JPH0335182A - Instrument for measuring superconducting magnetic field - Google Patents

Instrument for measuring superconducting magnetic field

Info

Publication number
JPH0335182A
JPH0335182A JP1170306A JP17030689A JPH0335182A JP H0335182 A JPH0335182 A JP H0335182A JP 1170306 A JP1170306 A JP 1170306A JP 17030689 A JP17030689 A JP 17030689A JP H0335182 A JPH0335182 A JP H0335182A
Authority
JP
Japan
Prior art keywords
magnetic field
superconducting
bias
output
magnetoresistive element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1170306A
Other languages
Japanese (ja)
Other versions
JPH0814614B2 (en
Inventor
Hidetaka Shintaku
新宅 英隆
Hideo Nojima
秀雄 野島
Masayoshi Koba
木場 正義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1170306A priority Critical patent/JPH0814614B2/en
Priority to EP90307187A priority patent/EP0406024B1/en
Priority to DE1990612455 priority patent/DE69012455T2/en
Publication of JPH0335182A publication Critical patent/JPH0335182A/en
Priority to US07/773,765 priority patent/US5254945A/en
Priority to US08/034,877 priority patent/US5352978A/en
Publication of JPH0814614B2 publication Critical patent/JPH0814614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To make efficient measurement with high accuracy by measuring an external magnetic field by the output signal generated by the impression of the AC bias magnetic field from a superconducting magneto-resistance element. CONSTITUTION:The waveforms of the AC output b of the superconducting magneto-resistance element 14 generated in accordance with the DC bias mag netic field are a, b, c, d, e, f when a prescribed current is passed to a coil 16 in the state of passing an AC current to a coil 15 and the DC bias magnetic field to attain points A, B, C, D, E is impressed thereto. This output signal and the AC magnetic field generating signal are inputted to a lock-in amplifier, which extracts the narrow band of only 1KHz. The effective value of noises is kept low in this way and even the slightest magnetic field is measured with a high resolving power.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は粒界に弱結合を有する超電導体の磁気抵抗効果
を利用する磁界の測定に於て、バイアス磁界の印加によ
り超電導磁気抵抗効果の高感度範囲を利用する測定法に
関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention utilizes the magnetoresistive effect of a superconductor having weak coupling at grain boundaries to measure a magnetic field by applying a bias magnetic field. It concerns a measurement method that utilizes a high sensitivity range.

〈従来の技術〉 従来、磁界の検出や測定には、半導体又は磁性体材料を
用いた磁気抵抗素子が一般的に利用されていた。特に高
電子移動度の半導体であるInSb。
<Prior Art> Conventionally, magnetoresistive elements using semiconductors or magnetic materials have been generally used for detecting and measuring magnetic fields. InSb is a semiconductor with particularly high electron mobility.

InAs等での形状効果9強磁性体金属であるFe−N
%Co−Ni等の配向効果を用いた素子が実用化されて
いる。
Shape effect in InAs etc. 9 Fe-N which is a ferromagnetic metal
Elements using the orientation effect of %Co-Ni and the like have been put into practical use.

また、酸化物超電導体の弱結合による超電導体の磁気抵
抗効果を利用し微弱な磁界の検出や測定を行なう方法も
開発されている。
Additionally, methods have been developed to detect and measure weak magnetic fields by utilizing the magnetoresistive effect of superconductors due to weak coupling of oxide superconductors.

〈発明が解決しようとする課題〉 以上の半導体や磁性体材料を用いた磁気抵抗素子は、測
定する磁界の強さが小さいとき、磁界の変化に対する磁
気抵抗素子抵抗の変化が小さいため、永久磁石などでバ
イアス磁界を印加してその磁気抵抗素子の感度や、その
直線性の良い範囲に移して感度を向上させる方法がとら
れているが、微弱な磁界を正確に測定することは難しか
った。
<Problem to be solved by the invention> The magnetoresistive element using the semiconductor or magnetic material described above has a small change in the resistance of the magnetoresistive element with respect to a change in the magnetic field when the strength of the magnetic field to be measured is small. Methods such as applying a bias magnetic field to improve the sensitivity of the magnetoresistive element or moving it to a range with good linearity have been used, but it has been difficult to accurately measure weak magnetic fields.

