JPH0335370B2 - - Google Patents

Info

Publication number
JPH0335370B2
JPH0335370B2 JP18509880A JP18509880A JPH0335370B2 JP H0335370 B2 JPH0335370 B2 JP H0335370B2 JP 18509880 A JP18509880 A JP 18509880A JP 18509880 A JP18509880 A JP 18509880A JP H0335370 B2 JPH0335370 B2 JP H0335370B2
Authority
JP
Japan
Prior art keywords
weight
corrosion
zirconium
phase
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18509880A
Other languages
Japanese (ja)
Other versions
JPS57110644A (en
Inventor
Emiko Higashinakagaha
Tatsuyoshi Aisaka
Kanemitsu Sato
Yoshinori Kuwae
Tomonobu Sakuranaga
Kenji Noro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP18509880A priority Critical patent/JPS57110644A/en
Publication of JPS57110644A publication Critical patent/JPS57110644A/en
Publication of JPH0335370B2 publication Critical patent/JPH0335370B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] (産業上の利用分野) 本発明は耐食性ジルコニウム合金に関する。 (従来の技術) ジルコニウム合金は耐食性がよく種々の用途に
用いられている。例えば水冷却型原子炉に用いら
れた場合、原子炉の炉心構造物に使われる大部分
の材料として有効である。さてこの材料として適
合される条件はその性質として熱中性子吸収断面
積が小さいこと、環境に対する耐食性が優れてい
ること、及び機械的性質が十分に満足し得ること
が必要である。これ等を満足させた材料としてジ
ルカロイ−2やジルカロイ−4、オーゼナイト
0.5及び1.0等が知られている。このジルカロイま
たはオーゼナイト等は鉄、ニツケル、クロム、ジ
ルコニウム、ニオブ、錫、等の合金を所定量混合
した合金であるが、これ等は上記合金の全ての炉
心構造材としての特性を完全に備えているものと
は必ずしも言えず、例えば水冷却型原子炉に用い
ていると中性子照射下の過酷な条件の下では経時
変化が起きて合金表面に白色斑点状の所謂ノジユ
ラーコロージヨン(Nodular Corrosion)と呼ば
れる腐食生成物が発生することがある。この現象
は通常の使用状態で成長するという誠に都合の悪
い現象である。そしてこれが進行すれば剥離現象
を起し徐々に本体がやせて機械的強度が低下する
ことも予想される。またこの剥離現象は他にも影
響を及ぼす他、剥離した腐食物が不所望に蓄積さ
れて熱伝導効率を悪くしたりして局部的な過熱を
もたらす場合も考えられ好ましくない。またこの
腐食物は放射能を十分に含有しており、これが一
部に蓄積することは取扱上好ましくない。 上記を解決するために種々の改良がなされてい
る。すなわち米国特許第3005706号明細書にはジ
ルコニウム合金に少量ベリリウムを添加したも
の、米国特許第3261682号及び第3150972号明細書
にはジルコニウム合金にカリウム、イツトリウ
ム、カルシウムの少なくとも1種を添加したもの
が提案されている。また特開昭52−5629号明細書
によればジルコニウム合金で形成された部品の表
面に科学的に不活性な金、銀、白金、ニツケル、
クロム、鉄及びニオブ等を被覆(メツキ等)した
提案もある。しかしながらジルコニウム合金にベ
リリウム、カリウム、イツトリウム、カルシウム
等を添加することは信頼性が薄く実用化されてい
ない。また金、銀、白金等を被覆することは構造
的な問題から得策ではないし原子炉のような大き
い部材への被覆は実際問題として不可能である。 (この発明が解決しようとする問題点) このようのジルコニウム合金はそもそも耐食性
に優れた材料であるが、ノジユラーコロージヨン
の発生の問題等が残されており、より優れた耐食
性が要求されている。 そこで本発明は、優れた耐食性を示す耐食性ジ
ルコニウム合金を提供することを目的とする。 [発明の構成] (問題点を解決するための手段及び作用) 上記ジルコニウム合金の腐食原因を解明するた
めに発明者等は種々の角度からの実験その他の研
究により次の結論を得た。すなわちジルコニウム
合金の腐食の原因はそのほとんどがα相(h.c.p)
に生成していることが確認されたので、これを避
ける必要がある。高温のβ領域ではb.c.cの結晶
構造をとり、これを急冷するとβ領域からα相が
出来る。このα相は上記のα相とは結晶組織が異
り(マルテンサイト構造と呼ぶ場合がある)、粒
界あるいは亜粒界が網目状に分布しており、これ
らの結晶構造は耐腐蝕性が良好で、高温、高放射
能密度条件にあつては好ましい特性を示す。即ち
上記の領域から急冷するとその結晶方位の関係は (110)bcc/(0001)hcp、[111]bcc/[11
20]hcpである。 更に上記β領域からの急冷により得られたα相
はジルコニウム(Zr)基に他の特定のβ相安定
化元素を添加して合金化させることにより急冷に
よる焼入性が向上して極めて容易にβ急冷による
α相結晶組織を得ることが判明した。これは上記
のように耐腐蝕性が極めて高いことが確認され
た。 更に多量のβ相安定化元素を添加すると上記β
急冷によるα相にβ相が混入してくる。このβ相
は耐腐蝕性が極めて高い。 すなわち本発明は重量%で0.2%以上のモリブ
デン及び0.1%以上のニオブの少なくとも1種を
合計量で2.0重量%以下を含有し、1.20〜1.70重量
%のSn、0.07〜0.20重量%のFe、0.05〜0.15重量
%のCr、0.03〜0.08重量%のNi、Fe+Cr+Niが
0.18〜0.38重量%で残部が実質的にZrのZr基合金
(以下ジルカロイ−2と称す)又は、重量%で0.2
%以上のモリブデン及び0.1%以上のニオブの少
なくとも1種を合計量で2.0重量%以下を含有し、
1.20〜1.70重量%のSn、0.18〜0.24重量%のFe、
0.07〜0.3重量%のCr、Fe+Crが0.28〜0.37重量%
で残部が実質的にZrのZr基合金(以下ジルカロ
イ−4と称す)の組成からなり、かつ粒界あるい
は亜粒界が網目状に分布したα相組織を有するこ
とを特徴とする耐食性ジルコニウム合金である。 上記において夫々の添加量を限定した理由は上
限については合金化すると共析又は共晶反応で金
属間化合物が生成し延性が悪くなり、特にクリー
