuses the specific inorganic substance to form an inorganic sintered film on the base.

焼結促進剤としては長石類、低融点フリット、水ガラス
等が用いられる。
As the sintering accelerator, feldspars, low melting point frits, water glass, etc. are used.

焼結促進剤として併用して配合される鉱化剤は300℃
付近より周囲の物質、とくにSiO。
The mineralizing agent used as a sintering accelerator is heated to 300°C.
Substances around the area, especially SiO.

質即ちシ口キサン、焼結促進剤等より潜熱を奪つて、S
jO。質分の融点を下げて前記焼結促進剤とともに無機
質焼結皮膜の形成を促進強化するものである。鉱化剤と
してはCaF2、Na2SiF6、NH,Cl等のハニ
ロゲン化物が用いられる。
S
jO. The melting point of the substance is lowered to promote and strengthen the formation of an inorganic sintered film together with the sintering accelerator. As the mineralizing agent, hanitrides such as CaF2, Na2SiF6, NH, Cl, etc. are used.

以上の組成に加えて体質改善剤として熱衝撃とか変形応
力の加わる個所の改善のため、フレーク鉱物や繊維状物
質すなわちチタン酸カリ、ムライト、アルミナ、ジルコ
ン、雲母等が好ましく使用lされる。
In addition to the above-mentioned composition, flake minerals and fibrous substances such as potassium titanate, mullite, alumina, zircon, mica, etc. are preferably used as physical condition improvers to improve areas subject to thermal shock or deformation stress.

また塗料化剤としては分散剤、レベリング剤、消泡剤、
チキソ剤、乳化剤等てあり、これらは適宜選択して使用
する。
In addition, coating agents include dispersants, leveling agents, antifoaming agents,
There are thixotropic agents, emulsifiers, etc., and these are appropriately selected and used.

本発明において使用される溶媒はシリコーン系.樹脂を
溶解するものてあれば、特に限定なく使用でき、例えば
炭化水素類、エステル類、ケトン類、ハロゲン化炭素類
、アルコール類等いづれでもよい。
The solvent used in the present invention is silicone-based. Any material that dissolves the resin can be used without particular limitation, such as hydrocarbons, esters, ketones, halogenated carbons, and alcohols.

またシリコーン樹脂を溶解しないでエマルジョン又はサ
スペンションの形で使用するとき.は水が溶媒である。
本発明の塗料において使用される前記特定の無機物又は
その化合物の添加量は、塗料固形分中ほゞ30〜75重
量%(以下同じ)の範囲が好ましく、35〜60%が最
適である。
Also, when silicone resin is used in the form of an emulsion or suspension without being dissolved. water is the solvent.
The amount of the specific inorganic substance or its compound used in the paint of the present invention is preferably in the range of approximately 30 to 75% by weight (the same applies hereinafter), and optimally 35 to 60%, based on the solid content of the paint.

少くともほゞ30%添加することにより高温溶融金属に
対する耐濡れ性即ち耐蝕性を著1.く改善でき、75%
を超えると安定良好な塗膜が容易に得られない。そして
25%以下では高温溶融金属に対し耐蝕性が著しく劣り
、高温溶融金属用塗料としては全く不適である。焼結促
進剤は単独で使用する場合、その添加量は溶媒を除く塗
料組成物中5 〜30%、鉱化剤を加える場合は、焼結
促進剤が5 〜30%の範囲内で、その一部を焼結促進
剤と置換して使用する。塗料組成物中の溶媒の使用量は
塗装作業性を考 つ慮して適宜定める。本発明の溶融金
属用耐蝕性塗料の調整法は特に限定されるものではなく
、通常の塗料化機械即ちボールミル、サンドミル、ロー
ルミル等何れのものを用いて行なつてもよい。
By adding at least 30%, wetting resistance to high-temperature molten metals, that is, corrosion resistance, is significantly improved. can be improved by 75%
If it exceeds 100%, a stable and good coating film cannot be easily obtained. If it is less than 25%, the corrosion resistance is significantly inferior to that of high-temperature melting metals, and it is completely unsuitable as a paint for high-temperature melting metals. When the sintering accelerator is used alone, the amount added is 5 to 30% in the paint composition excluding the solvent, and when a mineralizing agent is added, the sintering accelerator is in the range of 5 to 30%. A part of it is used by replacing it with a sintering accelerator. The amount of solvent used in the paint composition is determined as appropriate, taking painting workability into consideration. The method for preparing the corrosion-resistant coating for molten metal of the present invention is not particularly limited, and may be carried out using any ordinary coating machine, such as a ball mill, sand mill, or roll mill.

