JPH0943328A - Superconductive magnetic detecting device - Google Patents

Superconductive magnetic detecting device

Info

Publication number
JPH0943328A
JPH0943328A JP7193491A JP19349195A JPH0943328A JP H0943328 A JPH0943328 A JP H0943328A JP 7193491 A JP7193491 A JP 7193491A JP 19349195 A JP19349195 A JP 19349195A JP H0943328 A JPH0943328 A JP H0943328A
Authority
JP
Japan
Prior art keywords
magnetic
sensor
magnetic field
superconducting
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7193491A
Other languages
Japanese (ja)
Inventor
Teruyuki Kataoka
照幸 片岡
Hideo Nojima
秀雄 野島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP7193491A priority Critical patent/JPH0943328A/en
Publication of JPH0943328A publication Critical patent/JPH0943328A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a superconductive magnetic detecting device for exhibiting the magnetic detecting sensibility of 10<-9> gausses by using a ceramic superconductive magneto-resistive element. SOLUTION: A superconductive magnetic detecting device is provided with a modulation magnetic field generator constituted of an oscillator 1, a resistance 2 and a modulation magnetic field generating coil. 3, an LC series resonance circuit constituted of a sensor 4 constituted of a detecting sensor 4 formed of a ceramic superconductive magneto-resistive element, and for detecting the magnetic field, a constant current source 5 for supplying the constant current to the current terminal of this sensor 4, a condenser 6, and a coil 7, and connected to the voltage terminal of the sensor 4, and a differential amplifier for amplifying a magnetic signal from the sensor 4 and connected to the voltage terminal of the coil 7.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、超電導磁気検出装
置に関し、詳しくは弱結合特性を示す結晶粒界を有する
セラミック超電導磁気抵抗素子を用いて磁界に対する感
度を著しく向上させた超電導磁気検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a superconducting magnetic detecting device, and more particularly to a superconducting magnetic detecting device in which a ceramic superconducting magnetoresistive element having a grain boundary exhibiting weak coupling characteristics is used to remarkably improve the sensitivity to a magnetic field. .

【0002】[0002]

【従来の技術】従来より、磁界を検出する素子として、
半導体のホール効果を応用したホール素子や半導体、磁
性体の磁気抵抗効果を応用した磁気抵抗素子が広く用い
られてきた。これらの素子は常温で使用されるものであ
り、10-3〜10-4ガウス程度の磁気感度が得られる
が、それ以上の感度を得ることは不可能であった。一
方、10-10ガウスを示す高感度なものとして、超電導
体を使用した超電導量子干渉素子SQUIDがあるが、
その動作には極低温(4K)を必要とし、液体ヘリウム
を使用するため、装置が極めて高価であり、また、その
操作も複雑であった。その後、高い磁気検出感度を有
し、かつ、液体窒素温度(77K)で簡便に使用できる
高温超電導体を用いたセラミック超電導磁気抵抗素子が
開発された。そして、このセラミック超電導磁気抵抗素
子を利用した高感度磁気検出装置は、交流磁界変調方式
を使用することにより10-7ガウス程度の磁界分解能を
有していた。
2. Description of the Related Art Conventionally, as an element for detecting a magnetic field,
Hall elements that apply the Hall effect of semiconductors, and magnetoresistive elements that apply the magnetoresistive effect of semiconductors and magnetic materials have been widely used. These elements are used at room temperature, and magnetic sensitivities of about 10 -3 to 10 -4 Gauss can be obtained, but it is impossible to obtain sensitivity higher than that. On the other hand, there is a superconducting quantum interference device SQUID using a superconductor as a highly sensitive one showing 10 -10 gauss.
The operation requires extremely low temperature (4K), and liquid helium is used, so that the apparatus is extremely expensive and its operation is complicated. After that, a ceramic superconducting magnetoresistive element using a high temperature superconductor having a high magnetic detection sensitivity and being easily usable at a liquid nitrogen temperature (77K) was developed. The high-sensitivity magnetic detection device using this ceramic superconducting magnetoresistive element has a magnetic field resolution of about 10 −7 Gauss by using the AC magnetic field modulation method.

【0003】上記セラミック超電導磁気抵抗素子をセン
サとして使用した場合の外部磁場と出力電圧との相関関
係は、図5に示すような特性を有する。なお、この相関
関係はセンサに定電流I=4.5mAを流した場合に測定
されたものである。図5において、任意の点をとって磁
電変換率を求めると、磁電変換率(V/G)=16×1
-3(V)/74.2×10-3(G)=0.216とな
る。
The correlation between the external magnetic field and the output voltage when the above ceramic superconducting magnetoresistive element is used as a sensor has the characteristics shown in FIG. It should be noted that this correlation is measured when a constant current I = 4.5 mA is passed through the sensor. In FIG. 5, when the magnetoelectric conversion rate is obtained by taking an arbitrary point, the magnetoelectric conversion rate (V / G) = 16 × 1
0 −3 (V) /74.2×10 −3 (G) = 0.216.