また超電導体の磁気抵抗効果を用いるものは、その出力
電圧に10Hz以下の低周波のゆらき現象があり、直流
又は10 Hz以下の周波数のバイアス電流を用いた測
定では微弱な磁界の測定が困難であった。
Additionally, those that use the magnetoresistive effect of superconductors have a low frequency fluctuation phenomenon of 10 Hz or less in their output voltage, making it difficult to measure weak magnetic fields when using direct current or bias current with a frequency of 10 Hz or less. Met.

本発明は従来の磁界測定方法がもっていた課題を解消し
、高い精度で効率よく磁界を測定する方法を提供するこ
とを目的としている。
It is an object of the present invention to solve the problems of conventional magnetic field measurement methods and to provide a method for efficiently measuring magnetic fields with high accuracy.

〈課題を解消するための手段〉 前記の磁界測定に関する課題を解決するのは超電導体の
磁気抵抗効果を、その特有のゆらぎ周波以上の周波数で
利用する方法である。つ1す、粒界に弱結合をもつ超電
導体の両端近くへ一対の電流電極と電圧電極を設けた構
成の超電導磁気抵抗素子は、外部電源から電流電極を通
して印加されたバイアス電流値で決る一定値以上の強さ
の磁界が印加されたとき超電導体は常電導状に遷移し、
その遷移点から急速に増大する電気抵抗値と、それに比
例した出力電圧が電圧電極から出力される。
<Means for Solving the Problems> The above-mentioned problems regarding magnetic field measurement can be solved by a method that utilizes the magnetoresistive effect of a superconductor at a frequency higher than its characteristic fluctuation frequency. First, a superconducting magnetoresistive element has a structure in which a pair of current electrodes and voltage electrodes are provided near both ends of a superconductor that has weak coupling at grain boundaries. When a magnetic field with a strength greater than the value is applied, the superconductor transitions to normal conductivity,
From the transition point, an electrical resistance value rapidly increases and an output voltage proportional to the electrical resistance value is outputted from the voltage electrode.

上記の超電導磁気抵抗素子にその個有のゆらぎ周波数に
影響されない高い周波数の交流バイアス磁界も印加し、
その超電導磁気抵抗素子の出力と、交流バイアス磁界発
生信号をロックインアンプに入力することで、その素子
の出力から交流バイアス磁界による成分をと9出し、そ
の出力を超電導磁気抵抗素子の特性と比較して、外部磁
界の強さを測定するものである。
A high-frequency AC bias magnetic field that is not affected by the unique fluctuation frequency of the superconducting magnetoresistive element is also applied to the superconducting magnetoresistive element,
By inputting the output of the superconducting magnetoresistive element and the AC bias magnetic field generation signal to a lock-in amplifier, the component due to the AC bias magnetic field is extracted from the output of the element, and the output is compared with the characteristics of the superconducting magnetoresistive element. This is used to measure the strength of the external magnetic field.

なお、上記の超電導磁気抵抗素子を高感度の磁界の強さ
の範囲にするための直流バイアス磁界印加手段も設ける
ことで測定を便利にしている。
In addition, measurement is made convenient by providing means for applying a DC bias magnetic field to bring the above-mentioned superconducting magnetoresistive element into a highly sensitive magnetic field strength range.

く作 用〉 超電導磁気抵抗素子に対し、同一の方向に交流磁界発生
用コイルと直流磁界発生用コイルの2つのコイルを設け
ることで、その素子の高感度部を用い精度の良い磁界測
定を行なうものである。
Function> By providing two coils, an AC magnetic field generating coil and a DC magnetic field generating coil, in the same direction for a superconducting magnetoresistive element, highly sensitive magnetic field measurements can be performed using the highly sensitive part of the element. It is something.