プ特性の低下があつて好ましくない。下限は、β
急冷によるα相組織促進作用が現われなくなるか
らである。 また原子炉に用いる場合には特に中性子吸収断
面積の小さいことが必要であり、上記のMo、Nb
の添加量は極力押えることが好ましい。従つて上
記特定元素はどのように組合せてもよいが全体で
2%以下の少量の含有の時は析出物が少なく有効
であるが、Moが0.2%未満、Nbが0.1%未満の場
合にはその効果が充分得られなかつた。SnはZr
中に固溶できる唯一の添加物であり、Zr中に固
溶して機械的強度を高めるが、1.7重量%を越え
ると加工性が悪くなる。またFe、Cr、Niは主と
して耐食性を向上する成分であるが、Feは0.24重
量%、Niは0.08重量%、Crは0.15重量%、あるい
はそれらの和が0.38重量%を越えると、析出物が
粗大化し、かえつて局部腐食の原因となる。 このようなジルカロイ−2、4にMo、Nbの少
なくとも一種を所定量含有するジルコニウム基合
金を、β領域(約900℃以上の高温域)から急冷
することにより合金中に粒界あるいは亜粒界が網
目状に分布したα相組織を出現させることにより
本発明合金を得る。このような急冷処理は合金処
理のみに行なつても良い。すなわち耐食性が要求
される箇所のみβ急冷組織にかえれば良い。その
後、冷間加工や焼鈍処理行なう。さらにオートク
レーブ処理等の手段により黒色の酸化被膜を設け
ても良い。 (実施例) 以下に本発明の実施例を説明する。 実施例 1 本発明に係る耐食性ジルコニウム合金を用いた
例として、重量比で1.50%Sn−0.20%Fe−0.10%
Cr−残Zr組成のジルカロイ−4にモリブデンを
約1%添加し、含有してなる合金を約890℃に加
熱し、これを200℃/秒で室温まで急冷してα相
組織とした後、400℃で焼鈍して得たジルコニウ
ム合金製チヤンネル板と、これに対して従来から
常用されているジルカロイ−4製チヤンネル板と
を500℃、107Kg/cm2のオートクレーブ腐食強制試
験を行なつた結果、上記組成の従来のジルカロイ
−4製チヤンネル板上には約5時間後にノジユラ
ーコロージヨンが発生し始め、約15時間経過で剥
離現象が発生した。これに対して本発明ジルコニ
ウム合金製チヤンネル板は経時変化がほとんど起
らない。更に上記試験を継続すると100時間で剥
離がはげしくなつたがこれはとりもなおさず機械
的強度が低下して使用不能になる場合があること
になる。本発明のものは100時間を越えてもほと
んど変化がない。即ち初期の状態と外観及び重量
の変化がなく、ほとんど一定であることからして
明らかであつた。 第1図は上記試験結果を表わしたもので縦軸に
ジルコニウム合金の重量の増加度(腐食増量)
を、横軸に使用時間を取つてある。そして曲線1
が従来のジルコニウム合金の使用状態に伴つて起
るノジユラーコロージヨンによる重量の増加を示
し、曲線2は本発明ジルコニウム合金の重量の増
加を示したものでその差が極めて顕著である。 実施例 2 重量比で1.50%Sn−0.17%Fe−0.10%Cr−0.06
%Ni−Zr組成のジルカロイ−2に重量比で0.5%
のNbを添加した合金を溶解、鍛造により中空ビ
レツトを形成した後、熱間押出しを行い、燃料被
覆管素管を作製する。次いで900℃の温度に加熱
後急冷しβ急冷の相(マルテンサイト相)を含む
α相とする。次いで冷間圧延と焼鈍の繰り返しに
より燃料被覆管を作成した。 実施例 3 重量比で1.50%Sn−0.17%Fe−0.10%Cr−0.06
%Ni−Zr組成のジルカロイ−2に重量比で0.4%
のMoと0.2%のNbを添加した合金を用い、他は
実施例−2と同様の方法で燃料被覆管を作成し
た。 比較例 1〜3 重量比で、2%Nb−0.5%Sn−0.3%Cr−Zr(比
較例1)、2%Nb−0.5%Sn−0.3%Mo−Zr(比較
例2)、5%Nb−1%Sn−0.2%Pd−Zr(比較例
3)の組成からなる各合金を用意し、他は実施例
2と同様の方法で試験片を作成した。 上記各実施例及び比較例を500℃、107Kg/cm2
オートクレーブ腐食強制試験を行い、24時間経過
後の腐食増量を調べその結果を下表に示す。
[Object of the Invention] (Industrial Application Field) The present invention relates to a corrosion-resistant zirconium alloy. (Prior Art) Zirconium alloys have good corrosion resistance and are used for various purposes. For example, when used in water-cooled nuclear reactors, it is effective as the material for most of the reactor core structures. The conditions for this material to be met include a small thermal neutron absorption cross section, excellent environmental corrosion resistance, and sufficiently satisfactory mechanical properties. Materials that satisfy these requirements include Zircaloy-2, Zircaloy-4, and Ozenite.
0.5 and 1.0 are known. Zircaloy, auxenite, etc. are alloys made by mixing certain amounts of alloys such as iron, nickel, chromium, zirconium, niobium, tin, etc., but they have all the characteristics of the above alloys as core structural materials. For example, when used in a water-cooled nuclear reactor, under the harsh conditions of neutron irradiation, changes occur over time and the so-called nodular corrosion occurs in the form of white spots on the alloy surface. Corrosion products called . This phenomenon is a truly inconvenient phenomenon that grows under normal usage conditions. If this progresses, it is expected that a peeling phenomenon will occur and