【0004】図6はセラミック超電導磁気抵抗素子を用
いた従来の磁気検出装置の動作原理を示す構成図であ
る。図6において、この磁気検出装置は、発振器40と
抵抗41と変調磁場発生用コイル42とからなる変調磁
場発生装置と、セラミック超電導磁気抵抗素子からなる
センサ44と、該センサ44にDC バイアス電流を印
加するための定電流源43と、センサ44の電圧端子か
ら得られる微弱磁気信号を増幅するための低雑音4nV/
√Hzの差動増幅器45及び46とを備えている。すなわ
ち、図6の磁気検出装置では、差動増幅器45及び46
を二段(1段目10倍、2段目2000倍)にして使用
している。
FIG. 6 is a block diagram showing the operating principle of a conventional magnetic detection device using a ceramic superconducting magnetoresistive element. In FIG. 6, this magnetic detection device includes a modulating magnetic field generating device including an oscillator 40, a resistor 41, and a modulating magnetic field generating coil 42, a sensor 44 including a ceramic superconducting magnetoresistive element, and a DC bias current to the sensor 44. Low noise 4nV / for amplifying the weak magnetic signal obtained from the constant current source 43 for applying and the voltage terminal of the sensor 44
√Hz differential amplifiers 45 and 46 are provided. That is, in the magnetic detection device of FIG. 6, the differential amplifiers 45 and 46 are
Is used in two stages (first stage 10 times, second stage 2000 times).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、最近注
目を浴びている心磁場、肺磁場等の生体磁気計測や金属
材料の欠陥、腐食等の非破壊検査、地下資源探査等への
応用には、10-9ガウスレベルの磁界分解能が必要であ
る。よって、上述した従来の増幅手段によれば、1段目
の差動増幅器45前段でのセラミック超電導磁気抵抗素
子からなるセンサ44の磁電変換率が0.2〜0.05
V/G程度のため(図5参照)、10-9ガウスレベルの
非常に微弱な磁気信号を差動増幅器45及び46で増幅
すると、この磁気信号が増幅器45及び46の入力電圧
雑音に埋もれてしまうという問題がある。
However, the biomagnetic measurement of the magnetic field of the heart, lung magnetic field, etc., which has recently been attracting attention, nondestructive inspection of defects such as metal materials, corrosion, etc., and application to underground resource exploration, etc. A magnetic field resolution of 10 −9 Gauss level is required. Therefore, according to the conventional amplifying means described above, the magnetoelectric conversion rate of the sensor 44 including the ceramic superconducting magnetoresistive element in the preceding stage of the first stage differential amplifier 45 is 0.2 to 0.05.
Since it is approximately V / G (see FIG. 5), when a very weak magnetic signal of 10 −9 Gauss level is amplified by the differential amplifiers 45 and 46, this magnetic signal is buried in the input voltage noise of the amplifiers 45 and 46. There is a problem that it ends up.

【0006】すなわち、10-9ガウスレベルの磁気信号
を測定するためには、低雑音4nV/√Hzの差動増幅器の
前段で磁電変換率(V/G)=4(nV/√Hz)/1(nG
/√Hz)=4(V/G)程度は必要であり、1桁から2
桁程度磁電変換率が不足していた。さらに、上記のよう
に高利得で差動増幅器を使用しているため、2段で使用
する場合、増幅器の入力電圧雑音が利得により倍増し、
結果として出力から得られる磁気信号の雑音レベルが増
加してしまう、すなわち、S/Nが上がらないという問
題がある。
That is, in order to measure a magnetic signal of 10 −9 Gauss level, the magnetoelectric conversion rate (V / G) = 4 (nV / √Hz) / in the preceding stage of the low noise 4 nV / √Hz differential amplifier. 1 (nG
/ √Hz) = 4 (V / G) is necessary, and from 1 digit to 2
The magnetoelectric conversion rate was insufficient by the order of magnitude. Furthermore, since the differential amplifier is used with high gain as described above, when used in two stages, the input voltage noise of the amplifier is doubled due to the gain,
As a result, there is a problem that the noise level of the magnetic signal obtained from the output increases, that is, the S / N does not increase.

【0007】図7は、DC SQUIDを使用した従来
の磁気検出装置の動作原理を示す構成図である。図7に
示すように、この磁気検出装置は、発振器50と変調磁
場発生用コイル51とからなる変調磁場発生装置と、D
C SQUID53と、このDC SQUID53にバ
イアス電流を印加するための定電流源52と、コイル5
4とコンデンサ55とで構成されたLC直列共振回路
と、差動増幅器56とを備えている。この磁気検出装置
は、コンデンサ55の両端より磁気信号を検出し、差動
増幅器56に入力するものである。しかし、この場合、
差動増幅器56においてDC増幅器の入力トランジスタ
をバイアスするのに必要な入力バイアス電流のため、外
部容量、すなわちコンデンサ55の両端に静電気が蓄積
して充電が行われ、結果として、差動増幅器56の出力
は飽和し、安定な動作を得ることが難しいという問題が
ある。
FIG. 7 is a block diagram showing the operating principle of a conventional magnetic detection device using a DC SQUID. As shown in FIG. 7, this magnetic detection device includes a modulation magnetic field generation device including an oscillator 50 and a modulation magnetic field generation coil 51, and
C SQUID 53, constant current source 52 for applying a bias current to this DC SQUID 53, and coil 5
4 and a capacitor 55, and an LC series resonance circuit, and a differential amplifier 56. This magnetic detection device detects a magnetic signal from both ends of the capacitor 55 and inputs it to the differential amplifier 56. But in this case
Due to the input bias current required to bias the input transistor of the DC amplifier in the differential amplifier 56, static electricity is accumulated and charged in the external capacitance, that is, across the capacitor 55, and as a result, the differential amplifier 56 is charged. There is a problem that the output is saturated and it is difficult to obtain stable operation.