つかくして得られた耐蝕性塗料は金属あるいは耐火物
等の下地材の表面に常法でコーティング後、シリコーン
系樹脂の硬化を150゜C〜300゜Cで30〜12分
行い、ついて500〜800℃の高温に昇温して耐蝕性
の無機質皮膜を形成させるものである。
The corrosion-resistant paint thus obtained is coated on the surface of a base material such as metal or refractory material by a conventional method, and then cured with silicone resin at 150°C to 300°C for 30 to 12 minutes, resulting in a coating of 500 to 800°C. A corrosion-resistant inorganic film is formed by raising the temperature to a high temperature of °C.

本発明によつて得られる無機質皮膜は広汎な化学活性物
質に対して高温において優れた耐蝕性を示す。
The inorganic coating obtained by the present invention exhibits excellent corrosion resistance against a wide range of chemically active substances at high temperatures.

次に具体的に本発明塗料の製造例及びその使用例を示す
Next, specific examples of manufacturing the coating material of the present invention and examples of its use will be shown.

製造例1 50%ストレートシリコーンワニスKR275(信越化
学(掬製)30%(重量基準以下同じ)電融マグネシア
粒度3.5〜4.0μ(共立窯業(株)製)35%、リ
ン酸フリット#4021軟化点380℃(日本ホーロー
(+わ製)12%を加え、これに分散剤(マリーンクロ
ツト社製BYK−PlO4S)1.5%、レベリング剤
(同ビケトールスペシアル)4.5%を加えた後、溶剤
としてキシレン6%、エチルセルソルブアセテート11
%を加え、ガラスビーズ内蔵シエーカーで30分間分散
して固型分濃度63%、粘度1100cps(センチボ
アズ)(200C)の塗料を得た。
Production Example 1 50% straight silicone varnish KR275 (manufactured by Shin-Etsu Chemical Co., Ltd.) 30% (same below based on weight), fused magnesia particle size 3.5-4.0μ (manufactured by Kyoritsu Ceramics Co., Ltd.) 35%, phosphoric acid frit # 4021 softening point 380°C (Japanese enamel (made by +Wa) 12% was added, and to this, 1.5% of a dispersant (BYK-PlO4S manufactured by Marine Krodt) and 4.5% of a leveling agent (Biketol Special) were added. After addition, xylene 6% and ethyl cellosolve acetate 11 were added as solvents.
% and dispersed for 30 minutes using a sheaker with built-in glass beads to obtain a paint having a solid content concentration of 63% and a viscosity of 1100 cps (centiboads) (200C).

製造例2 50%ストレートシリコーンワニスKR−282と同K
R−220(いずれも信越化学工業(掬製)を8:2に
混合したもの25%、チタンブリツト760漱化点56
5℃(日本ホーロー(株)製)6.7%、フッ化マグネ
シウム(MgF2)2.8%、チタン酸カリウィスカー
(大塚化学(株)製)4.5%、リン酸フリット#42
01を3%、β−SlC3.5〜2.5μ92%以上(
揖斐川電気工業(掬製)38%、例1と同じレベリング
剤3.8%、例1の分散剤1.2%、溶剤エチルセルソ
ルブアセテート9%およびキシレン6%を加え、ガラJ
スビーズ内蔵シエーカーで3吟分散して固型分濃度63
%、粘度105■Ps(25゜C)の塗料を得た。
Production example 2 50% straight silicone varnish KR-282 and the same K
R-220 (25% mixture of Shin-Etsu Chemical (manufactured by Kiki) at a ratio of 8:2, Titanium Blitz 760, sonic point 56)
5°C (manufactured by Nippon Enamel Co., Ltd.) 6.7%, magnesium fluoride (MgF2) 2.8%, potassium titanate whisker (manufactured by Otsuka Chemical Co., Ltd.) 4.5%, phosphoric acid frit #42
01 at 3%, β-SlC3.5-2.5μ92% or more (
Adding 38% of Ibigawa Electric Industry Co., Ltd., 3.8% of the same leveling agent as in Example 1, 1.2% of the dispersing agent of Example 1, 9% of the solvent ethyl cellosolve acetate and 6% of xylene, Gala J
Solid content concentration 63 by dispersing 3 gin with the built-in subbead sheaker
%, and a viscosity of 105 Ps (25°C) was obtained.