the main body will gradually become thinner and its mechanical strength will decrease. Moreover, this peeling phenomenon not only has other effects, but is also undesirable because the peeled corrosive substances may accumulate undesirably, impair heat conduction efficiency, and cause local overheating. In addition, this corrosive material contains a sufficient amount of radioactivity, and it is not preferable for this to accumulate in a portion. Various improvements have been made to solve the above problems. That is, US Pat. No. 3,005,706 discloses a zirconium alloy with a small amount of beryllium added, and US Pat. Nos. 3,261,682 and 3,150,972 disclose a zirconium alloy with at least one of potassium, yttrium, and calcium added. Proposed. Furthermore, according to Japanese Patent Application Laid-open No. 52-5629, the surface of parts made of zirconium alloy contains chemically inert gold, silver, platinum, nickel, etc.
There are also proposals for coating (metsuki, etc.) with chromium, iron, niobium, etc. However, adding beryllium, potassium, yttrium, calcium, etc. to zirconium alloys is not reliable and has not been put to practical use. Also, coating with gold, silver, platinum, etc. is not a good idea due to structural problems, and coating large components such as nuclear reactors is actually impossible. (Problems to be Solved by the Invention) Although such zirconium alloys are materials with excellent corrosion resistance, they still have problems such as the occurrence of nodular corrosion, and even better corrosion resistance is required. There is. Therefore, an object of the present invention is to provide a corrosion-resistant zirconium alloy that exhibits excellent corrosion resistance. [Structure of the Invention] (Means and Effects for Solving Problems) In order to elucidate the cause of corrosion of the above-mentioned zirconium alloy, the inventors conducted experiments and other studies from various angles and came to the following conclusion. In other words, most of the corrosion of zirconium alloys is caused by the alpha phase (hcp).
It has been confirmed that this occurs, so it is necessary to avoid this. In the high-temperature β region, a bcc crystal structure is assumed, and when this is rapidly cooled, an α phase is formed from the β region. This α phase has a different crystal structure from the above-mentioned α phase (sometimes called a martensitic structure), with grain boundaries or sub-grain boundaries distributed in a network pattern, and these crystal structures have excellent corrosion resistance. It exhibits favorable properties under high temperature and high radioactivity density conditions. That is, when rapidly cooled from the above region, the relationship of crystal orientation is (110)bcc/(0001)hcp, [111]bcc/[11
20] hcp. Furthermore, the α phase obtained by rapid cooling from the β region can be alloyed with other specific β phase stabilizing elements to the zirconium (Zr) base, thereby improving the hardenability by rapid cooling and making it extremely easy to process. It was found that α-phase crystal structure can be obtained by β-quenching. As mentioned above, it was confirmed that this material has extremely high corrosion resistance. If a large amount of β phase stabilizing element is added, the above β