【0008】また、本発明で使用するセラミック超電導
磁気抵抗素子は、磁気信号ゼロのとき数百Ωの抵抗を有
する。よって、定電流I=数mAをセンサに流す場合、セ
ンサの出力電圧は、数百mV程度となる(図5参照)。従
って、コンデンサにセンサの出力電圧のほとんどがかか
るため、コンデンサから出力電圧を取ると、結果とし
て、その電圧を増幅器が数千倍に増幅し、出力が飽和し
てしまい、測定不可能になるという問題もある。
The ceramic superconducting magnetoresistive element used in the present invention has a resistance of several hundred Ω when the magnetic signal is zero. Therefore, when the constant current I = several mA is passed through the sensor, the output voltage of the sensor is about several hundred mV (see FIG. 5). Therefore, most of the output voltage of the sensor is applied to the capacitor. Therefore, when the output voltage is taken from the capacitor, the amplifier amplifies the voltage several thousand times, and the output saturates, making it impossible to measure. There are also problems.

【0009】そこで、本発明は、上記従来の課題に鑑み
てなされたものであり、セラミック超電導磁気抵抗素子
を用いて10-9ガウス程度以上の磁気検出感度を示す超
電導磁気検出装置を提供することを目的とする。
Therefore, the present invention has been made in view of the above-mentioned conventional problems, and provides a superconducting magnetism detecting device which uses a ceramic superconducting magnetoresistive element and exhibits a magnetic detection sensitivity of about 10 −9 Gauss or more. With the goal.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、弱結
合特性を示す結晶粒界を有するセラミック超電導磁気抵
抗素子からなると共に磁界を検出するセンサと、変調磁
場を発生させると共に発生した変調磁場を前記センサに
印加する変調磁場発生手段と、前記センサからの磁気信
号のうち、共振周波数と等しい変調周波数の磁気信号を
選択するための磁気信号選択手段と、当該磁気信号選択
手段により選択された磁気信号を増幅するための増幅手
段とを備えたことを特徴とする超電導磁気検出装置であ
る。
According to a first aspect of the present invention, there is provided a sensor which comprises a ceramic superconducting magnetoresistive element having crystal grain boundaries exhibiting a weak coupling characteristic and which detects a magnetic field, and a modulation magnetic field and a generated modulation. Modulated magnetic field generation means for applying a magnetic field to the sensor, magnetic signal selection means for selecting a magnetic signal having a modulation frequency equal to the resonance frequency among magnetic signals from the sensor, and selected by the magnetic signal selection means. And a amplifying means for amplifying the magnetic signal.

【0011】請求項2の発明は、請求項1において、前
記磁気信号選択手段はLC直列共振回路であり、かつ、
当該LC直列共振回路のコイルの両端の電圧を前記増幅
手段に入力することを特徴とする超電導磁気検出装置で
ある。
According to a second aspect of the present invention, in the first aspect, the magnetic signal selection means is an LC series resonance circuit, and
The superconducting magnetism detecting device is characterized in that the voltage across the coil of the LC series resonance circuit is input to the amplifying means.

【0012】請求項3の発明は、請求項1又は2におい
て、前記センサに印加する変調磁場の変調周波数を1kH
z以上とすることを特徴とする超電導磁気検出装置であ
る。
According to a third aspect of the present invention, in the first or second aspect, the modulation frequency of the modulation magnetic field applied to the sensor is 1 kHz.
It is a superconducting magnetic detection device characterized by having z or more.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して詳細に説明する。図1は、本発明の超電導磁
気検出装置の動作原理を示す構成図である。図1に示す
ように、本発明にかかる超電導磁気検出装置は、基本的
に、発振器1と抵抗2と変調磁場発生用コイル3とで構
成された変調磁場発生装置と、弱結合特性を示す結晶粒
界を有するセラミック超電導磁気抵抗素子からなると共
に磁界を検出するセンサ4と、このセンサ4の電流端子
に定電流(I=4.5mA)を供給する定電流源5と、コ
ンデンサ6とコイル7とで構成されると共にセンサ4の
電圧端子に接続されたLC直列共振回路と、センサ4か
らの磁気信号を増幅すると共にコイル7の電圧端子に接
続された差動増幅器(図示せず)とを備えている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram showing the operating principle of the superconducting magnetic detection device of the present invention. As shown in FIG. 1, the superconducting magnetic detection device according to the present invention is basically a modulation magnetic field generation device including an oscillator 1, a resistor 2 and a modulation magnetic field generation coil 3, and a crystal exhibiting a weak coupling characteristic. A sensor 4 composed of a ceramic superconducting magnetoresistive element having grain boundaries and for detecting a magnetic field, a constant current source 5 for supplying a constant current (I = 4.5 mA) to a current terminal of the sensor 4, a capacitor 6 and a coil 7. And an LC series resonance circuit connected to the voltage terminal of the sensor 4 and a differential amplifier (not shown) that amplifies the magnetic signal from the sensor 4 and is connected to the voltage terminal of the coil 7. I have it.

