JPH033564Y2 - - Google Patents

Info

Publication number
JPH033564Y2
JPH033564Y2 JP18687987U JP18687987U JPH033564Y2 JP H033564 Y2 JPH033564 Y2 JP H033564Y2 JP 18687987 U JP18687987 U JP 18687987U JP 18687987 U JP18687987 U JP 18687987U JP H033564 Y2 JPH033564 Y2 JP H033564Y2
Authority
JP
Japan
Prior art keywords
furnace
brick
tuyeres
tuyere
bricks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18687987U
Other languages
Japanese (ja)
Other versions
JPH0189945U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP18687987U priority Critical patent/JPH033564Y2/ja
Publication of JPH0189945U publication Critical patent/JPH0189945U/ja
Application granted granted Critical
Publication of JPH033564Y2 publication Critical patent/JPH033564Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【考案の詳細な説明】 [産業上の利用分野] 本考案は、例えば底吹転炉等の円筒型溶融還元
炉(以下、単に溶融炉という)の交換型炉底のれ
んが積み構造に係り、特に羽口部の局部損傷を防
止した炉底のれんが積み構造に関する。
[Detailed description of the invention] [Field of industrial application] The present invention relates to a brickwork structure of an exchangeable hearth bottom of a cylindrical melting reduction furnace (hereinafter simply referred to as a melting furnace) such as a bottom-blowing converter. In particular, it relates to a brickwork structure at the hearth bottom that prevents local damage to the tuyeres.

[従来の技術] 近年、底吹き羽口を有する溶融炉は炉容の大型
化、操業の高能率化、高温化及び高撹拌化が進め
られ、操業諸条件が苛酷化してきた。そして、内
張り耐火物は勿論、築炉構造もますます厳しい条
件にされされるようになつてきているが、その一
方で耐用回数の向上及び原単位の低減が強く要望
されている。
[Prior Art] In recent years, melting furnaces having bottom-blown tuyeres have been made larger in size, more efficient in operation, higher in temperature, and higher in agitation, and the operating conditions have become more severe. In addition, not only the refractory lining but also the furnace construction structure are being subjected to increasingly severe conditions, and at the same time, there is a strong desire to increase the service life and reduce the unit consumption.

第7図aないしcは従来より実施されている溶
融炉の交換型炉底部構造を示す図である。第7図
aでは羽口れんが1の目地2が円周方向に揃うよ
うに、いわゆる揃い目地になるように、内張りれ
んが3を同心円状に配置している。一方、交換型
炉底の中心部に向かう目地は一部を除いて基本的
には外側のリングの目地4と内側のリングの目地
5とが揃わないように、いわゆる違い目地に施工
している。このように施工したものを下側より炉
底に嵌め込み、ボルト、ナツト40で締め付けた
後、その外側の炉底れんがとの間に不定形耐火物
6を注入充填して交換型炉底部の取り付けが完了
する。
FIGS. 7a to 7c are diagrams showing a replaceable furnace bottom structure of a conventional melting furnace. In FIG. 7a, the lining bricks 3 are arranged concentrically so that the joints 2 of the tuyere bricks 1 are aligned in the circumferential direction, so-called uniform joints. On the other hand, except for some parts, the joints toward the center of the replaceable hearth bottom are basically constructed in a so-called difference joint so that the joint 4 of the outer ring and the joint 5 of the inner ring are not aligned. . After fitting the thus constructed piece into the hearth bottom from below and tightening it with bolts and nuts 40, a monolithic refractory 6 is injected and filled between it and the outside hearth bottom brick to install the replaceable hearth bottom. is completed.

また、第7図bでは、羽口れんが1に穿設され
た孔を予せ、鉄皮7(第7図c参照)に設置した
羽口パイプ金物8に突き刺すようにしているが、
このとき中心線9に対して一般に45度よじつた状
態で突き刺し、その側面に平行に内張りれんが3
を施工してなるものである。
In addition, in FIG. 7b, the hole drilled in the tuyere brick 1 is pre-drilled so that it pierces the tuyere pipe hardware 8 installed in the iron shell 7 (see FIG. 7c).
At this time, the pierce is generally twisted at a 45 degree angle to the center line 9, and the lining brick 3 is placed parallel to the side surface.
It is constructed by constructing.