コイルの交流磁界発生で、その素子の電圧電極に発生す
る出力は、その磁界発生信号とロックインアンプに入力
し、精度よく、交流磁界による成分のみ測定できる。又
、その素子に既知の強さの直流磁界を印加するコイルか
らの磁界の強さを変え、前記ロックインアンプの出力を
変えて微弱磁界の高感度の測定を可能にしている。
When the coil generates an alternating magnetic field, the output generated at the voltage electrode of the element is input to the lock-in amplifier along with the magnetic field generation signal, and only the component due to the alternating magnetic field can be measured with high accuracy. Furthermore, by changing the strength of the magnetic field from a coil that applies a DC magnetic field of known strength to the element, and by changing the output of the lock-in amplifier, it is possible to measure weak magnetic fields with high sensitivity.

〈実施例〉 以下、本発明の実施例を図面を参照して説明する。<Example> Embodiments of the present invention will be described below with reference to the drawings.

第2図に示した超電導磁気抵抗素子14は本実施例で使
用した素子14を詳細に説明するものである。第2図は
、非磁性の基板l上に、微小な酸化物超電導体粒子が極
く薄い絶縁膜を介するか、ポイント状で結合する弱結合
の集合体からなる超電導膜2を形成し、膜2を機械的加
工でミアンダ状にした上、チタン(Ti)を蒸着法で、
電流電極3 a v  3 bと電圧電極4a* 4b
を形成し、超電導磁気抵抗素子14を形成している。第
2図ら)は素子14の正面図で、この素子を使用すると
き電流電極8a、8bに定電流電源5を接続し、電圧電
極に出力電圧測定器を接続することを示している。第2
図(b)は素子の断面図である。
The superconducting magnetoresistive element 14 shown in FIG. 2 is a detailed explanation of the element 14 used in this example. In Figure 2, a superconducting film 2 is formed on a non-magnetic substrate l, consisting of a weakly bonded aggregate of minute oxide superconductor particles bonded through an extremely thin insulating film or in a point shape. 2 into a meandering shape by mechanical processing, and then titanium (Ti) is deposited by vapor deposition.
Current electrodes 3 av 3 b and voltage electrodes 4 a * 4 b
are formed to form the superconducting magnetoresistive element 14. FIG. 2 et al.) are front views of the element 14, showing that when this element is used, a constant current power source 5 is connected to the current electrodes 8a, 8b, and an output voltage measuring device is connected to the voltage electrodes. Second
Figure (b) is a cross-sectional view of the element.

第3図は、第2図の超電導膜2を、スプレーパイロリシ
ス法で作製する装置の概要を示している。
FIG. 3 shows an outline of an apparatus for producing the superconducting film 2 shown in FIG. 2 by a spray pyrolysis method.

Y−Ba−Cu−0系の超電導体のときは、原料のY 
(NOs  )s  ・6 Hz Os Ba (NO
s h及びCu(NOs h ・8H冨0  を所定の
組成化(YBazCus )に秤量し、水溶液7にし、
スプレーガン9の容器8に入れ、圧縮空気をパイプ10
から送り、スプレーガン9から小量ずつ噴霧11にして
、ヒーター12で約600℃に加熱した基板13に吹き
つけ熱分解によりセラミック化している状態を示した。
In the case of a Y-Ba-Cu-0 based superconductor, the raw material Y
(NOs )s ・6 Hz Os Ba (NO
Weigh out s h and Cu (NOs h ・8H 0) into a predetermined composition (YBazCus) and make it into an aqueous solution 7,
Pour compressed air into the container 8 of the spray gun 9 and into the pipe 10.
The substrate 13 was heated to about 600° C. with a heater 12, and was sprayed in small amounts 11 from a spray gun 9, thereby showing a state in which it was turned into a ceramic by thermal decomposition.