【0014】上記変調磁場発生装置は、変調磁場を発生
させると共に発生した変調磁場(変調周波数=共振周波
数=10kHz)及びDC磁気信号をセンサ4に印加する
ものである。また、上記LC直列共振回路は、センサ4
からの磁気信号のうち、共振周波数と等しい変調周波数
の磁気信号を選択するものであり、このLC直列共振回
路のコイル7の両端の電圧VLは差動増幅器に入力され
る。さらに、セラミック超電導磁気抵抗素子は、液体窒
素温度(77K)に保持されている。なお、センサ4に
印加する変調磁場の変調周波数は1kHz以上であること
が望ましい。その理由としては、特に生体の心臓や脳か
ら発生する磁界は数10Hzの周波数成分を有しており、
そのため変調周波数がその領域にかからないように考慮
する必要があるからである。上記の場合、センサ4の電
圧端子の出力からは10kHzの交流信号が得られ、LC
直列共振回路に流れる。
The above-mentioned modulating magnetic field generator generates a modulating magnetic field and applies the generated modulating magnetic field (modulation frequency = resonance frequency = 10 kHz) and a DC magnetic signal to the sensor 4. In addition, the LC series resonance circuit includes the sensor 4
The magnetic signal having a modulation frequency equal to the resonance frequency is selected from among the magnetic signals from (1), and the voltage V L across the coil 7 of the LC series resonance circuit is input to the differential amplifier. Further, the ceramic superconducting magnetoresistive element is maintained at the liquid nitrogen temperature (77K). The modulation frequency of the modulation magnetic field applied to the sensor 4 is preferably 1 kHz or higher. The reason is that the magnetic field generated from the heart and brain of a living body has a frequency component of several tens Hz,
Therefore, it is necessary to consider so that the modulation frequency does not cover the area. In the above case, an AC signal of 10 kHz is obtained from the output of the voltage terminal of the sensor 4, and LC
It flows into the series resonance circuit.

【0015】図1において、センサ4の超電導状態時の
抵抗値をr、センサ4の出力電圧をE、コンデンサ6の
静電容量をC、コイル7のインダクタンスをLとすれ
ば、回路のインピーダンスZはZ=r+j(ωL−1/
ωC)となり、インピーダンスの絶対値|Z|は|Z|
=√(r2−(ωL−1/ωC)2)となる。ここで、f
(ω=2πf)が共振周波数f0となるとき、ωL=1
/ωC、ω=1/√(LC)が成り立ち、インピーダン
スの絶対値は|Z|=√(r2)=Rとなり最小値とな
る(図2参照)。よって、回路を流れる電流は、I’=
E/rとなり最大となる。(図3参照)。すると、コイ
ル7の両端の電圧VLは、VL=ωLE/r=2πfLE
/rとなり、センサ4の出力電圧Eは2πfL/r倍で
得られることになる。特にfが高く、Lが大きく、rが
小さければより大きな出力電圧が得られる。これにより
差動増幅器前段でのセンサ4の磁電変換率が向上し、磁
気検出感度が向上する。
In FIG. 1, if the resistance value of the sensor 4 in the superconducting state is r, the output voltage of the sensor 4 is E, the capacitance of the capacitor 6 is C, and the inductance of the coil 7 is L, the impedance Z of the circuit is shown. Is Z = r + j (ωL-1 /
ωC), and the absolute value of impedance | Z | is | Z |
= √ (r 2 − (ωL−1 / ωC) 2 ). Where f
When (ω = 2πf) becomes the resonance frequency f 0 , ωL = 1
/ ΩC, ω = 1 / √ (LC) holds, and the absolute value of impedance is | Z | = √ (r 2 ) = R, which is the minimum value (see FIG. 2). Therefore, the current flowing through the circuit is I ′ =
It becomes E / r, which is the maximum. (See Figure 3). Then, the voltage V L across the coil 7 is V L = ωLE / r = 2πfLE
/ R, and the output voltage E of the sensor 4 is obtained by multiplying by 2πfL / r. In particular, if f is high, L is large, and r is small, a larger output voltage can be obtained. As a result, the magnetoelectric conversion rate of the sensor 4 in the preceding stage of the differential amplifier is improved, and the magnetic detection sensitivity is improved.