[考案が解決しようとする問題点] 以上のように構成された従来の交換型炉底のれ
んが積み構造においては、その炉底部が溶融炉の
その他の部位に比較してれんがの熱膨張を緩和し
にくい。即ち、第7図cに示すように、炉底部の
表面は溶融金属11から高熱が伝達される。その
結果、内張りれんが3は熱膨張して外側の不定形
耐火物6の方向に移動しようとするが、羽口部、
特に羽口れんが1を貫通している羽口パイプ金物
8によつて拘束されているため、応力が他の部位
に比べて羽口を中心に大きくなり、その影響が交
換型炉底の端部まで及び。このために、局部の異
常な損傷が顕著となり、溶融炉の寿命を短命にし
ている。第7図aないしcにその異常な損傷部位
12,13,14を示している。
[Problems to be solved by the invention] In the conventional replaceable furnace bottom brick structure constructed as described above, the furnace bottom has a structure that moderates the thermal expansion of the bricks compared to other parts of the melting furnace. It's hard to do. That is, as shown in FIG. 7c, high heat is transferred from the molten metal 11 to the surface of the bottom of the furnace. As a result, the lining bricks 3 thermally expand and try to move toward the outer monolithic refractory 6, but the tuyeres,
In particular, since the tuyere bricks 1 are restrained by the tuyere pipe metal fittings 8 that penetrate through them, the stress is greater around the tuyeres than in other parts, and this has an effect on the ends of the replaceable hearth bottom. Extends to. For this reason, abnormal local damage becomes noticeable, shortening the life of the melting furnace. The abnormally damaged areas 12, 13, 14 are shown in FIGS. 7a to 7c.

それらの要因をさらに具体的に述べるに、 (i) 羽口パイプ金物8が内張りれんが3の熱膨張
力を拘束し、部分的に熱応力が集中し、それに
よつて応力割れ剥落損傷が発生する。
To describe these factors more specifically, (i) The tuyere pipe hardware 8 restrains the thermal expansion force of the lining brick 3, causing thermal stress to concentrate locally, thereby causing stress cracking and spalling damage. .

(ii) 通常、れんが目地部に熱膨張吸収材(図示せ
ず)を設置するようにしているが、適正度を欠
くと、操業中、該目地部に溶融金属11が侵入
し、冷却によつて凝固することによつて応力緩
和がなされなくなり損傷が生ずる。
(ii) Normally, thermal expansion absorbers (not shown) are installed at the joints of bricks, but if they are not properly installed, molten metal 11 may enter the joints during operation, resulting in the cooling As a result of this, stress relaxation is no longer possible and damage occurs.

(iii) 羽口パイプ金物8の内側に低温ガスが高速で
流れており、それによつて周辺の羽口れんが1
を冷却しているため、その部分の温度分布が不
均一になり熱的スポーリング損が傷生じる。
(iii) Low-temperature gas flows inside the tuyere pipe hardware 8 at high speed, causing the surrounding tuyere bricks 1
Because the area is being cooled, the temperature distribution in that area becomes uneven and thermal spalling damage occurs.

この部分を平面的に把握して熱応力解析を実施
し、れんがが破壊を生じはじめると予想される部
分を第8図a,bに破壊予想部位15,16とし
て示しした。前記第7図に示す内張りれんが3、
永久張りれんが17、羽口れんが1及び不定形耐
火物6で構成されている交換型炉底部には溶融金
属11が入つており、この場合羽口れんが1の周
辺とその外側に大きな拘束熱応力が生じ、れんが
固有の強度を超える時には破壊が起きる。この損
傷部位12,13,14は第8図a,bに示す破
壊予想部位15,16とよく類似している。
A thermal stress analysis was carried out with a two-dimensional understanding of this part, and the parts where the brick is expected to begin to break are shown as predicted fracture parts 15 and 16 in FIGS. 8a and 8b. The lining brick 3 shown in FIG. 7,
Molten metal 11 is contained in the bottom of the replaceable furnace, which is composed of permanent tension bricks 17, tuyere bricks 1, and monolithic refractories 6, and in this case, there is a large restraint thermal stress around and outside the tuyere bricks 1. occurs and fracture occurs when the brick's inherent strength is exceeded. These damaged areas 12, 13, and 14 are very similar to predicted fracture areas 15, 16 shown in FIGS. 8a and 8b.