以上の超電膜は厚さ約10μmにし空気中での熱処理を
行った。
The above superelectric film was made to have a thickness of about 10 μm and was heat-treated in air.

上記超電導膜は、他の組成にしてもよく、作製条件を変
えたシ他の作製方法を用いてもよい。又膜厚は1から1
0μmの間で良好な結果を得た。
The above-mentioned superconducting film may have a different composition, or may use other manufacturing methods with different manufacturing conditions. Also, the film thickness is 1 to 1
Good results were obtained between 0 μm.

以上のようにして、第2図のような構成にした超電導磁
気抵抗素子14は、第1図に示したように、同一方向に
バイアス磁界を印加する2つのコイV14と15の中央
部にセットし、磁気ノイズのない磁気シールド室内で測
定した。
As shown in FIG. 1, the superconducting magnetoresistive element 14 configured as shown in FIG. The measurements were conducted in a magnetically shielded room free of magnetic noise.

コイ/l/15には交流電源に接続し、コイ/l/16
は直流電源に接続して、それぞれ交流磁界と直流磁界を
素子14に印加できる状態にしである。
Connect the cari/l/15 to an AC power supply, and the cari/l/16
is connected to a DC power source so that an AC magnetic field and a DC magnetic field can be applied to the element 14, respectively.

(コイルの電源の図示は省略した。) 以上の構成による素子14の出力特性の1例を示したの
が第4図である。この図は超電導磁気抵抗素子14の電
流電@aを介し10mAのバイアス電流を流した状態で
、コイA/16を用いて直流パイアヌ磁界を印加し、素
子14の出力を測定したものである。この縦軸は素子の
出力で、横軸は直流バイアス電流の強さを示している。
(The illustration of the power source for the coil is omitted.) FIG. 4 shows an example of the output characteristics of the element 14 having the above configuration. This figure shows the output of the superconducting magnetoresistive element 14 measured by applying a direct current magnetic field using a coil A/16 with a bias current of 10 mA flowing through the current a of the superconducting magnetoresistive element 14. The vertical axis represents the output of the element, and the horizontal axis represents the strength of the DC bias current.

次の第5図は、第4図で説明した超電導磁気抵抗素子1
4の測定条件に於て、横軸のように直流バイアス磁界を
変えたとき、素子の出力に含1れる雑音の大きさをその
周波数別に縦軸に示している。
The next figure 5 shows the superconducting magnetoresistive element 1 explained in figure 4.
Under measurement conditions 4, when the DC bias magnetic field is changed as shown on the horizontal axis, the magnitude of noise included in the output of the element is shown on the vertical axis for each frequency.

第5図から、素子14からのノイズは印加磁界の強さで
の変化は少なく、数Hz以下の低周波数でのノイズが大
きいことを示し、直流や低周波磁界により精密な磁界測
定が困難なことを示している。
Figure 5 shows that the noise from the element 14 does not change much with the strength of the applied magnetic field, but the noise is large at low frequencies of several Hz or less, and precise magnetic field measurements are difficult due to direct current and low-frequency magnetic fields. It is shown that.

本発明は、上記の超電導磁気抵抗素子14の特性に対し
、次に述べる方法により直流又は低周波で変化する磁界
も素子14のノイズに影響されることなく、正確に測定
するものである。
The present invention uses the method described below to accurately measure the characteristics of the superconducting magnetoresistive element 14, without being affected by the noise of the element 14, even in a magnetic field that changes with direct current or low frequency.

本発明の1実施例の交流波形を示したのが第6図である
。この第6図も第1図の構成にして、コイIv15によ
I)IKHzで+100 mGaussの正弦波を印加
しである(第6図(a)の波形)。
FIG. 6 shows an AC waveform of one embodiment of the present invention. This FIG. 6 also has the configuration shown in FIG. 1, and a sine wave of +100 mGauss at IKHz is applied using a carp IV15 (waveform in FIG. 6(a)).