【0016】図4は、本発明にかかる超電導磁気検出装
置の一実施形態を示す構成図である。図4に示すよう
に、セラミック超電導磁気抵抗素子11はデュワー28
内の液体窒素中に浸漬されて、77Kに冷却保持されて
いる。なお、本実施形態で使用されたセラミック超電導
磁気抵抗素子11の超電導体は、その粒界が極めて薄い
絶縁膜、又は、常電導体膜を介在して結合したものか、
あるいは、ポイント状に弱く結合したもので、磁界によ
り容易にその超電導状態が破れる構成にしてある。使用
した超電導体は、高温超電導体として知られているY1
Ba2Cu37-X系である。これはミアンダ状にパター
ニングされており、電流、電圧端子が設けてある。
FIG. 4 is a block diagram showing an embodiment of the superconducting magnetism detecting device according to the present invention. As shown in FIG. 4, the ceramic superconducting magnetoresistive element 11 is a dewar 28.
It is immersed in the liquid nitrogen inside and kept cooled at 77K. The superconductor of the ceramic superconducting magnetoresistive element 11 used in the present embodiment has an extremely thin grain boundary, is an insulating film, or is a normal conductor film and is connected to the superconductor.
Alternatively, the points are weakly coupled, and the superconducting state is easily broken by the magnetic field. The superconductor used is Y 1 which is known as high temperature superconductor.
A Ba 2 Cu 3 O 7-X system. This is patterned in a meandering shape, and current and voltage terminals are provided.

【0017】セラミック超電導磁気抵抗素子11の周囲
には、変調磁場発生用コイル12、地磁気補正用コイル
13、標準磁場信号発生用コイル14がそれぞれ設けて
ある。この変調磁場発生用コイル12には、発振器15
と抵抗26とが接続されており、発振器15より10kH
zの電流を変調磁場発生用コイル12に供給することに
より変調磁場を発生させる。同様に、地磁気補正用コイ
ル13には定電流源17が接続され、標準磁場信号発生
用コイル14には抵抗27と発振器16とが接続されて
おり、それぞれ地磁気補正用磁場、標準磁場が発生す
る。発生したこれらの磁場はセラミック超電導磁気抵抗
素子11からなるセンサに印加される。また、定電流源
18はシールドツイストペア線19を介してセラミック
超電導磁気抵抗素子11の電流端子へ直流電流I=4.
5mAを印加する。
A modulation magnetic field generating coil 12, a geomagnetic field correcting coil 13, and a standard magnetic field signal generating coil 14 are provided around the ceramic superconducting magnetoresistive element 11. The modulating magnetic field generating coil 12 includes an oscillator 15
And resistor 26 are connected, and 10kH from oscillator 15
A modulation magnetic field is generated by supplying a current of z to the modulation magnetic field generation coil 12. Similarly, a constant current source 17 is connected to the geomagnetic correction coil 13, and a resistor 27 and an oscillator 16 are connected to the standard magnetic field signal generation coil 14, which generate a geomagnetic correction magnetic field and a standard magnetic field, respectively. . These generated magnetic fields are applied to the sensor including the ceramic superconducting magnetoresistive element 11. Further, the constant current source 18 supplies a direct current I = 4. To the current terminal of the ceramic superconducting magnetoresistive element 11 via the shield twisted pair wire 19.
Apply 5mA.

【0018】上述したように、センサに変調磁場発生用
コイル12より発生した変調磁場を印加し、さらに測定
すべき磁気信号が加わると、セラミック超電導磁気抵抗
素子11の電圧端子から変調された出力電圧が得られ
る。その得られた出力電圧は、シールドツイストペア線
20を介してコンデンサ21とコイル22とで構成され
たLC直列共振回路に入力される。ここで、変調周波数
(10kHz)にLC直列共振回路の共振周波数が一致す
るようにコイル22のインダクタンスL=400mHとコ
ンデンサ21の静電容量(C=500pF)+(C`=1
00pF可変)とを組み合わせてあるので、コイル22の
両端から得られる変調された磁気信号は最大限に増幅さ
れることになる。この場合、LC直列共振回路による増
幅度は、約10倍となる。
As described above, when the modulating magnetic field generated by the modulating magnetic field generating coil 12 is applied to the sensor and the magnetic signal to be measured is further applied, the output voltage modulated from the voltage terminal of the ceramic superconducting magnetoresistive element 11 is applied. Is obtained. The obtained output voltage is input to the LC series resonance circuit composed of the capacitor 21 and the coil 22 via the shielded twisted pair wire 20. Here, the inductance L of the coil 22 is 400 mH and the capacitance of the capacitor 21 is C (500 pF) + (C = 1) so that the resonance frequency of the LC series resonance circuit matches the modulation frequency (10 kHz).
(00 pF variable), the modulated magnetic signal obtained from both ends of the coil 22 is amplified to the maximum extent. In this case, the amplification factor of the LC series resonance circuit is about 10 times.