[問題点を解決するための手段] 本考案に係る溶融還元炉交換型炉底のれんが積
み構造は、炉底の内張りれんがを円周方向に4つ
の領域に分割し、該1/4円周域の内張りれんがを
互いにあじろ積みして羽口を設けるよう構成した
ものである。
[Means for Solving the Problems] The brickwork structure of the exchangeable hearth bottom of the smelting reduction furnace according to the present invention divides the lining bricks of the hearth bottom into four regions in the circumferential direction, and The lining bricks were stacked on top of each other to form tuyeres.

[作用] 本考案構造にあつては、炉底部の温度上昇に伴
なつて、該炉底の内張りれんががあたかも回転す
るかのように変形し、周辺に不定形耐火物との接
触部等の変形移動量が大きくなる。この動きによ
つてて羽口付近の応力集中が緩和され、ひいては
炉命延長がなされる。
[Function] In the structure of the present invention, as the temperature at the bottom of the furnace increases, the bricks lining the bottom of the furnace deform as if rotating, causing contact with the monolithic refractories, etc. in the periphery. The amount of deformation movement increases. This movement alleviates the stress concentration near the tuyere, which in turn extends the life of the reactor.

[実施例] 以下、添付図面を参照しながら実施例により本
考案をより詳細に説明するが、本考案はこれらの
実施例に限定されるものではない。
[Examples] Hereinafter, the present invention will be explained in more detail by examples with reference to the accompanying drawings, but the present invention is not limited to these examples.

第1図a,bは本考案に係る溶融炉の交換型炉
底のれんが積み構造の一実施例を示す平面図と断
面図である。
FIGS. 1a and 1b are a plan view and a sectional view showing an embodiment of the brickwork structure of the replaceable hearth bottom of the melting furnace according to the present invention.

第1図bに示す如く、炉殻鉄皮20の炉内面側
には永久張りれんが17が数段積層配置されてい
ると共に、該炉殻鉄皮20に予め設置されている
羽口パイプ金物8を羽口れんが1の中心孔に差し
込むように設置している。前記永久張りれんが1
7の炉内面側には内張りれんが3が配置されてい
る。該内張りれんが3、永久張りれんが17の外
側に設けれた孔内には不定形耐火物6が注入、充
填されている。
As shown in FIG. 1b, permanent tension bricks 17 are stacked in several stages on the inner surface side of the furnace shell 20, and tuyere pipe hardware 8 is pre-installed on the furnace shell 20. is installed so as to be inserted into the center hole of tuyere brick 1. Said permanent brick 1
Lining bricks 3 are placed on the inner surface of the furnace 7. A monolithic refractory 6 is injected and filled into the holes provided on the outside of the lining brick 3 and the permanent lining brick 17.

交換型炉底部は、以上の永久張りれんが17、
羽口れんが1、内張りれんが3及び不定形耐火物
6から構成されており、該炉底部内には、溶融金
属11が収容される。
The replaceable furnace bottom is made of permanent bricks of 17,
It is composed of tuyere bricks 1, lining bricks 3, and monolithic refractories 6, and molten metal 11 is accommodated in the bottom of the furnace.