以上のようにコイ/l/15に交流電流を流した状態に
於てコイ/l/16に、所定の電流を流し、第4図で説
明した内容のグラフ図である第7図のA。
A in FIG. 7 is a graph of the content explained in FIG. 4 when a predetermined current is applied to the carp/l/16 while an alternating current is applied to the carp/l/15 as described above.

B、C,D及びE点になる直流バイアス磁界を印生 加したとき対応して発疼する素子14の交流山波形が第
6図の(b)、 (c)、 (d)−(e)及び(f)
になることを示している。
When the DC bias magnetic field corresponding to points B, C, D, and E is applied, the corresponding alternating current peak waveforms of the element 14 that generate tingles are shown in Fig. 6 (b), (c), (d) - (e ) and (f)
It shows that it will become.

以上の出力信号と交流磁界発生信号とをロックインアン
プに入力し、lKH2戒分の成分狭帯域で抽出するため
、ノイズの実効値を低く押えることが可能になる。
The above output signal and the alternating current magnetic field generation signal are input to the lock-in amplifier, and the lKH2 precept component is extracted in a narrow band, making it possible to keep the effective value of noise low.

上記のロックインアンプの概要を、第8図のブロック図
で示した。素子14の電圧電極4からの出力は差動増幅
器で20倍に増幅され、ロックインアンプに入力される
。一方参照入力として、前記正弦波発生器のI K H
z信号が用いられる。
An overview of the above lock-in amplifier is shown in the block diagram of FIG. The output from voltage electrode 4 of element 14 is amplified 20 times by a differential amplifier and input to a lock-in amplifier. On the other hand, as a reference input, I K H of the sine wave generator
A z signal is used.

ロックインアンプの原理は次のようになっている。入力
信号V 8 w参照信号Vrを次のように表わす。
The principle of a lock-in amplifier is as follows. The input signal V 8 w reference signal Vr is expressed as follows.

Vr  =  Acos(ωrt+θ)  −−−(1
)Vs  =  cos(ωst)  ・・・・自・(
2)ここでA:定数、ωr :参照信号の角速度。
Vr = Acos(ωrt+θ) ---(1
)Vs = cos(ωst) ...self (
2) Here, A: constant, ωr: angular velocity of the reference signal.

θ:位相角、ωS 二人力信号の角速度である。上の2
つの信号をPhase  5ensitive  De
tector(位相比較器)で乗算すると、次の信号V
psdになる。
θ: Phase angle, ωS is the angular velocity of the two-person force signal. Upper 2
Phase 5 sensitive signal
When multiplied by the vector (phase comparator), the next signal V
It becomes psd.

Vpsd=Acos(ωrt+θ)IICOs(ωst
)・ ・ ・(3) ここでωr とωSが等しいから(3)式の第2項が直
流成分になる。又、ローパスフィルターで(3)式の第
1項の交流成分を除くので、ローパスフィルターからの
出力VLP  は次のようになる。
Vpsd=Acos(ωrt+θ)IICOs(ωst
)・・・(3) Here, since ωr and ωS are equal, the second term in equation (3) becomes a DC component. Also, since the alternating current component in the first term of equation (3) is removed by the low-pass filter, the output VLP from the low-pass filter is as follows.

こ\でvLPを最大にするには、参照信号と入力信号の
位相差を零にするようロックインアンプを調整すればよ
いことになる。以上のようにして交流印加磁界による周
波数成分のみを直流電圧として取出すことができる。
In order to maximize vLP here, the lock-in amplifier should be adjusted so that the phase difference between the reference signal and the input signal becomes zero. As described above, only the frequency component due to the applied AC magnetic field can be extracted as a DC voltage.

コイ/l/15に流す直流電流値を変えたときの直流バ
イアス磁界の強さを横軸にし、縦軸にロックインアンプ
の出力にし、測定の結果を記入したのが第9図である。
Figure 9 shows the measurement results, with the horizontal axis representing the strength of the DC bias magnetic field when changing the value of the DC current flowing through the coil/l/15, and the output of the lock-in amplifier representing the vertical axis.