製造例3例2のストレートシリコーンワニス34%白雲
母7.8%、α−Si。
Production Example 3 Straight silicone varnish of Example 2 34% Muscovite 7.8%, α-Si.

N,(東芝セラミック(掬製)30%チ7タンフリット
#7605(軟化点565゜C)日本ホーロー(株)製
)5%、力ーポンミルドファイバー(東邦レーヨン(株
)製)0.6%、シムゴン(微粉末タルク)3.8%、
分散剤BYKPlO4Sl.3%、レベリング剤ピケト
ールS2.5%、およびキシレン15%を加えフてガラ
スビーズ内蔵シエーカーで3吟分散して固型分濃度61
%て粘度110■Ps(温度20゜C)の塗料を得た。
製造例4 例1と同じストレートシリコーンワニスKR−2755
0%、BN(信越化学工業(株)製)13.5%、タル
クMS5%、チタニア(TlO2)13.5%、ほうけ
い酸フリット#4101(軟化点580℃、日本ほうろ
う(株)製)5.5%、分散剤BYKP−104S1.
5%、レベリング剤ピケトールS2.5%、キシレン8
.5%を加えてガラスビーズ内蔵シエーカーで3紛分散
して固型分濃度62.5%、粘度112■Ps(20゜
C)の塗料を得た。
N, (Toshiba Ceramic (made by Kiki) 30% titanium frit #7605 (softening point 565°C) made by Nippon Enamel Co., Ltd.) 5%, Power Pon Milled Fiber (made by Toho Rayon Co., Ltd.) 0.6 %, Simgon (fine powder talc) 3.8%,
Dispersant BYKPlO4Sl. 3%, the leveling agent Piketol S 2.5%, and xylene 15% were added and dispersed with a shaker with built-in glass beads for 3 minutes to obtain a solid content concentration of 61.
% and a viscosity of 110 Ps (temperature 20°C) was obtained.
Production Example 4 Same straight silicone varnish as Example 1 KR-2755
0%, BN (manufactured by Shin-Etsu Chemical Co., Ltd.) 13.5%, talc MS 5%, titania (TlO2) 13.5%, borosilicate frit #4101 (softening point 580°C, manufactured by Nippon Enamel Co., Ltd.) 5.5%, dispersant BYKP-104S1.
5%, leveling agent Piketol S2.5%, xylene 8
.. 5% was added and dispersed in three powders using a sheaker equipped with glass beads to obtain a paint having a solid content of 62.5% and a viscosity of 112 Ps (20°C).

製造例5 ローンプーラン社製シリコンワニス1505(43%)
30%、四ケイ素雲母5%、ダイカル(2Ca0−SI
O。
Production example 5 Silicone varnish 1505 (43%) manufactured by Lone Poulenc
30%, tetrasilicon mica 5%, Dical (2Ca0-SI
O.

)29.8%、リン酸塩フリット4021を10%、微
粒子タルクマイクロエース7%、顔料分散剤としてBY
K−PlO4Sl.5%、レベリング剤ピケトールS2
%、消泡斉!IBYK−0を0.7%に、溶媒として1
・2ジクロルエタン5%およびトルエン9%を加え、ボ
ールミルで24時間分散して濃度63.9%の均一分散
塗料(粘度1650cpS)を得た。使用例1前記製造
例1、2、3で得た塗料をそれぞれアールミニウム低周
波溶解炉のライニングに用いた。
) 29.8%, 10% phosphate frit 4021, 7% fine talc microace, BY as pigment dispersant
K-PlO4Sl. 5%, leveling agent Piketol S2
%, defoaming! IBYK-0 to 0.7%, 1 as solvent
- 5% of 2-dichloroethane and 9% of toluene were added and dispersed in a ball mill for 24 hours to obtain a uniformly dispersed paint with a concentration of 63.9% (viscosity 1650 cpS). Application Example 1 The coatings obtained in Production Examples 1, 2, and 3 were used for lining an aluminum low-frequency melting furnace.