該炉底部のれんが積み構造は、第1図aに示す
ように、4つの領域に分割されており、その内張
りれんが3の揃い目地線27は炉底中央部付近を
通り、あたかも炉底中心0を軸として回転対称と
なる如く施工されている。即ち、炉底部のれんが
積みは、隣り合う1/4円周域の箇所の内張りれん
が3が互いに直交する如く配置施工された、いわ
ゆるあじろ積み構造とされており、第1図aに示
す実施例にあつては羽口がほぼ同一直線(中心線
26)上に設置されている。なお、この場合にあ
つては、羽口は第2図a,bに示す如く相対する
2箇所の1/4円周域の領域にのみ存在している。
第1図ないし第2図の中心線26に対する揃い目
地線27のふり角度α,β,γは45゜が基本であ
るが、羽口れんが1の形状によつて変わり得る。
通常は互いの羽口が干渉しないことを前提とする
ためにふり角度が20゜〜70゜の範囲内に入るように
前記あじろ積みが構成されている。この場合であ
つても、同一れんが列に2個以上の羽口を設置し
ないようにする必要がある。このあじろ積み施工
後、交換型炉底部を溶融炉に設置し、ボルト、ナ
ツト40にて固定し、最後に不定形耐火物6を交
換型炉底部の内張りれんが3と既存炉底れんが2
8との間に注入する。
The brickwork structure at the hearth bottom is divided into four areas, as shown in FIG. It is constructed so that it is rotationally symmetrical about the axis. That is, the brickwork at the bottom of the furnace has a so-called Ajiro-laying structure, in which the lining bricks 3 in adjacent 1/4 circumferential areas are arranged orthogonally to each other, and the example shown in Fig. 1a. In this case, the tuyeres are installed almost on the same straight line (center line 26). In this case, the tuyeres are present only in two 1/4 circumferential areas facing each other, as shown in FIGS. 2a and 2b.
The angles α, β, and γ of the aligned joint lines 27 with respect to the center line 26 in FIGS. 1 and 2 are basically 45°, but may vary depending on the shape of the tuyere brick 1.
Normally, the tuyeres are constructed so that the swing angle is within the range of 20° to 70° on the premise that the tuyeres do not interfere with each other. Even in this case, it is necessary to avoid installing two or more tuyeres in the same brick row. After this Ajiro piling construction, the replaceable furnace bottom is installed in the melting furnace and fixed with bolts and nuts 40, and finally the monolithic refractories 6 are attached to the lining bricks 3 of the replaceable furnace bottom and the existing furnace bottom bricks 2.
Inject between 8 and 8.

第1図に示す本考案構図と従来構造(第7図
b)の両者について、炉底れんが温度上昇に伴な
つて生じるれんが目地線の動きを計算すると、第
3図a,bに示す如くなる(目地の数は計算上の
都合により実際より少ない)。なお、図中におい
て符号29,31が常温時目地線、30,32が
昇温後目地線を示している。
Calculating the movement of the brick joint lines that occurs as the temperature of the hearth bricks increases for both the proposed composition shown in Figure 1 and the conventional structure (Figure 7b), the results are as shown in Figures 3a and b. (The number of joints is smaller than the actual number due to calculation reasons.) In the figure, numerals 29 and 31 indicate joint lines at room temperature, and 30 and 32 indicate joint lines after temperature rise.

第3図a,bからの明らかな如く、従来構造
(第3図a)にあつては目地線の移動量はそれほ
ど大きくないが、本考案の構造(第3図b)では
内張りれんが3があたかも回転している如くの変
形となり、周辺の不定形耐火物6との接触部等の
変形移動量が大きくなる。この導きによつて羽口
付近の応力集中が緩和され、炉命延長に供与する
ことになる。
As is clear from Fig. 3a and b, in the conventional structure (Fig. 3a), the amount of movement of the joint line is not so large, but in the structure of the present invention (Fig. 3b), the lining brick 3 is The deformation appears as if it were rotating, and the amount of deformation movement of the contact portions with the surrounding monolithic refractories 6 increases. This guidance alleviates the stress concentration near the tuyeres and extends the life of the reactor.