第9図では印加した直流磁界による動作点の微分磁気感
度がロックインアンプ出力として測定されているが、直
流磁界が零の近くでは前述したように超電導磁気抵抗素
子の出力特性から出力波形は第6図(c)Gi)le)
のようになシ、本実施例では線形領域が存在した。この
線形領域を用いロックインアンプのローパスフィルター
の時定数を100m5ecとすることで、直流から数H
zの磁界を0.1mGauasの分解能で測定すること
ができた。
In Figure 9, the differential magnetic sensitivity at the operating point due to the applied DC magnetic field is measured as the lock-in amplifier output, but when the DC magnetic field is near zero, the output waveform changes from the output characteristics of the superconducting magnetoresistive element as described above. Figure 6 (c) Gi) le)
In this example, a linear region existed as shown in FIG. By using this linear region and setting the time constant of the low-pass filter of the lock-in amplifier to 100 m5ec, it is possible to
The magnetic field of z could be measured with a resolution of 0.1 mGauas.

以上が実施例についての説明であるが、本発明は実施例
により限定されるものでなく、超電導磁気抵抗素子への
バイアス磁界の大きさ、印加する交流バイアス磁界の強
さ9周波数、又は、印加する直流バイアス磁界の印加の
有無、又は、その強さの変化により磁界測定の範囲や精
度の変更が可能なものである。
The above is an explanation of the embodiments, but the present invention is not limited to the embodiments, and the present invention is not limited to the embodiments. The range and accuracy of magnetic field measurement can be changed by applying or not applying a DC bias magnetic field, or by changing its strength.

又、実施例で2つのコイルで説明したバイアス磁界も、
1つのコイルに直流と交流を流す方式にしてもよい。更
に、ロックインアンプのローパスフィルターの時定数を
変えることで数Hz以上で変化する磁界を測定すること
も可能にできる。
Also, the bias magnetic field explained with two coils in the example is
A method may be used in which direct current and alternating current are passed through one coil. Furthermore, by changing the time constant of the low-pass filter of the lock-in amplifier, it is also possible to measure magnetic fields that change at several Hz or more.

構成も、超電導磁気抵抗素子と同じ基板上にバイアス磁
界印加用コイルを薄膜で形成し、磁気測定の安定化と、
作製の簡易化を図ることもできる。
The structure also consists of a thin film coil for applying a bias magnetic field formed on the same substrate as the superconducting magnetoresistive element, which stabilizes the magnetic measurement.
It is also possible to simplify the production.

〈発明の効果〉 本発明は、超電導磁気抵抗素子がもつ数Hz以下の固有
の低周波数ノイズの影響を除き微弱な磁界も高い分解能
での測定が可能になる方法である。
<Effects of the Invention> The present invention is a method that makes it possible to measure even weak magnetic fields with high resolution by eliminating the influence of inherent low frequency noise of several Hz or less that superconducting magnetoresistive elements have.

又、素子やコイルの小型化が可能であシ微小磁界の空間
的分布も測定可能であシ医療や非破壊検査など種々の分
野に利用することができる。
Furthermore, it is possible to miniaturize elements and coils, and it is also possible to measure the spatial distribution of minute magnetic fields, making it possible to use it in various fields such as medicine and non-destructive testing.