The β phase is mixed into the α phase due to rapid cooling. This β phase has extremely high corrosion resistance. That is, the present invention contains at least one of molybdenum of 0.2% or more and niobium of 0.1% or more in a total amount of 2.0% or less by weight, Sn of 1.20 to 1.70% by weight, Fe of 0.07 to 0.20% by weight, 0.05-0.15 wt% Cr, 0.03-0.08 wt% Ni, Fe+Cr+Ni
Zr-based alloy (hereinafter referred to as Zircaloy-2) of 0.18 to 0.38% by weight and the remainder being substantially Zr, or 0.2% by weight
% or more of molybdenum and 0.1% or more of niobium in a total amount of 2.0% by weight or less,
1.20-1.70 wt% Sn, 0.18-0.24 wt% Fe,
0.07-0.3 wt% Cr, 0.28-0.37 wt% Fe+Cr
A corrosion-resistant zirconium alloy characterized by having a composition of a Zr-based alloy (hereinafter referred to as Zircaloy-4) in which the remainder is substantially Zr, and having an α-phase structure in which grain boundaries or sub-grain boundaries are distributed in a network shape. It is. The reason for limiting the amount of each addition in the above is that the upper limit is not preferable because alloying produces intermetallic compounds due to eutectoid or eutectic reactions, which deteriorates ductility and particularly deteriorates creep properties. The lower limit is β
This is because the α phase structure promoting effect due to rapid cooling no longer appears. In addition, when used in nuclear reactors, it is necessary to have a particularly small neutron absorption cross section, and the above Mo, Nb
It is preferable to suppress the amount of addition as much as possible. Therefore, the specific elements mentioned above may be combined in any way, but when they are contained in a small amount of 2% or less, it is effective with few precipitates, but when Mo is less than 0.2% and Nb is less than 0.1%, The effect could not be obtained sufficiently. Sn is Zr
It is the only additive that can be solid-dissolved in Zr, and it increases mechanical strength by solid-dissolving in Zr, but if it exceeds 1.7% by weight, processability deteriorates. Fe, Cr, and Ni are components that mainly improve corrosion resistance, but if Fe exceeds 0.24% by weight, Ni 0.08% by weight, Cr 0.15% by weight, or the sum of these exceeds 0.38% by weight, precipitates will form. It becomes coarse and causes local corrosion. A zirconium-based alloy containing a predetermined amount of at least one of Mo and Nb in Zircaloy-2 and 4 is rapidly cooled from the β region (high temperature range of approximately 900°C or higher) to form grain boundaries or sub-grain boundaries in the alloy. The alloy of the present invention is obtained by creating an α phase structure in which α is distributed in a network shape. Such quenching treatment may be performed only for alloy treatment. In other words, it is only necessary to change the structure to a β-quenched structure only in areas where corrosion resistance is required. After that, cold working and annealing are performed. Furthermore, a black oxide film may be provided by means such as autoclave treatment. (Example) Examples of the present invention will be described below. Example 1 As an example using the corrosion-resistant zirconium alloy according to the present invention, the weight ratio is 1.50%Sn-0.20%Fe-0.10%