【0019】そして、コイル22の両端から得られる増
幅された磁気信号をさらに低雑音差動増幅器(×256
0)23及びロックイン増幅器24に入力する。ここで
ロックイン増幅器24には、発振器15からの参照信号
も入力されるので、変調周波数成分の信号を検出するこ
とになる。そして最終的に交流成分をカットするため、
低域フィルタ25に入力する。以上の回路動作により測
定している磁場の強さを電圧として取り出す。また、特
に外部の電磁波の影響を除くために、LC直列共振回路
及び低雑音差動増幅器23は、シャーシ29に収納され
ている。
Then, the amplified magnetic signals obtained from both ends of the coil 22 are further converted into a low noise differential amplifier (× 256).
0) 23 and lock-in amplifier 24. Since the reference signal from the oscillator 15 is also input to the lock-in amplifier 24 here, the signal of the modulation frequency component is detected. And in order to finally cut the AC component,
Input to the low pass filter 25. The strength of the magnetic field measured by the above circuit operation is extracted as a voltage. In addition, the LC series resonance circuit and the low noise differential amplifier 23 are housed in the chassis 29 in order to remove the influence of external electromagnetic waves.

【0020】次に、上記の構成を有する回路の磁気検出
感度を測定した。A点での磁気検出感度を測定するため
に、まずセンサに定電流4.5mAを流した。また、発振
器16より、標準磁場発生用コイル(5.3G/A)1
4に変調電流を供給し、変調磁場203.07×10-6
G(10kHz)を発生させセンサに印加した。そして、
A点の出力にFFTアナライザーを接続することで、以
下に示す結果を得た。 A点の出力電圧Vout=1.17(Vpp) 磁電変換率(V/G)=1.17/(203.07×10-6)=8420.74(V/G) 10Hzにおける雑音N=-95.4dBV=33.96×10-6(Vpp) 差動増幅器の前段での磁電変換率(V/G)=8420.74/2560=
3.29(V/G) 以上より、LC直列共振回路をセンサの電圧端子と差動
増幅器間に使用することで、差動増幅器の前段でのセン
サの磁電変換率が、従来の0.2〜0.05(V/G)
程度から3.29(V/G)に増大し、1桁から2桁向
上した。また、A点での感度は、2.02×10-9(G
/√Hz)であった。
Next, the magnetic detection sensitivity of the circuit having the above structure was measured. In order to measure the magnetic detection sensitivity at point A, a constant current of 4.5 mA was first applied to the sensor. In addition, from the oscillator 16, a standard magnetic field generating coil (5.3 G / A) 1
4 is supplied with the modulation current, and the modulation magnetic field is 203.07 × 10 -6
G (10 kHz) was generated and applied to the sensor. And
By connecting an FFT analyzer to the output at point A, the results shown below were obtained. Output voltage at A point Vout = 1.17 (Vpp) Magnetoelectric conversion rate (V / G) = 1.17 / (203.07 × 10 -6 ) = 8420.74 (V / G) Noise at 10Hz N = -95.4dB V = 33.96 × 10 -6 (Vpp) Magnetoelectric conversion rate (V / G) before the differential amplifier = 8420.74 / 2560 =
3.29 (V / G) From the above, by using the LC series resonance circuit between the voltage terminal of the sensor and the differential amplifier, the magnetoelectric conversion rate of the sensor in the preceding stage of the differential amplifier is 0.2 ~ 0. .05 (V / G)
It increased from about 3.29 (V / G) and improved by 1 to 2 digits. The sensitivity at point A is 2.02 × 10 -9 (G
/ √Hz).

【0021】従って、本発明の超電導磁気検出装置は、
弱い磁界にも粒界の接合による作用で高い感度をもつこ
とができるセラミック超電導磁気抵抗素子を用いて、1
-9ガウスレベルの磁界分解能を実現することができる
ものである。また、本発明の原理を用いることにより、
低周波での10-9ガウスレベル磁界信号測定において、
信号増幅のための低雑音4nV/√Hzレベルを実現でき
る。
Therefore, the superconducting magnetic detection device of the present invention is
Using a ceramic superconducting magnetoresistive element that has high sensitivity to weak magnetic fields due to the action of grain boundary bonding,
0 -9 it is capable to realize the magnetic field resolution of the Gauss level. Also, by using the principles of the present invention,
In the low frequency 10 -9 Gauss level magnetic field signal measurement,
Low noise 4nV / √Hz level for signal amplification can be realized.

【0022】[0022]

【発明の効果】請求項1に記載の超電導磁気検出装置に
よれば、弱結合特性を示す結晶粒界を有するセラミック
超電導磁気抵抗素子からなる磁界検出センサと、変調磁
場を発生させてセンサに印加する変調磁場発生手段と、
センサからの磁気信号のうち、共振周波数と等しい変調
周波数の磁気信号を選択する磁気信号選択手段とを具備
することにより、超電導磁気抵抗素子の磁電変換率が従
来のものより高くなり、また低ノイズとなるため磁気検
出感度の向上を図ることができる。
According to the superconducting magnetism detecting device of the present invention, a magnetic field detecting sensor composed of a ceramic superconducting magnetoresistive element having crystal grain boundaries exhibiting weak coupling characteristics and a modulating magnetic field are generated and applied to the sensor. Modulating magnetic field generating means for
By providing a magnetic signal selecting means for selecting a magnetic signal having a modulation frequency equal to the resonance frequency among the magnetic signals from the sensor, the magnetoelectric conversion rate of the superconducting magnetoresistive element becomes higher than that of the conventional one, and the noise is low. Therefore, the magnetic detection sensitivity can be improved.