即ち、本考案の如く交換型炉底のれんが積み構
造をあじろ積みにすると、周辺の不定形耐火物6
を固定基準として全体に回転した変形傾向が生じ
る。このため、羽口部分の拘束熱応力が低下し、
局部応力集中が小さくなり、従来の弱点が解消さ
れ、炉寿命の延長に供与する。また、拘束熱応力
の低下によつて、羽口周辺は不均一な温度分布に
よる熱的スポーリング破壊が主体となり、異常な
応力分布による破壊の重ね合わせ現象が少なくな
り、例えば、第4図に示す如く正常な残厚を保持
しつつ損傷していく。なお、第4図の符号33は
損傷部位を示す。
In other words, if the brickwork structure of the replaceable hearth bottom is made into a jigsaw structure as in the present invention, the surrounding monolithic refractories 6
A rotational deformation tendency occurs as a whole with . Therefore, the restraining thermal stress at the tuyeres decreases,
Local stress concentration is reduced, eliminating traditional weaknesses and extending furnace life. In addition, due to the decrease in restraint thermal stress, thermal spalling fractures due to non-uniform temperature distribution become the main cause around the tuyere, and the phenomenon of superposition of fractures due to abnormal stress distribution is reduced, for example, as shown in Fig. 4. As shown, the damage continues while maintaining a normal residual thickness. Note that the reference numeral 33 in FIG. 4 indicates a damaged site.

この第4図に示す如く、交換炉底部が周辺の炉
底本体から中心に行くに従つて極端に深く損傷さ
れず、比較的滑らかな曲線状に損傷されるため、
高圧溶融撹拌も円滑に行なわれ、熱的、構造的ス
ポーリングが発生しにくくなる。また、溶鋼によ
る摩耗も緩和されることにより、局部異常損傷が
解消され、炉の延命にもたらす改良効果が顕著と
なる。
As shown in FIG. 4, the replacement furnace bottom is not extremely deeply damaged as it goes from the peripheral hearth bottom body to the center, but is damaged in a relatively smooth curved line.
High-pressure melt stirring is also performed smoothly, and thermal and structural spalling is less likely to occur. In addition, abrasion caused by molten steel is also alleviated, thereby eliminating abnormal local damage, and the improvement effect on extending the life of the furnace becomes significant.

また、本考案の構造について前記従来技術と同
様な熱応力計算を実施し、れんが破壊を生じると
予想される高熱応力値の部位を第5図に破壊予想
部位34として示す。この場合、羽口れんが1、
内張りれんが3に対するれんがの固有強度を超え
る部位は全体的に少なく、本構造は局部的損傷を
防止可能な構造であるといえる。従つて、本考案
構造は、溶融炉交換型炉底部の局部異常損傷を防
止し得、正常な、しかも均衡のとれた損傷が図
れ、炉命を延長することが可能である。なお、実
炉に使用した結果、従来この部位における損傷速
度は1.0mm/チヤージであつたが、本考案の構造
での実績では0.6mm/チヤージとなり、延命効果
は絶大であつた。
Further, thermal stress calculations similar to those of the prior art were performed for the structure of the present invention, and the portions with high thermal stress values that are expected to cause brick failure are shown in FIG. 5 as predicted fracture portions 34. In this case, 1 tuyere brick,
Overall, there are few parts that exceed the inherent strength of the bricks for the lining bricks 3, and this structure can be said to be a structure that can prevent local damage. Therefore, the structure of the present invention can prevent abnormal local damage to the bottom of the replaceable melting furnace, and can achieve normal and balanced damage, thereby extending the life of the furnace. Furthermore, as a result of use in an actual reactor, the damage rate in this area was conventionally 1.0 mm/charge, but with the structure of the present invention, it was 0.6 mm/charge, and the life extension effect was tremendous.

なお、第6図a,bに示す如く、隣り合う1/4
円周域の領域に羽口が存在するような場合であつ
ても、該隣り合う羽口の位置が炉底中心0を軸と
した同心円上に位置しないように配置し、上述し
た実施例と同じ要領であじろれんが積みを施工す
る。
In addition, as shown in Figure 6 a and b, adjacent 1/4
Even in the case where tuyeres exist in the circumferential region, the positions of the adjacent tuyeres are arranged so that they are not located on a concentric circle with the center 0 of the hearth as an axis. Construct the Jiro brickwork in the same manner.