Approximately 1% molybdenum was added to Zircaloy-4 having a Cr-remaining Zr composition, and the alloy containing the mixture was heated to approximately 890°C, and then rapidly cooled to room temperature at 200°C/sec to form an α-phase structure. Results of a forced autoclave corrosion test at 500°C and 107 kg/cm 2 on a zirconium alloy channel plate annealed at 400°C and a channel plate made of Zircaloy-4, which has been commonly used. On the conventional Zircaloy-4 channel plate having the above composition, nodular corrosion began to occur after about 5 hours, and a peeling phenomenon occurred after about 15 hours. In contrast, the zirconium alloy channel plate of the present invention hardly changes over time. If the above test was continued further, peeling became severe after 100 hours, but this may mean that the mechanical strength deteriorates and the product becomes unusable. The product of the present invention shows almost no change even after 100 hours. That is, it was clear that there was no change in appearance or weight compared to the initial state, and that they remained almost constant. Figure 1 shows the above test results, where the vertical axis shows the increase in weight of the zirconium alloy (corrosion increase).
The horizontal axis shows usage time. and curve 1
Curve 2 shows the weight increase due to nodular corrosion that occurs with the use of the conventional zirconium alloy, and curve 2 shows the weight increase of the zirconium alloy of the present invention, and the difference is extremely remarkable. Example 2 Weight ratio: 1.50%Sn-0.17%Fe-0.10%Cr-0.06
0.5% by weight of Zircaloy-2 with Ni-Zr composition
Nb-added alloy is melted and forged to form a hollow billet, and then hot extruded to produce a fuel cladding tube. Next, it is heated to a temperature of 900°C and then rapidly cooled to form an α phase containing a β rapidly cooled phase (martensite phase). Next, a fuel cladding tube was created by repeating cold rolling and annealing. Example 3 Weight ratio: 1.50%Sn-0.17%Fe-0.10%Cr-0.06
%Ni-Zr composition Zircaloy-2 with a weight ratio of 0.4%
A fuel cladding tube was prepared in the same manner as in Example 2, except that an alloy containing 0.2% of Mo and 0.2% of Nb was used. Comparative Examples 1 to 3 Weight ratio: 2%Nb-0.5%Sn-0.3%Cr-Zr (Comparative Example 1), 2%Nb-0.5%Sn-0.3%Mo-Zr (Comparative Example 2), 5%Nb Each alloy having a composition of -1%Sn-0.2%Pd-Zr (Comparative Example 3) was prepared, and test pieces were created in the same manner as in Example 2 except for the following. The above Examples and Comparative Examples were subjected to a forced autoclave corrosion test at 500° C. and 107 Kg/cm 2 , and the increase in corrosion weight after 24 hours was examined, and the results are shown in the table below.