【0023】請求項2に記載の超電導磁気検出装置によ
れば、磁気信号選択手段をLC直列共振回路とすること
により、磁気検出におけるノイズを除去することができ
る。さらに、LC直列共振回路のコイルの両端の電圧を
磁気信号を増幅するための増幅手段に入力することによ
り、安定、かつ、低ノイズで磁気信号を増幅でき、磁気
検出感度の向上を図ることができる。
According to the superconducting magnetism detecting device of the second aspect, the magnetic signal selecting means is an LC series resonance circuit, so that noise in magnetism detection can be removed. Further, by inputting the voltage across the coil of the LC series resonance circuit to the amplifying means for amplifying the magnetic signal, the magnetic signal can be amplified stably and with low noise, and the magnetic detection sensitivity can be improved. it can.

【0024】請求項3に記載の超電導磁気検出装置によ
れば、センサに印加する変調磁場の変調周波数を1kHz
以上とすることにより、変調周波数を生体の心臓や脳か
ら発生する磁界の数十Hz程度の周波数領域にかからない
ようにすることができ、磁気検出感度の向上を図ること
ができる。
According to the superconducting magnetic detection device of the third aspect, the modulation frequency of the modulation magnetic field applied to the sensor is 1 kHz.
With the above, it is possible to prevent the modulation frequency from being applied to the frequency region of a few tens Hz of the magnetic field generated from the heart or brain of the living body, and it is possible to improve the magnetic detection sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の超電導磁気検出装置の動作原理を示す
構成図である。
FIG. 1 is a configuration diagram showing an operation principle of a superconducting magnetic detection device of the present invention.

【図2】本発明の超電導磁気検出装置を動作させた場合
の周波数に対するLC直列共振回路のインピーダンスの
絶対値|Z|の変化を示す特性図である。
FIG. 2 is a characteristic diagram showing changes in the absolute value | Z | of the impedance of the LC series resonance circuit with respect to the frequency when the superconducting magnetic detection device of the present invention is operated.

【図3】本発明の超電導磁気検出装置を動作させた場合
の周波数に対するLC直列共振回路内を流れる電流及び
コイルの両端の電圧の変化を示す特性図である。
FIG. 3 is a characteristic diagram showing changes in the current flowing in the LC series resonance circuit and the voltage across the coil with respect to frequency when the superconducting magnetic detection device of the present invention is operated.

【図4】本発明にかかる超電導磁気検出装置の一実施形
態を示す構成図である。
FIG. 4 is a configuration diagram showing an embodiment of a superconducting magnetic detection device according to the present invention.

【図5】セラミック超電導磁気抵抗素子をセンサとして
使用した場合の外部磁場と出力電圧との相関関係を示す
図である。
FIG. 5 is a diagram showing a correlation between an external magnetic field and an output voltage when a ceramic superconducting magnetoresistive element is used as a sensor.

【図6】セラミック超電導磁気抵抗素子を用いた従来の
磁気検出装置の動作原理を示す構成図である。
FIG. 6 is a configuration diagram showing an operating principle of a conventional magnetic detection device using a ceramic superconducting magnetoresistive element.

【図7】DC SQUIDを用いた従来の磁気検出装置
の動作原理を示す構成図である。
FIG. 7 is a configuration diagram showing an operation principle of a conventional magnetic detection device using a DC SQUID.

【符号の説明】[Explanation of symbols]

1 発振器 2 抵抗 3 変調磁場発生用コイル 4 センサ 5 定電流源 6 コンデンサ 7 コイル 1 Oscillator 2 Resistance 3 Modulation magnetic field generating coil 4 Sensor 5 Constant current source 6 Capacitor 7 Coil

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 弱結合特性を示す結晶粒界を有するセラ
ミック超電導磁気抵抗素子からなると共に磁界を検出す
るセンサと、変調磁場を発生させると共に発生した変調
磁場を前記センサに印加する変調磁場発生手段と、前記
センサからの磁気信号のうち、共振周波数と等しい変調
周波数の磁気信号を選択するための磁気信号選択手段
と、当該磁気信号選択手段により選択された磁気信号を
増幅するための増幅手段とを備えたことを特徴とする超
電導磁気検出装置。
1. A sensor comprising a ceramic superconducting magnetoresistive element having crystal grain boundaries exhibiting weak coupling characteristics and detecting a magnetic field, and a modulating magnetic field generating means for generating a modulating magnetic field and applying the generated modulating magnetic field to the sensor. A magnetic signal selecting means for selecting a magnetic signal having a modulation frequency equal to the resonance frequency among the magnetic signals from the sensor; and an amplifying means for amplifying the magnetic signal selected by the magnetic signal selecting means. A superconducting magnetic detection device comprising:
【請求項2】 前記磁気信号選択手段はLC直列共振回
路であり、かつ、当該LC直列共振回路のコイルの両端
の電圧を前記増幅手段に入力することを特徴とする請求
項1記載の超電導磁気検出装置。
2. The superconducting magnet according to claim 1, wherein the magnetic signal selection means is an LC series resonance circuit, and the voltage across the coil of the LC series resonance circuit is input to the amplification means. Detection device.
【請求項3】 前記センサに印加する変調磁場の変調周
波数を1kHz以上とすることを特徴とする請求項1又は
2記載の超電導磁気検出装置。
3. The superconducting magnetic detector according to claim 1, wherein the modulation frequency of the modulation magnetic field applied to the sensor is 1 kHz or more.
JP7193491A 1995-07-28 1995-07-28 Superconductive magnetic detecting device Pending JPH0943328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7193491A JPH0943328A (en) 1995-07-28 1995-07-28 Superconductive magnetic detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7193491A JPH0943328A (en) 1995-07-28 1995-07-28 Superconductive magnetic detecting device