下地材はムライト質煉瓦積立壁(壁厚12cm)て、塗
装後風乾(5時間)を2回繰返し、平均膜厚180μの
塗膜を得た。次いで常法に従つて通電し、アルミニウム
溶解の伝熱により無機質焼結皮.膜を形成させた。従来
は通常ムライト質煉瓦(気孔率2。
The base material was a mullite brick stacked wall (wall thickness: 12 cm), and after painting, air drying (5 hours) was repeated twice to obtain a coating film with an average thickness of 180 μm. Next, electricity is applied according to a conventional method, and an inorganic sintered skin is formed due to the heat transfer of aluminum melting. A film was formed. Traditionally, mullite bricks (porosity 2) were used.

1%)のみのものが用いられているが、アルミニウム溶
融(850゜C)で4時間に2 〜2.2−の侵蝕があ
つた。
1%) was used, but when aluminum was melted (850°C), corrosion of 2 to 2.2% occurred in 4 hours.

しかし同一条件で本発明の製造例1で得た塗料では2〜
3μ、製造例2、3のものでは殆んど侵蝕されていなか
つた。使用例2 ステンレス板(SUS3O4)100×20×2−の全
表面に製造例3および4の組成の塗料を浸漬塗装により
塗膜厚平均120μの塗膜を形成し、2時間風・乾し、
次いで180゜Cで1時間硬化を行ない、さらに常温よ
り300℃までを1時間、300〜500℃までを1時
間、500℃で2時間加熱して無機質焼結皮膜とした。
However, the paint obtained in Production Example 1 of the present invention under the same conditions had a
3μ, and those of Production Examples 2 and 3 were hardly eroded. Usage Example 2 A coating film having an average thickness of 120μ was formed by dip coating the entire surface of a stainless steel plate (SUS3O4) 100 x 20 x 2- with the paint composition of Production Examples 3 and 4, and air-dried for 2 hours.
Next, it was cured at 180°C for 1 hour, and further heated from room temperature to 300°C for 1 hour, from 300 to 500°C for 1 hour, and at 500°C for 2 hours to form an inorganic sintered film.

この皮膜試料片を700゜Cの亜鉛溶湯中に5時間浸漬
し、これを10回繰返したが、各試料片はいづれも侵蝕
は殆んど見られなかつた。使用例3前記製造例5で得た
塗料をシヤモツト質煉瓦の表面にスプレーコートしたの
ち2時間放置後200℃て1時間加熱硬化し、更に80
0℃まで昇温後1時間キープして常温に戻した。
This coating sample piece was immersed in molten zinc at 700°C for 5 hours, and this was repeated 10 times, but almost no corrosion was observed in any of the sample pieces. Usage Example 3 The paint obtained in Production Example 5 was spray coated on the surface of a shamrock brick, left to stand for 2 hours, cured by heating at 200°C for 1 hour, and further heated to 80°C.
After raising the temperature to 0°C, it was kept for 1 hour and then returned to room temperature.

この過程中塗膜は均一で発泡、亀裂等は生じなかつた。
次にこの塗膜面に約750℃に溶融したアルミニウムの
溶湯に5時間浸漬したところ、未コートの裏面は約1T
runの深さに脆化侵蝕されていたが、コート面は全然
変化はなくまた表面えの付着もみられなかつた。
During this process, the coating film was uniform and no foaming or cracking occurred.
Next, when this coated surface was immersed in molten aluminum melted at approximately 750°C for 5 hours, the uncoated back surface was approximately 1T.
Although the coated surface was brittle and eroded at the depth of the run, there was no change at all and no surface coating was observed.