[考案の効果] 以上の通り、、本考案は、炉底の内張りれんが
を4つの領域に分割し、かつ各1/4円周域の内張
りれんがを互いにあじろ積みして羽口を設けた構
造としたので、炉底の温度上昇時、該炉底の内張
りれんがは周辺の不定形耐火物を固定基準として
全体に回転した変形傾向が生じることになる。そ
のため従来に比べて羽口部分の拘束熱応力が低下
し、局部応力集中が小さくなる。この結果、羽口
周辺は不均一な温度分布による熱的スポーリング
破壊が主体となり、異常な応力分布による破壊の
重ね合わせ現象が少なくなり、正常な残厚を保持
しつつ損傷していく。
[Effects of the invention] As described above, the present invention has a structure in which the lining bricks of the hearth bottom are divided into four regions, and the lining bricks of each 1/4 circumference area are piled up against each other to form tuyeres. Therefore, when the temperature of the hearth bottom increases, the lining bricks of the hearth bottom tend to rotate and deform as a whole with the surrounding monolithic refractories as a fixed reference. Therefore, the restraint thermal stress in the tuyere portion is lower than in the past, and local stress concentration is reduced. As a result, the area around the tuyere is mainly caused by thermal spalling fracture due to non-uniform temperature distribution, and the phenomenon of overlapping fractures due to abnormal stress distribution is reduced, resulting in damage while maintaining a normal residual thickness.

このように本考案は炉底部の局部異常損傷を防
止し得、正常な、しかも均衡のとれた損傷が図れ
るので、炉の寿命を延命することが可能となる。
As described above, the present invention can prevent abnormal local damage to the bottom of the furnace, and can achieve normal and balanced damage, thereby extending the life of the furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,bは本考案に係る溶融炉の交換型炉
底のれんが積み構造の一実施例を示す平面図と断
面図、第2図a,bは本考案に係る溶融炉の交換
型炉底のれんが積み構造の各々他の実施例を示す
平面図、第3図a,bは従来構造と本考案構造に
おける温度上昇に伴なつて生じるれんが目地線の
動きを示す図、第4図は本考案構造の損傷状態を
示す図、第5図は本考案構造における平面応力解
析によるれんが破壊予想部位を示す図、第6図
a,bはそれぞれ同交換型炉底にれんが積み構造
の他の実施例を示す平面図、第7図a,bは従来
の交換型炉底のれんが積み構造の一例を示す平面
図、第7図cは従来構造の損傷状態を示す図、第
8図a,bは従来構造の平面応力解析によるれん
が破壊予想部位を示す図である。 1……羽口れんが、3……内張りれんが、6…
…不定形耐火物、27……揃い目地線。
Figures 1a and b are a plan view and a sectional view showing an example of the brickwork structure of the replaceable bottom of the melting furnace according to the present invention, and Figures 2a and b are the replaceable type melting furnace according to the present invention. Plan views showing other embodiments of the brickwork structure at the bottom of the hearth, Figures 3a and 3b are diagrams showing the movement of brick joint lines that occur as the temperature rises in the conventional structure and the structure of the present invention, and Figure 4. Figure 5 is a diagram showing the damaged state of the invented structure, Figure 5 is a diagram showing predicted brick failure locations based on plane stress analysis in the invented structure, and Figures 6 a and b are for the same replaceable furnace bottom with brick piled structure and other structures. Fig. 7a and b are plan views showing an example of a conventional replaceable furnace bottom brickwork structure; Fig. 7c is a view showing a damaged state of the conventional structure; Fig. 8a , b are diagrams showing predicted brick fracture locations based on plane stress analysis of a conventional structure. 1...tuyere brick, 3...lining brick, 6...
...Unshaped refractories, 27...Aligned joints.