Publications (1)

Publication Number Publication Date
JPH0943328A true JPH0943328A (en) 1997-02-14

Family

ID=16308931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7193491A Pending JPH0943328A (en) 1995-07-28 1995-07-28 Superconductive magnetic detecting device

Country Status (1)

Country Link
JP (1) JPH0943328A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183736A (en) * 2011-02-28 2011-09-14 上海奥波信息科技有限公司 Device and method for measuring low-intensity magnetic field
KR101487337B1 (en) * 2014-08-13 2015-01-28 국방과학연구소 Apparatus and Method for testing wideband alternating current magnetic sensor using series RLC resonance
JP2020008380A (en) * 2018-07-05 2020-01-16 富士通株式会社 Magnetic measurement module, magnetic property measurement device and magnetic property measurement method
WO2020113467A1 (en) * 2018-12-05 2020-06-11 中国科学院地质与地球物理研究所 Inductive magnetic sensor and electromagnetic exploration device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102183736A (en) * 2011-02-28 2011-09-14 上海奥波信息科技有限公司 Device and method for measuring low-intensity magnetic field
KR101487337B1 (en) * 2014-08-13 2015-01-28 국방과학연구소 Apparatus and Method for testing wideband alternating current magnetic sensor using series RLC resonance
JP2020008380A (en) * 2018-07-05 2020-01-16 富士通株式会社 Magnetic measurement module, magnetic property measurement device and magnetic property measurement method
WO2020113467A1 (en) * 2018-12-05 2020-06-11 中国科学院地质与地球物理研究所 Inductive magnetic sensor and electromagnetic exploration device
US11914092B2 (en) 2018-12-05 2024-02-27 Institute Of Geology And Geophysics, The Chinese Academy Of Sciences Inductive magnetic sensor and electromagnetic prospecting equipment

Similar Documents

Publication Publication Date Title
US6815949B2 (en) Apparatus for measuring a magnetic field
US4324255A (en) Method and apparatus for measuring magnetic fields and electrical currents in biological and other systems
US5343147A (en) Method and apparatus for using stochastic excitation and a superconducting quantum interference device (SAUID) to perform wideband frequency response measurements
Cromar et al. Low‐noise tunnel junction dc SQUID’s
JP5978310B2 (en) DCSQUID-based RF magnetometer that operates over 200MHz bandwidth
Goodman et al. Superconducting instrument systems
US7394246B2 (en) Superconductive quantum interference device (SQUID) system for measuring magnetic susceptibility of materials
Ripka et al. Fluxgate: Tuned vs. untuned output
Templeton A superconducting modulator
Boukhenoufa et al. High-sensitivity giant magneto-inductive magnetometer characterization implemented with a low-frequency magnetic noise-reduction technique
US4315215A (en) Plural frequency type superconducting quantum interference fluxmeter
TonThat et al. Direct current superconducting quantum interference device spectrometer for pulsed nuclear magnetic resonance and nuclear quadrupole resonance at frequencies up to 5 MHz
JPH0943328A (en) Superconductive magnetic detecting device
Senaj et al. Inductive measurement of magnetic field gradients for magnetic resonance imaging
Ripka et al. Tuned current-output fluxgate
JP2005188947A (en) Magnetic detector
Liao et al. Longitudinal relaxation time detection using a high-Tc superconductive quantum interference device magnetometer
Stolz et al. Long baseline thin film SQUID gradiometers
Sokol-Kutylovskii A magneto-modulating meter of a weak variable magnetic field
Zakosarenko et al. Integrated LTS gradiometer SQUID systems for unshielded measurements in a disturbed environment
He Developing gradiometer to reduce the low frequency noise of magnetic sensor with amorphous wire
Cruz et al. Design of a fourth harmonic fluxgate magnetometer
Qian et al. Integrated driving and readout circuits for orthogonal fluxgate sensor
JP3133803B2 (en) Method for measuring magnetic field inside superconductor structure, method for measuring magnetic shield characteristics of superconductor, and apparatus for measuring magnetic field inside superconductor structure
Robbes et al. Performances and place of magnetometers based on amorphous wires compared to conventional magnetometers