Claims (1)

【特許請求の範囲】[Claims] 1 溶融金属に対し実質的に不活性な無機化合物、シリ
コーン系樹脂、焼結促進剤及び溶媒を配合してなる高温
溶融金属用耐蝕性塗料において、溶鉄に対する付着仕事
量が650erg/cm^2以上の前記無機化合物を塗
料固形分中ほゞ30〜75重量%含有せしめることを特
徴とする高温溶融金属用耐蝕性塗料。
1. A corrosion-resistant paint for high-temperature molten metal that is made by blending an inorganic compound that is substantially inert to molten metal, a silicone resin, a sintering accelerator, and a solvent, and that has a work of adhesion to molten iron of 650 erg/cm^2 or more. A corrosion-resistant paint for high-temperature melting metals, characterized in that the inorganic compound contained in the solid content of the paint is approximately 30 to 75% by weight.
JP21486681A 1981-12-31 1981-12-31 Corrosion-resistant paint for high-temperature molten metals Expired JPS6048550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21486681A JPS6048550B2 (en) 1981-12-31 1981-12-31 Corrosion-resistant paint for high-temperature molten metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21486681A JPS6048550B2 (en) 1981-12-31 1981-12-31 Corrosion-resistant paint for high-temperature molten metals

Publications (2)

Publication Number Publication Date
JPS58117261A JPS58117261A (en) 1983-07-12
JPS6048550B2 true JPS6048550B2 (en) 1985-10-28

Family

ID=16662848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21486681A Expired JPS6048550B2 (en) 1981-12-31 1981-12-31 Corrosion-resistant paint for high-temperature molten metals

Country Status (1)

Country Link
JP (1) JPS6048550B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69432546T2 (en) * 1993-09-16 2003-11-20 Sumitomo Electric Industries Metal housing for semiconductor device and method for its production
ATA208693A (en) * 1993-10-18 1997-11-15 Ica Innoconsult Ag CORROSION PROTECTION METHOD FOR COMBUSTION PLANTS
CN104530966A (en) * 2014-12-26 2015-04-22 上海大学 Graphene-doped high-temperature-resistant organic anticorrosive paint and preparation method thereof
JP6770322B2 (en) * 2016-02-17 2020-10-14 日本タングステン株式会社 UV reflective film forming paint and UV reflective film
CN109749544A (en) * 2018-12-27 2019-05-14 安徽伊法拉电力科技有限公司 A kind of anticorrosive paint and preparation method thereof prepared by high voltage electricity transmission conductive wire modified manometer silicon dioxide

Also Published As

Publication number Publication date
JPS58117261A (en) 1983-07-12

Similar Documents

Publication Publication Date Title
EP0773203B1 (en) Glazing layer forming composition for hot coating of oven refractory and method of forming glazing layer
CA2131288C (en) Prevention of oxidation of carbonaceous and other materials at high temperatures
US4559270A (en) Oxidation prohibitive coatings for carbonaceous articles
US8012252B2 (en) Durable hard coating containing silicon nitride
TW467875B (en) Coated article and method of making
JP5101509B2 (en) Layer or coating and composition for its production
JPWO2017073115A1 (en) Coating liquid and method for producing refractory having coating layer
US7238390B2 (en) Coating precursor and method for coating a substrate with a refractory layer
KR20010052584A (en) Insulating refractory material
RU2293797C2 (en) Precursor of the coating and the method of deposition of the refractory layer on the substrate
CZ304714B6 (en) Aqueous composition for the manufacture of insulating refractory material and article having a body of refractory material
US5188989A (en) Coating mix to prevent oxidation of carbon substrates
JPS6048550B2 (en) Corrosion-resistant paint for high-temperature molten metals
JP2001152307A (en) Method of forming corrosion resisting combined coating standing long use, and member having the composite coating
SE461662B (en) COATED TO APPLY ENAMEL COATING CONTAINING POWDERED METAL ON A METAL SUBSTRATE
Rudolph Composition and application of coatings based on boron nitride
DE19516790C2 (en) Process for minimizing corrosion of ceramic components
AU2002362826B2 (en) Coating precursor and method for coating a substrate with a refractory layer
US3464839A (en) Coating composition
JPS6090867A (en) Improved alkali-resistant refractory composition
JP2001152308A (en) Method of forming corrosion resisting combined coating standing long use, and member having the composite coating
JPS5920368B2 (en) Manufacturing method of “filtration” body for metal casting
JP2001131730A (en) Method for strengthening sprayed deposit, and member with strengthened sprayed deposit
JP4373691B2 (en) Heat-resistant structure for firing electronic parts and method for producing the same
JPS593083A (en) Graphite crucible