【表】 [発明の効果] 以上説明したように本発明によれば、耐食性、
特に耐ノジユラーコロージヨン特性に優れた耐食
性ジルコニウム合金を得ることができる。
[Table] [Effects of the invention] As explained above, according to the present invention, corrosion resistance,
A corrosion-resistant zirconium alloy particularly excellent in nodular corrosion resistance can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明耐食性ジルコニウム合金の特
性を従来のものと比較して示す説明図である。
FIG. 1 is an explanatory diagram showing the characteristics of the corrosion-resistant zirconium alloy of the present invention in comparison with a conventional one.

Claims (1)

【特許請求の範囲】 1 重量%で0.2%以上のモリブデン及び0.1%以
上のニオブの少なくとも一種を合計量で2.0重量
%以下、スズ1.20〜1.70重量%、鉄0.07〜0.20重
量%、クロム0.05〜0.15重量%、ニツケル0.03〜
0.08重量%、ただし鉄、クロム、Niの合計量が
0.18〜0.38重量%含有し、残部が実質的にジルコ
ニウムの組成からなり、かつ粒界あるいは亜粒界
が網目状に分布したα相組織を有することを特徴
とした耐食性ジルコニウム合金。 2 重量%で0.2%以上のモリブデン及び0.1%以
上のニオブの少なくとも一種を合計量で2.0重量
%以下、スズ1.20〜1.70重量%、鉄0.18〜0.24重
量%、クロム0.07〜0.13重量%、ただし鉄、クロ
ムの合計量が0.28〜0.37重量%を含有し、残部が
実質的にジルコニウムの組成からなり、かつ粒界
あるいは亜粒界が網目状に分布したα相組織を有
することを特徴とする耐食性ジルコニウム合金。
[Claims] 1. At least one of molybdenum and 0.1% or more of niobium in a total amount of 2.0% by weight or less, tin 1.20 to 1.70% by weight, iron 0.07 to 0.20% by weight, and chromium 0.05 to 0.1% by weight. 0.15% by weight, Nickel 0.03~
0.08% by weight, but the total amount of iron, chromium, and Ni
A corrosion-resistant zirconium alloy containing 0.18 to 0.38% by weight, the remainder consisting essentially of zirconium, and having an α-phase structure in which grain boundaries or sub-grain boundaries are distributed in a network shape. 2 At least one type of molybdenum of 0.2% or more by weight and niobium of 0.1% or more in a total amount of 2.0% by weight or less, tin 1.20-1.70% by weight, iron 0.18-0.24% by weight, chromium 0.07-0.13% by weight, but iron Corrosion resistance characterized by containing a total amount of chromium of 0.28 to 0.37% by weight, with the remainder consisting essentially of zirconium, and having an α-phase structure in which grain boundaries or sub-grain boundaries are distributed in a network pattern. Zirconium alloy.
JP18509880A 1980-12-27 1980-12-27 Corrosion resistant zirconium alloy and its manufacture Granted JPS57110644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18509880A JPS57110644A (en) 1980-12-27 1980-12-27 Corrosion resistant zirconium alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18509880A JPS57110644A (en) 1980-12-27 1980-12-27 Corrosion resistant zirconium alloy and its manufacture