【図面の簡単な説明】 第1図は本発明の一実施例の概要斜視図、第2図は実施
例の超電導磁気抵抗素子の構造図、第8図はスプレーパ
イロリシスによるセラミック作製法の説明図、第4図は
実施例の超電導磁気抵抗素子への直流バイアス磁界−出
力特性図、第5図は第4図の素子の直流バイアス磁界−
ノイズ特性図、第6図、は直流バイアス磁界の強さ一出
力波形図、第7図は第6図の動作点を示す図、第8図は
ロックインアンプのブロック図、第9図は本発明の実施
例の直流磁界−ロックインアンプ出力特性図である。 1.13・・・基板、  2・・・超電導膜、  3・
・・電流電極、  4・・・電圧電種、  5・・・定
電流電源、 6・・・電圧計、 7・・・水溶液、  
8・・・容器、 9・・・スプレーガン、   10・
・・パイプ、   11・・・噴霧。 12・・・ヒーター  14・・・超電導磁気抵抗素子
。 15・・・交流バイアス磁界用コイル、  16・・・
直流バイアス磁界用コイル。
[Brief Description of the Drawings] Fig. 1 is a schematic perspective view of an embodiment of the present invention, Fig. 2 is a structural diagram of a superconducting magnetoresistive element of the embodiment, and Fig. 8 is an explanation of a ceramic manufacturing method by spray pyrolysis. Figure 4 is a DC bias magnetic field-output characteristic diagram for the superconducting magnetoresistive element of the example, and Figure 5 is a DC bias magnetic field of the element in Figure 4.
Noise characteristic diagram, Figure 6 is a DC bias magnetic field strength vs. output waveform diagram, Figure 7 is a diagram showing the operating point of Figure 6, Figure 8 is a block diagram of the lock-in amplifier, Figure 9 is the main FIG. 3 is a DC magnetic field-lock-in amplifier output characteristic diagram according to an embodiment of the invention. 1.13...Substrate, 2...Superconducting film, 3.
... Current electrode, 4... Voltage type, 5... Constant current power supply, 6... Voltmeter, 7... Aqueous solution,
8... Container, 9... Spray gun, 10.
...pipe, 11...spraying. 12...Heater 14...Superconducting magnetoresistive element. 15... AC bias magnetic field coil, 16...
DC bias magnetic field coil.

Claims (1)

【特許請求の範囲】 1、弱結合粒界を有する超電導体からなる磁気抵抗素子
を用いた磁界測定装置において、前記磁気抵抗素子に交
流バイアス磁界を印加する手段を設け、該磁気抵抗素子
からの前記交流バイアス磁界印加により発生した出力信
号により外部磁界の測定を行なうことを特徴とする超電
導磁界測定装置。 2、前記磁気抵抗素子に印加する交流バイアス磁界の方
向に直流バイアス磁界印加手段も有することを特徴とす
る請求項1記載の超電導磁界測定装置。
[Claims] 1. In a magnetic field measuring device using a magnetoresistive element made of a superconductor having weakly coupled grain boundaries, means for applying an alternating current bias magnetic field to the magnetoresistive element is provided, A superconducting magnetic field measurement device characterized in that an external magnetic field is measured using an output signal generated by applying the alternating current bias magnetic field. 2. The superconducting magnetic field measuring device according to claim 1, further comprising means for applying a DC bias magnetic field in the direction of the AC bias magnetic field applied to the magnetoresistive element.
JP1170306A 1989-06-30 1989-06-30 Superconducting magnetic field measuring device Expired - Fee Related JPH0814614B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP1170306A JPH0814614B2 (en) 1989-06-30 1989-06-30 Superconducting magnetic field measuring device
EP90307187A EP0406024B1 (en) 1989-06-30 1990-06-29 Method and device for sensing a magnetic field with use of a magneto-resistive property of a superconductive material
DE1990612455 DE69012455T2 (en) 1989-06-30 1990-06-29 Method and device for determining a magnetic field with a magnetic resistance property of a superconducting material.
US07/773,765 US5254945A (en) 1989-06-30 1991-10-10 Magneto-resistive superconductive device and method for sensing magnetic fields
US08/034,877 US5352978A (en) 1989-06-30 1993-03-19 Apparatus for sensing a magnetic field with a superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1170306A JPH0814614B2 (en) 1989-06-30 1989-06-30 Superconducting magnetic field measuring device

Publications (2)

Publication Number Publication Date
JPH0335182A true JPH0335182A (en) 1991-02-15
JPH0814614B2 JPH0814614B2 (en) 1996-02-14