Claims (1)

【実用新案登録請求の範囲】 (1) 炉底の内張りれんがを4つの領域に分割し、
かつ各1/4円周域の内張りれんがを互いにあじ
ろ積みして羽口を設けたことを特徴とする溶融
還元炉交換型炉底のれんが積み構造。 (2) 相対向する1/4円周域に、各々1ないし2個
の羽口を配設した実用新案登録請求の範囲第1
項に記載の溶融還元炉交換炉底のれんが積み構
造。 (3) 前記羽口を炉底の中心にほぼ一直線状に配設
した実用新案登録請求の範囲第1項又は第2項
に記載の溶融還元炉交換型炉底のれんが積み構
造。 (4) 各1/4円周域に羽口をそれぞれ1個ずつ配設
し、かつ隣り合う羽口が同一円周上に位置しな
いように設けた実用新案登録請求の範囲第1項
に記載の溶融還元炉交換型炉底のれんが積み構
造。
[Scope of claim for utility model registration] (1) Divide the lining brick of the hearth bottom into four areas,
A brickwork structure with an exchangeable bottom of a smelting reduction furnace, characterized in that lining bricks each having a circumferential area of 1/4 are piled up against each other to form tuyeres. (2) Utility model registration claim No. 1 in which one or two tuyeres are arranged in each of the opposing 1/4 circumferential areas
The brickwork structure of the exchange furnace bottom of the smelting reduction furnace described in section. (3) The brickwork structure of the melting reduction furnace exchangeable hearth bottom according to claim 1 or 2, wherein the tuyere is arranged substantially in a straight line at the center of the hearth bottom. (4) A utility model registration claim described in paragraph 1, in which one tuyere is arranged in each 1/4 circumference area, and adjacent tuyeres are arranged so that they are not located on the same circumference. The smelting reduction furnace has an exchangeable type furnace bottom brick structure.
JP18687987U 1987-12-08 1987-12-08 Expired JPH033564Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18687987U JPH033564Y2 (en) 1987-12-08 1987-12-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18687987U JPH033564Y2 (en) 1987-12-08 1987-12-08

Publications (2)

Publication Number Publication Date
JPH0189945U JPH0189945U (en) 1989-06-13
JPH033564Y2 true JPH033564Y2 (en) 1991-01-30

Family

ID=31478079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18687987U Expired JPH033564Y2 (en) 1987-12-08 1987-12-08

Country Status (1)

Country Link
JP (1) JPH033564Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007093101A (en) * 2005-09-28 2007-04-12 Kurosaki Harima Corp Laid brick lining structure for molten metal container

Also Published As

Publication number Publication date
JPH0189945U (en) 1989-06-13

Similar Documents

Publication Publication Date Title
JP4989974B2 (en) Metallurgical container
JPH033564Y2 (en)
CN110986570B (en) Lining structure of upper storage belt of shaft kiln body
JP3448339B2 (en) Refractory lining of molten metal container
US5427360A (en) Refractory brick design for open end of refractory lined vessel
CA2323619A1 (en) Wall structure for a metallurgical vessel and blast furnace provided with a wall structure of this nature
JP3633519B2 (en) Stave cooler for metallurgical furnace and its mounting method
JPH01147013A (en) Metal refining vessel
JPS5848336Y2 (en) Brick structure at the bottom of the blast furnace
JPH017704Y2 (en)
JPS638737Y2 (en)
JPS61124513A (en) Method for lining inner wall of converter
US2319571A (en) Cooling plate for blast furnace inwalls and mantles
RU2251648C1 (en) Furnace arch
JP3724134B2 (en) Furnace split type converter
JPH0350389Y2 (en)
JP2000017318A (en) Method for extending service life of converter type refining furnace
CA2135667C (en) Shaft furnace
JPS5935568Y2 (en) Furnace mouth hardware for converter
US4275871A (en) Metallurgical vessel and supporting means
JPS6011084Y2 (en) Blast furnace mouth structure
AU2005210677B2 (en) Metallurgical vessel
JPH0343595Y2 (en)
JPS5916914A (en) Cooling construction of furnace wall of blast furnace constituted of two layers cooling zone
JPS62116714A (en) Building method for lining brick of composite blowing converter