Publications (2)

Publication Number Publication Date
JPS57110644A JPS57110644A (en) 1982-07-09
JPH0335370B2 true JPH0335370B2 (en) 1991-05-28

Family

ID=16164807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18509880A Granted JPS57110644A (en) 1980-12-27 1980-12-27 Corrosion resistant zirconium alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS57110644A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6036640A (en) * 1983-08-06 1985-02-25 Kobe Steel Ltd Corrosion-resistant zirconium alloy
US5188676A (en) * 1991-08-23 1993-02-23 General Electric Company Method for annealing zircaloy to improve nodular corrosion resistance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1014833A (en) * 1974-07-12 1977-08-02 Stuart R. Macewen Zirconium base alloy and method of production
JPS5137398A (en) * 1974-09-27 1976-03-29 Tokyo Daigaku
JPS51121420A (en) * 1975-04-11 1976-10-23 Exxon Nuclear Co Inc Treatment for metal contained zirconium

Also Published As

Publication number Publication date
JPS57110644A (en) 1982-07-09

Similar Documents

Publication Publication Date Title
JP4099493B2 (en) Zirconium alloy composition with excellent creep resistance
JP2914457B2 (en) ZIRLO type material
CN101240389B (en) High Fe contained zirconium alloy compositions having excellent corrosion resistance and preparation method thereof
US20060243358A1 (en) Zirconium alloys with improved corrosion resistance and method for fabricating zirconium alloys with improved corrosion
US4876064A (en) Corrosion resistant zirconium alloys containing bismuth
KR100411943B1 (en) Zirconium-based alloy tube for a nuclear reactor fuel assembly and a process for producing such a tube
US4040876A (en) High temperature alloys and members thereof
KR100710606B1 (en) Zirconium alloy highly resistant to corrosion and to sun burst by water and water vapour, method for thermomechanical transformation of the alloy, and a component produced from the alloy
JP4982654B2 (en) Zirconium alloy with improved corrosion resistance and method for producing zirconium alloy with improved corrosion resistance
US9725791B2 (en) Zirconium alloys with improved corrosion/creep resistance due to final heat treatments
JP5982474B2 (en) Zirconium-based alloy manufacturing method
US10221475B2 (en) Zirconium alloys with improved corrosion/creep resistance
EP0287889B1 (en) Corrosion resistant zirconium alloys containing bisbuth
JPH0335370B2 (en)
US4863685A (en) Corrosion resistant zirconium alloys
JPH02173235A (en) Corrosion resisting zirconium alloy
JPH02263943A (en) Corrosion-resistant zirconium alloy any nuclear fuel composite cladding tube
JPH02213437A (en) High corrosion-resistant zirconium alloy for nuclear reactor
JPS61174347A (en) Nodular corrosion resisting zirconium-base alloy
JPS6126738A (en) Zirconium alloy
JPS62182258A (en) Manufacture of high-ductility and highly corrosion-resistant zirconium-base alloy member and the member
JPS6239223B2 (en)
JPH02159336A (en) Nodular corrosion-resistant zirconium alloy
JPS61184485A (en) Fuel channel box
JPH076019B2 (en) Zr alloy with excellent corrosion resistance for reactor fuel cladding