Family

ID=15902528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1170306A Expired - Fee Related JPH0814614B2 (en) 1989-06-30 1989-06-30 Superconducting magnetic field measuring device

Country Status (1)

Country Link
JP (1) JPH0814614B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016519310A (en) * 2013-05-10 2016-06-30 アレグロ・マイクロシステムズ・エルエルシー Magnetic field sensor resistant to external magnetic effects
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134369A (en) * 1979-04-09 1980-10-20 Nec Corp Magnetic sensor
JPS5771504A (en) * 1980-10-22 1982-05-04 Fujitsu Ltd Read out system for magnetoresistive element
JPS57187671A (en) * 1981-05-15 1982-11-18 Nec Corp Magnetism sensor
JPH01138770A (en) * 1987-07-29 1989-05-31 Sharp Corp Superconducting magnetoresistance element system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55134369A (en) * 1979-04-09 1980-10-20 Nec Corp Magnetic sensor
JPS5771504A (en) * 1980-10-22 1982-05-04 Fujitsu Ltd Read out system for magnetoresistive element
JPS57187671A (en) * 1981-05-15 1982-11-18 Nec Corp Magnetism sensor
JPH01138770A (en) * 1987-07-29 1989-05-31 Sharp Corp Superconducting magnetoresistance element system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016519310A (en) * 2013-05-10 2016-06-30 アレグロ・マイクロシステムズ・エルエルシー Magnetic field sensor resistant to external magnetic effects
US11428755B2 (en) 2017-05-26 2022-08-30 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US11073573B2 (en) 2017-05-26 2021-07-27 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10649042B2 (en) 2017-05-26 2020-05-12 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US11768256B2 (en) 2017-05-26 2023-09-26 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11320496B2 (en) 2017-05-26 2022-05-03 Allegro Microsystems, Llc Targets for coil actuated position sensors
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Also Published As

Publication number Publication date
JPH0814614B2 (en) 1996-02-14

Similar Documents

Publication Publication Date Title
US5049809A (en) Sensing device utilizing magneto electric transducers
US10012705B2 (en) Magnetism measurement device
Jahns et al. Magnetoelectric sensors for biomagnetic measurements
US20030016010A1 (en) Apparatus for measuring a magnetic field
Silva et al. High sensitivity giant magnetoimpedance (GMI) magnetic transducer: magnitude versus phase sensing
JPH0335182A (en) Instrument for measuring superconducting magnetic field
TW201329478A (en) Apparatus and method for determining in-plane magnetic field components of a magnetic field using a single magnetoresistive sensor
JPH0425780A (en) Superconducting magnetic field measuring instrument
Krishnan et al. Harmonic detection of multipole moments and absolute calibration in a simple, low-cost vibrating sample magnetometer
JPH07113664B2 (en) Superconducting magnetic field distribution measuring device
JP3937010B2 (en) Method and apparatus for measuring critical current density of superconductor
Pascal et al. Experimental determination of optimum operating conditions of a superconducting interferometer
US5352978A (en) Apparatus for sensing a magnetic field with a superconductive material
Banerjee et al. AC susceptibility apparatus for use with a closed-cycle helium refrigerator
JPH06118150A (en) Measuring device for superconducting magnetic field
JPH05264695A (en) Superconductive magnetic field measuring device
Doan et al. Magnetization measurement system with giant magnetoresistance zero-field detector
Chankji et al. A method for mapping magnetic fields generated by current coils
Hoon et al. The direct observation of magnetic images in electromagnet vibrating sample magnetometers
He et al. High sensitive magnetic sensor with amorphous wire
Dolabdjian et al. Applied magnetic sensing: a long way
Birss et al. Rotating sample magnetometer for accurate measurement of magnetocrystalline anisotropy and other magnetic properties of low temperatures and high magnetic fields
JP2003149311A (en) Wide band active magnetic shield method
JPS5920114B2 (en) Magnetic permeability measuring device
JPH0943328A (en) Superconductive magnetic detecting device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees