JP2005188947A - Magnetic detector - Google Patents

Magnetic detector Download PDF

Info

Publication number
JP2005188947A
JP2005188947A JP2003426994A JP2003426994A JP2005188947A JP 2005188947 A JP2005188947 A JP 2005188947A JP 2003426994 A JP2003426994 A JP 2003426994A JP 2003426994 A JP2003426994 A JP 2003426994A JP 2005188947 A JP2005188947 A JP 2005188947A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
low
signal
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003426994A
Other languages
Japanese (ja)
Inventor
Tatsuoki Nagaishi
竜起 永石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUMITOMO DENKO HIGHTECS KK
Original Assignee
SUMITOMO DENKO HIGHTECS KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUMITOMO DENKO HIGHTECS KK filed Critical SUMITOMO DENKO HIGHTECS KK
Priority to JP2003426994A priority Critical patent/JP2005188947A/en
Publication of JP2005188947A publication Critical patent/JP2005188947A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To precisely detect a magnetic field of high frequency without being influenced by a low frequency field such as an environmental magnetic field even in a low magnetic shielding environment. <P>SOLUTION: This magnetic detector comprises a low-pass filter 1 extracting a predetermined low-pass component from output signal of an integrator 14 generating detection output voltage Vout according to an object of magnetic field detection. According to the output signal of the low-pass filter, a magnetic field corresponding to the extracted low-pass component is generated in a compensation coil 3 and applied to a SQUID 10. According to the output of the integrator, a magnetic field of the corresponding magnitude is generated by a modulation coil 16 and supplied to the SQUID 10. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、磁気センサを用いる磁気検出装置に関し、特に、磁気センサとして超電導量子干渉素子(SQUID)を利用する磁気検出装置に関する。より特定的には、この発明は、環境磁場などの環境磁気雑音の影響を受けることなく安定に計測対象の磁界を検出するための構成に関する。   The present invention relates to a magnetic detection device using a magnetic sensor, and more particularly to a magnetic detection device using a superconducting quantum interference element (SQUID) as a magnetic sensor. More specifically, the present invention relates to a configuration for stably detecting a magnetic field to be measured without being affected by environmental magnetic noise such as an environmental magnetic field.

ジョセフソン効果を利用する素子として、SQUID(超電導量子干渉素子;Superconducting Quantum Interference Device)が知られている。ジョセフソン効果は、薄い絶縁膜を超電導体で挟んだ場合、この超電導体において電圧差を生じさせることなく電流を流すことができる現象である。SQUIDは、磁気センサとして利用される場合、通常、2つのジョセフソン接合を並列に接続する構造と、1つのジョセフソン接合を用いる構造とに大別される。2つのジョセフソン接合を有するSQUIDは、DC−SQUIDと呼ばれ、また、1つのジョセフソン接合を有するSQUIDは、RF−SQUIDと呼ばれる。以下、SQUIDとして、DC−SQUIDを例にとって、説明する。   SQUID (Superconducting Quantum Interference Device) is known as an element that utilizes the Josephson effect. The Josephson effect is a phenomenon in which when a thin insulating film is sandwiched between superconductors, current can flow without causing a voltage difference in the superconductor. When used as a magnetic sensor, the SQUID is generally roughly divided into a structure in which two Josephson junctions are connected in parallel and a structure in which one Josephson junction is used. A SQUID having two Josephson junctions is called a DC-SQUID, and a SQUID having one Josephson junction is called an RF-SQUID. Hereinafter, DC-SQUID will be described as an example of SQUID.

図5は、従来のSQUIDを利用する磁気検出装置の構成を概略的に示す図であり、たとえば特許文献1(特開2000−292511号)に示されている。   FIG. 5 is a diagram schematically showing a configuration of a conventional magnetic detection device using a SQUID, which is disclosed, for example, in Patent Document 1 (Japanese Patent Laid-Open No. 2000-292511).

図5において、磁気検出装置は、SQUIDで構成される磁気センサ(以下、単にSQUIDと称す)10と、SQUID10に一定の大きさのバイアス電流Ibを供給するバイアス電流源12と、SQUID10の両端電圧を増幅する増幅回路13と、増幅回路13の出力信号を積分して検出出力電圧Voutを出力する積分回路14と、積分回路14の検出出力電圧を電流に変換するフィードバック抵抗素子15と、このSQUID10に結合され、抵抗素子15を介して供給される電流に従って負帰還磁界を発生する帰還コイル(変調コイル)16を含む。   In FIG. 5, the magnetic detection device includes a magnetic sensor (hereinafter simply referred to as SQUID) 10 composed of a SQUID, a bias current source 12 that supplies a bias current Ib having a constant magnitude to the SQUID 10, and a voltage across the SQUID 10. An amplifying circuit 13, an integrating circuit 14 for integrating the output signal of the amplifying circuit 13 to output a detected output voltage Vout, a feedback resistance element 15 for converting the detected output voltage of the integrating circuit 14 into a current, and the SQUID 10 And a feedback coil (modulation coil) 16 that generates a negative feedback magnetic field in accordance with a current supplied through the resistance element 15.

SQUID10は、リング形状を有し、このリングにおいて並列に接続される2つのジョセフソン接合11aおよび11bを有する。   The SQUID 10 has a ring shape and has two Josephson junctions 11a and 11b connected in parallel in the ring.

超伝導電流は、超伝導状態を生成するクーパ対のトンネル現象により流れる。バイアス電流源12からのバイアス電流Ibとして、SQUID10の超電導臨界電流値Icよりも大きな電流を供給すると、SQUID10において常電導電流が発生し、SQUID10両端間に電圧Vsが発生する。この状態において、SQUID10に磁界φが印加されると、マイスナー効果によりSQUID10において、超電導リングに、内部への磁界の侵入を防止するように遮蔽電流が発生する。この外部からの印加磁界φの強さにより、ジョセフソン接合11aおよび11bにおけるクーパー対の位相差Δφが変化する。この場合、遮蔽電流はIsは、超電導臨界電流値をIcとして、次式で表される。   The superconducting current flows due to the tunneling phenomenon of the Cooper pair that generates the superconducting state. When a current larger than the superconducting critical current value Ic of the SQUID 10 is supplied as the bias current Ib from the bias current source 12, a normal conducting current is generated in the SQUID 10, and a voltage Vs is generated across the SQUID 10. In this state, when a magnetic field φ is applied to the SQUID 10, a shielding current is generated in the SQUID 10 by the Meissner effect so as to prevent the magnetic field from entering the superconducting ring. Depending on the strength of the externally applied magnetic field φ, the phase difference Δφ of the Cooper pair in the Josephson junctions 11a and 11b changes. In this case, the shielding current Is is expressed by the following equation, where the superconducting critical current value is Ic.

Is=Ic・sinΔφ
超電導体中では、磁場は量子化され、その最小単位は、量子化磁束(磁束量子)φ0と呼ばれ、位相差Δφは、次式で表わされる。
Is = Ic · sinΔφ
In the superconductor, the magnetic field is quantized, and its minimum unit is called a quantized magnetic flux (flux quantum) φ0, and the phase difference Δφ is expressed by the following equation.

Δφ=2・n・π+2・π・(φ/φ0)
したがって、遮蔽電流Isは、量子化磁束φ0(2・10^(−15)Wb:符号^は、べき乗を示す)単位で周期的に変化する。
Δφ = 2 · n · π + 2 · π · (φ / φ0)
Therefore, the shielding current Is periodically changes in units of quantized magnetic flux φ0 (2 · 10 ^ (− 15) Wb: sign ^ indicates a power).

すなわち、SQUID10に、磁界φを印加した場合、遮蔽電流により超電導状態を保持することのできるバイアス電流値が変化する。このとき、バイアス電流Ibが一定値であれば、SQUID10の両端に発生する電圧Vsも、量子化磁束φ0を単位として周期的に変化する。このSQUID10の両端の電圧Vsと印加磁界φの関係を図6に示す。   That is, when the magnetic field φ is applied to the SQUID 10, the bias current value that can maintain the superconducting state is changed by the shielding current. At this time, if the bias current Ib is a constant value, the voltage Vs generated at both ends of the SQUID 10 also changes periodically with the quantized magnetic flux φ0 as a unit. FIG. 6 shows the relationship between the voltage Vs across the SQUID 10 and the applied magnetic field φ.

図6に示すように、磁界φが変化しても、電圧Vsが周期的に変化する場合、磁界の変化の絶対量を一義的に求めることができない。そこで、図示しないバイアス回路を用いて変調コイル16に流れる電流量を調整して、動作点を設定する。この動作点の設定のためのバイアス電流を調整する方法としては、上述の特許文献1において示されている。   As shown in FIG. 6, even if the magnetic field φ changes, if the voltage Vs changes periodically, the absolute amount of change in the magnetic field cannot be uniquely determined. Therefore, the operating point is set by adjusting the amount of current flowing through the modulation coil 16 using a bias circuit (not shown). A method of adjusting the bias current for setting the operating point is disclosed in the above-mentioned Patent Document 1.

また、電圧−磁界特性において、電圧が周期的に変化するため、その直線領域が狭く、特性の線形性を十分に確保するのが困難である。そこで、増幅回路13の出力信号を積分回路14およびフィードバック抵抗素子15を介して変調コイル16にフィードバックし、この変調コイル16により、外部印加磁界φを打消す磁界を生成して、いわゆる「零点検出法(零位法)」を用いて磁界を検出する。増幅回路13、積分回路14、フィードバック抵抗素子15および変調コイル16で構成される回路は、FLL(フラックス(磁束)・ロックト・ループ)回路と呼ばれ、負帰還回路を構成し、SQUID10における外部印加磁界φを打ち消すように補償磁界を生成しする。即ち、フィードバック磁界と信号磁界との和が一定となるように負帰還がかけられ、応じて、この磁気検出装置の動作点を一定に維持する。   Further, in the voltage-magnetic field characteristic, since the voltage periodically changes, the linear region is narrow, and it is difficult to sufficiently secure the linearity of the characteristic. Therefore, the output signal of the amplifier circuit 13 is fed back to the modulation coil 16 via the integration circuit 14 and the feedback resistance element 15, and the modulation coil 16 generates a magnetic field that cancels the externally applied magnetic field φ. Method "(zero method)" is used to detect the magnetic field. A circuit composed of the amplifier circuit 13, the integrating circuit 14, the feedback resistor element 15, and the modulation coil 16 is called an FLL (flux (magnetic flux) / locked loop) circuit, constitutes a negative feedback circuit, and is externally applied in the SQUID 10. A compensation magnetic field is generated so as to cancel the magnetic field φ. That is, negative feedback is applied so that the sum of the feedback magnetic field and the signal magnetic field is constant, and accordingly, the operating point of the magnetic detection device is maintained constant.

変調コイル16とSQUID10の相互インダクタンスをMfとすると、フィードバック抵抗素子15の両端の電圧は、(Rf/Mf)φで表わされ、したがって、積分回路14からの出力電圧Voutは、外部からの印加磁界φに比例する。この検出電圧Voutを計測することにより印加磁界φを検出することができる。   When the mutual inductance between the modulation coil 16 and the SQUID 10 is Mf, the voltage across the feedback resistance element 15 is represented by (Rf / Mf) φ, and therefore the output voltage Vout from the integration circuit 14 is applied from the outside. It is proportional to the magnetic field φ. By measuring this detection voltage Vout, the applied magnetic field φ can be detected.

この磁界φを検出する計測動作時において、電圧ー磁界特性において曲線の傾き、すなわちdV/dφが最も大きい点、たとえば図6に示す点aを、磁気検出装置(FLL回路)の動作点とすることにより、検出出力電圧Voutを、線形領域で印加磁界φに応じて変化させて、磁界を検出することができる。量子化磁束φ0よりも小さい磁界変化を検出することができる。SQUIDは、低温超電導体を利用する場合には10^(−14)テスラ/√Hz、高温超電導体を利用する場合には10^(−13)テスラ/√Hz以下の感度を持ち、微弱な磁界を計測することができ、各種計測機器および医療機器等において用いられている。
特開2000−292511号公報
During the measurement operation for detecting the magnetic field φ, the slope of the curve in the voltage-magnetic field characteristic, that is, the point where dV / dφ is the largest, for example, the point a shown in FIG. 6 is the operating point of the magnetic detection device (FLL circuit). Thus, the magnetic field can be detected by changing the detection output voltage Vout according to the applied magnetic field φ in the linear region. A magnetic field change smaller than the quantized magnetic flux φ0 can be detected. SQUID has a sensitivity of 10 ^ (-14) Tesla / √Hz when using a low-temperature superconductor and 10 ^ (-13) Tesla / √Hz or less when using a high-temperature superconductor, and is weak. It can measure magnetic fields and is used in various measuring devices and medical devices.
JP 2000-292511 A

図5に示す積分回路14を利用することにより、増幅回路13の出力信号の高周波成分(時間微分成分)を除去し、検出磁界に対応する安定な検出出力電圧Voutを生成することができる。この磁気検出装置が完全に磁気遮蔽された環境下で動作する場合、図7に示すように、検出出力電圧に対して、直流から増幅回路13により決定される遮断周波数fcまでの領域において平坦な周波数特性を得ることができる。   By using the integration circuit 14 shown in FIG. 5, a high frequency component (time differential component) of the output signal of the amplifier circuit 13 can be removed, and a stable detection output voltage Vout corresponding to the detection magnetic field can be generated. When this magnetic detection device operates in a completely magnetically shielded environment, as shown in FIG. 7, the detection output voltage is flat in the region from the direct current to the cutoff frequency fc determined by the amplifier circuit 13. Frequency characteristics can be obtained.

今、測定可能な周波数領域、たとえば、直流から600kHz(または数MHz)の範囲において、被測定対象磁界の周波数領域として、図7の領域Aを考える。たとえば、測定領域Aにおいて周波数100kHzの磁界を測定対象磁界として計測を行なう場合を考える。   Now, consider a region A in FIG. 7 as a frequency region of the magnetic field to be measured in a measurable frequency region, for example, in a range from DC to 600 kHz (or several MHz). For example, consider a case where measurement is performed using a magnetic field having a frequency of 100 kHz as a measurement target magnetic field in the measurement region A.

磁気遮蔽が不十分な場合、信号磁界に対して、領域Bで示される周波数領域の環境磁気雑音の成分が重畳される。このような低周波の環境磁気雑音の例としては、商用電源線の誘起磁界、地磁気、また、1/fゆらぎなどが考えられる。   When the magnetic shielding is insufficient, the environmental magnetic noise component in the frequency region indicated by the region B is superimposed on the signal magnetic field. Examples of such low-frequency environmental magnetic noise include an induced magnetic field of a commercial power line, geomagnetism, and 1 / f fluctuation.

低周波領域の環境磁気雑音が、信号磁界に重畳された場合、増幅回路13および積分回路14では除去することができないため、図8の曲線IIに示されるように、この環境磁気雑音に起因するノイズ成分が出力電圧Voutに重畳される。ここで、図8において、横軸に時間tを示し、縦軸に、出力電圧Voutを示す。   When the environmental magnetic noise in the low frequency region is superimposed on the signal magnetic field, it cannot be removed by the amplifier circuit 13 and the integrating circuit 14, and as a result, as shown by curve II in FIG. A noise component is superimposed on the output voltage Vout. Here, in FIG. 8, the horizontal axis represents time t, and the vertical axis represents the output voltage Vout.

このような環境磁場などの環境磁気雑音のゆらぎが大きい場合には、曲線IIの点Cに示すように、計測可能電圧範囲である増幅回路13の出力電圧の最大値(電源電圧)レベルにまで振り切れ、正確に、信号磁界に応じた出力電圧Voutを生成することができず、例えば、図8において、信号磁界が曲線Iで示すような特性曲線の場合に対して、低周波領域の環境磁場などの環境磁気雑音の影響により、正確な測定を行なうことができなくなるという問題が生じる。   When the fluctuation of the environmental magnetic noise such as the environmental magnetic field is large, as shown by a point C in the curve II, the maximum value (power supply voltage) level of the output voltage of the amplifier circuit 13 which is a measurable voltage range is reached. The output voltage Vout corresponding to the signal magnetic field cannot be generated accurately. For example, in the case where the signal magnetic field is a characteristic curve as indicated by the curve I in FIG. There arises a problem that accurate measurement cannot be performed due to environmental magnetic noise.

また、この環境磁気雑音の変化にSQUID10のスルーレートが追随できない場合、積分回路14およびフィードバック抵抗素子15および変調コイル16で構成されるFLL回路を用いても、この環境磁気雑音によるノイズ成分を除去することができず、このSQUID10のスルーレートに応じた電圧レベルに従って変調コイル16の誘起磁界が決定される。この場合、図8の点DおよびEで示すように、このため、積分回路14の出力電圧が大きく変化し(動作点が大きく変化し)、正確な計測を行なうことができなくなる。特に、動作点が大きく変化し、電圧−磁界特性曲線の傾斜が反対の領域に動作点が移動した場合には、FLL回路における帰還の方向が逆となり、負帰還に代えて正帰還がかけられる状態が生じ、正確な磁束の計測を行なうことができなくなる。   Further, when the slew rate of the SQUID 10 cannot follow the change in the environmental magnetic noise, the noise component due to the environmental magnetic noise is removed even if the FLL circuit including the integration circuit 14, the feedback resistance element 15, and the modulation coil 16 is used. The induced magnetic field of the modulation coil 16 is determined according to the voltage level corresponding to the slew rate of the SQUID 10. In this case, as indicated by points D and E in FIG. 8, the output voltage of the integration circuit 14 changes greatly (the operating point changes greatly), and accurate measurement cannot be performed. In particular, when the operating point changes greatly and the operating point moves to a region where the slope of the voltage-magnetic field characteristic curve is opposite, the feedback direction in the FLL circuit is reversed, and positive feedback is applied instead of negative feedback. A state occurs, and accurate magnetic flux measurement cannot be performed.

上述の特許文献1においては、変調コイルに対するバイアス電流を最適化して、磁気検出装置の動作点を最適化する構成は示されているものの、これらの低周波領域の環境磁場などの環境磁気雑音が及ぼす影響については何ら考慮していない。   In the above-mentioned Patent Document 1, a configuration is shown in which the bias current for the modulation coil is optimized to optimize the operating point of the magnetic detection device. However, environmental magnetic noise such as an environmental magnetic field in these low-frequency regions is present. No consideration is given to the effect.

また、外来磁気雑音を除去するために、ピックアップコイルで磁界を集め、磁束トランスによりSQUIDに磁束を伝達するグラジオメータと呼ばれる構成も用いられている。しかしながら、この場合においても、ピックアップコイルにより、低周波領域の環境磁気雑音成分がSQUIDへ伝達されるため、同様の問題が生じる。   In order to remove external magnetic noise, a configuration called a gradiometer that collects a magnetic field with a pickup coil and transmits the magnetic flux to the SQUID with a magnetic flux transformer is also used. However, in this case as well, a similar problem arises because the pick-up coil transmits the environmental magnetic noise component in the low frequency region to the SQUID.

このような環境磁気雑音の影響を抑制するためには、磁気遮蔽を完全にすることが考えられる。しかしながら、この場合、測定室全体をパーマロイなどの高透磁率の材料で遮蔽するなどの処置をとることが要求され、費用が高くなり、また、磁気遮蔽の規模が大きくなるという問題があり、また、磁気検出装置の使用箇所が制限されるという問題が生じる。   In order to suppress the influence of such environmental magnetic noise, it is conceivable to complete the magnetic shielding. However, in this case, it is required to take measures such as shielding the entire measurement chamber with a material having high magnetic permeability such as permalloy, which increases costs and increases the scale of magnetic shielding. As a result, there is a problem that the use location of the magnetic detection device is limited.

それゆえ、この発明の目的は、低周波環境磁気雑音成分の影響を受けることなく安定に計測対象の信号磁界を検出することのできる磁気検出装置を提供することである。   SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a magnetic detection device capable of stably detecting a signal magnetic field to be measured without being affected by a low frequency environmental magnetic noise component.

この発明に係る磁気検出装置は、磁界を検出する磁気センサと、この磁気センサの出力信号に従って、磁気センサの検出磁界に対応する電気信号を生成して磁界検出信号として出力する検出出力生成回路と、この磁界検出信号を受け、検出出力生成回路の有する周波数領域の低域周波数領域の信号成分を通過させる低域通過フィルタと、この低域通過フィルタの出力信号に従って低域通過フィルタの出力信号に対応する磁界を発生して磁気センサに印加する負帰還回路を備える。   A magnetic detection device according to the present invention includes a magnetic sensor that detects a magnetic field, and a detection output generation circuit that generates an electric signal corresponding to the detected magnetic field of the magnetic sensor in accordance with an output signal of the magnetic sensor and outputs the electric signal as a magnetic field detection signal. The low-pass filter that receives the magnetic field detection signal and passes the signal component of the low-frequency region of the frequency region of the detection output generation circuit, and the output signal of the low-pass filter according to the output signal of the low-pass filter A negative feedback circuit for generating a corresponding magnetic field and applying it to the magnetic sensor is provided.

低域通過フィルタにより、検出出力信号から低域成分を抽出することにより、環境磁気雑音ノイズ成分に対応する信号成分を抽出することができる。この低域通過フィルタの出力信号に対応する磁界を発生して磁気センサに印加することにより、磁気センサに印加される環境磁気雑音成分を相殺することができ、正確に検出対象磁界に応じた検出出力信号を生成することができる。   By extracting the low-frequency component from the detection output signal by the low-pass filter, the signal component corresponding to the environmental magnetic noise component can be extracted. By generating a magnetic field corresponding to the output signal of this low-pass filter and applying it to the magnetic sensor, the environmental magnetic noise component applied to the magnetic sensor can be canceled out, and the detection according to the magnetic field to be detected accurately. An output signal can be generated.

[実施の形態1]
図1は、この発明の実施の形態1に従う磁気検出装置の構成を概略的に示す図である。図1に示す磁気検出装置は、図5に示す磁気検出装置の構成に加えて、さらに、積分回路14の出力信号を受け、所定の低域成分を通過させるローパスフィルタ(低域通過フィルタ)1と、ローパスフィルタ1の出力信号を電流に変換する補償用抵抗素子2と、SQUID10に磁気結合され、補償用抵抗素子2を介して与えられる電流に従って磁界を誘起してSQUID10に生成した磁界を供給する補償用コイル3を含む。この図1に示す磁気検出装置の他の構成は、図5に示す磁気検出装置の構成と同じであり、対応する部分には同一参照番号を付し、その詳細説明は省略する。
[Embodiment 1]
FIG. 1 schematically shows a structure of a magnetic detection device according to the first embodiment of the present invention. In addition to the configuration of the magnetic detection device shown in FIG. 5, the magnetic detection device shown in FIG. 1 further includes a low-pass filter (low-pass filter) 1 that receives the output signal of the integration circuit 14 and passes a predetermined low-frequency component. And a compensation resistive element 2 that converts the output signal of the low-pass filter 1 into a current, and a magnetic field that is magnetically coupled to the SQUID 10 and induces a magnetic field according to the current supplied through the compensation resistive element 2 and supplies the magnetic field generated in the SQUID 10 Compensating coil 3 is included. The other configuration of the magnetic detection device shown in FIG. 1 is the same as the configuration of the magnetic detection device shown in FIG. 5, and corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.

ローパスフィルタ1は、環境磁場などの低周波数ノイズ成分(以下、環境磁気雑音と称す)の周波数領域を含む所定の低周波数領域の信号を通過させる。   The low pass filter 1 passes a signal in a predetermined low frequency region including a frequency region of a low frequency noise component (hereinafter referred to as environmental magnetic noise) such as an environmental magnetic field.

補償用コイル3が設けられていない場合、積分回路14からの検出出力電圧Voutは、高周波領域の検出対象磁界に対応する電圧成分と、環境磁気雑音に対応する電圧成分とを含む。ローパスフィルタ1により、この環境磁気雑音領域(図7の領域B)に対応する周波数領域の信号成分を抽出し、補償用抵抗素子2を介して補償用コイル3へ電流を供給する。応じて、補償用コイル3からは、環境磁気雑音を打消す磁界が生成されて、SQUID10へ供給される。これにより、SQUID10からは、環境磁気雑音成分が抑制された測定対象磁界に応じた電圧Vsが生成され、積分回路14からは、この測定対象磁界に応じた検出出力電圧Voutを生成することができる。この補償用コイル3により環境磁気雑音が補償されている場合、FLL回路は、環境磁気雑音に起因する低周波磁場のゆらぎ成分が抑制された測定対象磁界に応じた磁界を生成して、SQUID10に印加する。   When the compensation coil 3 is not provided, the detection output voltage Vout from the integration circuit 14 includes a voltage component corresponding to a detection target magnetic field in a high frequency region and a voltage component corresponding to environmental magnetic noise. The low-pass filter 1 extracts a signal component in the frequency domain corresponding to this environmental magnetic noise domain (region B in FIG. 7), and supplies a current to the compensation coil 3 via the compensation resistor 2. Accordingly, a magnetic field that cancels environmental magnetic noise is generated from the compensation coil 3 and supplied to the SQUID 10. Thereby, the voltage Vs corresponding to the measurement target magnetic field in which the environmental magnetic noise component is suppressed is generated from the SQUID 10, and the detection output voltage Vout corresponding to the measurement target magnetic field can be generated from the integration circuit 14. . When the environmental magnetic noise is compensated by the compensation coil 3, the FLL circuit generates a magnetic field corresponding to the measurement target magnetic field in which the fluctuation component of the low-frequency magnetic field caused by the environmental magnetic noise is suppressed, and the SQUID 10 Apply.

すなわち、この検出出力電圧Voutに含まれる問題となる環境磁気雑音に起因する低周波成分を、ローパスフィルタ1で抽出して、補償用コイル3により環境磁気雑音補償用磁界を生成することにより、環境磁気雑音に起因する低周波磁場のゆらぎを抑制でき、正確に、測定対象磁界を検出することができる。すなわち、測定対象磁界よりも低周波数の領域の環境磁気雑音に起因するFLL回路の動作点の飛び、および計測電圧の飽和などの問題を解消することができ、磁気遮蔽が不完全であっても安定かつ正確に計測対象の磁界を測定することができる。   That is, the low-frequency component caused by the environmental magnetic noise which is a problem included in the detected output voltage Vout is extracted by the low-pass filter 1, and the magnetic field for environmental magnetic noise compensation is generated by the compensation coil 3. The fluctuation of the low frequency magnetic field caused by the magnetic noise can be suppressed, and the magnetic field to be measured can be accurately detected. In other words, it is possible to eliminate problems such as jumping of the operating point of the FLL circuit and saturation of the measurement voltage caused by environmental magnetic noise in a region of a frequency lower than the magnetic field to be measured. The magnetic field to be measured can be measured stably and accurately.

以上のように、この発明の実施の形態1に従えば、入出力信号から、環境磁気雑音に対応する低域成分をローパスフィルタにより抽出し、この抽出した低域成分に対応する補償磁界を生成して磁気センサであるSQUIDに印加している。したがって、環境磁気雑音に起因する低周波磁場のゆらぎの影響を確実に抑制して、高周波領域の測定対象磁界を計測することができる。   As described above, according to the first embodiment of the present invention, the low frequency component corresponding to the environmental magnetic noise is extracted from the input / output signal by the low pass filter, and the compensation magnetic field corresponding to the extracted low frequency component is generated. Then, it is applied to the SQUID which is a magnetic sensor. Therefore, the influence of the fluctuation of the low frequency magnetic field caused by the environmental magnetic noise can be reliably suppressed, and the measurement target magnetic field in the high frequency region can be measured.

[実施の形態2]
図2は、この発明の実施の形態2に従う磁気検出装置の構成を概略的に示す図である。この図2に示す磁気検出装置においては、図1に示す磁気検出装置の構成に加えて、さらに、ローパスフィルタ1の出力信号を増幅する増幅器4と、増幅器4の出力信号を減衰する減衰器(アッテネータ)5が設けられる。減衰器5の出力信号が、補償用抵抗素子2へ与えられる。
[Embodiment 2]
FIG. 2 schematically shows a configuration of a magnetic detection device according to the second embodiment of the present invention. In addition to the configuration of the magnetic detection device shown in FIG. 1, the magnetic detection device shown in FIG. 2 further includes an amplifier 4 that amplifies the output signal of the low-pass filter 1, and an attenuator (attenuator) that attenuates the output signal of the amplifier 4. An attenuator) 5 is provided. The output signal of the attenuator 5 is given to the compensating resistance element 2.

この図2に示す磁気検出装置の他の構成は、図1に示す磁気検出装置の構成と同じであり、対応する部分には同一参照番号を付し、その詳細説明は省略する。   The other configuration of the magnetic detection device shown in FIG. 2 is the same as the configuration of the magnetic detection device shown in FIG. 1, and corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.

ローパスフィルタ1は、先の実施の形態1と同様、積分回路14の出力電圧Voutから、所定の低周波領域の環境磁気雑音に対応する信号成分を抽出する。増幅器4および減衰器5により、このローパスフィルタ1の出力信号を所定の大きさに調整し、抵抗素子2へ与えて電流を生成して、補償用コイル3へ与える。補償用コイル3とSQUID10の磁気結合係数(相互コンダクタンス)に応じて、増幅器4の増幅率および減衰器5の減衰率を調整することにより、より正確に、環境磁気雑音に起因する低周波磁場のゆらぎを抑制することができる。これにより、ローパスフィルタ1のカットオフ周波数よりも高い高周波領域における計測対象磁界を、正確に検出することができる。   The low-pass filter 1 extracts a signal component corresponding to environmental magnetic noise in a predetermined low-frequency region from the output voltage Vout of the integration circuit 14 as in the first embodiment. The amplifier 4 and the attenuator 5 adjust the output signal of the low-pass filter 1 to a predetermined magnitude, give it to the resistance element 2, generate a current, and give it to the compensation coil 3. By adjusting the amplification factor of the amplifier 4 and the attenuation factor of the attenuator 5 in accordance with the magnetic coupling coefficient (transconductance) between the compensation coil 3 and the SQUID 10, the low frequency magnetic field caused by the environmental magnetic noise is more accurately adjusted. Fluctuation can be suppressed. Thereby, the magnetic field to be measured in the high frequency region higher than the cutoff frequency of the low-pass filter 1 can be accurately detected.

すなわち、積分回路14の出力信号電圧の低域成分をローパスフィルタ1で抽出したとき、環境磁気雑音の影響が大きく残っている場合には、環境磁気雑音のフィードバックが不十分であり、増幅器4の増幅率を大きくする。一方、環境磁気雑音が過剰に補償され、環境磁気雑音の影響が逆方向に生じ、逆に増加している場合には減衰器5の減衰率を大きくする。増幅回路13および積分回路14の動作特性に応じて、増幅器4の増幅率および減衰器5の減衰率を調整することにより、環境磁気雑音の影響を正確に抑制することができる。   That is, when the low frequency component of the output signal voltage of the integration circuit 14 is extracted by the low pass filter 1, if the influence of the environmental magnetic noise remains largely, the feedback of the environmental magnetic noise is insufficient, and the amplifier 4 Increase the amplification factor. On the other hand, when the environmental magnetic noise is excessively compensated and the influence of the environmental magnetic noise occurs in the reverse direction and increases, the attenuation factor of the attenuator 5 is increased. By adjusting the amplification factor of the amplifier 4 and the attenuation factor of the attenuator 5 according to the operating characteristics of the amplifier circuit 13 and the integration circuit 14, the influence of environmental magnetic noise can be suppressed accurately.

なお、減衰器5と補償用抵抗素子2との間に位相調整回路が配置され、環境磁気雑音に対する補償磁界の位相が調整される構成が用いられてもよい。   A configuration in which a phase adjustment circuit is arranged between the attenuator 5 and the compensation resistance element 2 so that the phase of the compensation magnetic field with respect to environmental magnetic noise is adjusted may be used.

以上のように、この発明の実施の形態2に従えば、ローパスフィルタにより抽出された低周波磁場成分を、さらに増幅回路および減衰器でその信号成分の振幅を調整しており、正確に、環境磁気雑音に応じた補償磁界を生成して、環境磁気雑音を抑制することができる。   As described above, according to the second embodiment of the present invention, the amplitude of the signal component of the low-frequency magnetic field component extracted by the low-pass filter is further adjusted by the amplifier circuit and the attenuator. A compensation magnetic field according to the magnetic noise can be generated to suppress the environmental magnetic noise.

[実施の形態3]
図3は、この発明の実施の形態3に従う磁気検出装置の全体の構成を概略的に示す図である。この図3に示す磁気検出装置は、図1に示す磁気検出装置と以下の点でその構成が異なる。すなわち、積分回路14の出力電圧Voutを受けるフィードバック抵抗素子15の出力電流と、ローパスフィルタ1の出力信号を受ける補償用抵抗素子2の出力電流とが加算されて、変調コイル16へ供給される。この図3に示す磁気検出装置においては、環境磁気雑音を補償するための専用の補償用コイルは設けられない。この図3に示す磁気検出装置の他の構成は、図1に示す磁気検出装置の構成と同じであり、対応する部分には同一参照番号を付し、その詳細説明は省略する。
[Embodiment 3]
FIG. 3 schematically shows an overall configuration of the magnetic detection apparatus according to the third embodiment of the present invention. The magnetic detection device shown in FIG. 3 differs from the magnetic detection device shown in FIG. 1 in the following points. That is, the output current of the feedback resistance element 15 that receives the output voltage Vout of the integration circuit 14 and the output current of the compensation resistance element 2 that receives the output signal of the low-pass filter 1 are added and supplied to the modulation coil 16. In the magnetic detection device shown in FIG. 3, a dedicated compensation coil for compensating for environmental magnetic noise is not provided. The other configuration of the magnetic detection device shown in FIG. 3 is the same as the configuration of the magnetic detection device shown in FIG. 1, and corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.

この図3に示す磁気検出装置においては、フィードバック抵抗素子15からの電流と、補償用抵抗素子2からの電流とが加算されて変調コイル16へ供給される。応じて、変調コイル16からは、計測対象磁界に応じた磁界と、環境磁気雑音に起因する低周波磁場に応じた磁界とが生成されてSQUID10に供給される。したがって、SQUID10においては、低周波磁場成分が正確に抑制され、SQUID10のスルーレートが、低周波磁場変動に追随できない場合でも、何ら問題なく、その出力電圧Vsは、計測対象磁界に応じた出力電圧となり、増幅回路13および積分回路14により、高周波領域の計測対象磁界に応じた検出出力電圧Voutを生成することができる。   In the magnetic detection device shown in FIG. 3, the current from the feedback resistance element 15 and the current from the compensation resistance element 2 are added and supplied to the modulation coil 16. Accordingly, a magnetic field corresponding to the measurement target magnetic field and a magnetic field corresponding to the low frequency magnetic field caused by the environmental magnetic noise are generated from the modulation coil 16 and supplied to the SQUID 10. Therefore, in the SQUID 10, even when the low-frequency magnetic field component is accurately suppressed and the slew rate of the SQUID 10 cannot follow the low-frequency magnetic field fluctuation, the output voltage Vs corresponds to the output voltage corresponding to the measurement target magnetic field. Thus, the detection output voltage Vout corresponding to the measurement target magnetic field in the high frequency region can be generated by the amplification circuit 13 and the integration circuit 14.

この図3に示す磁気検出装置の構成の場合、変調コイル16を、低周波磁場の補償用コイルとしても用いており、回路構成要素数を低減でき、応じて回路規模を低減することができる。   In the case of the configuration of the magnetic detection device shown in FIG. 3, the modulation coil 16 is also used as a low-frequency magnetic field compensation coil, so that the number of circuit components can be reduced and the circuit scale can be reduced accordingly.

また、補償用コイルおよび変調コイルそれぞれ個々に、磁気結合係数などを考慮して配置位置を調整する必要はなく、効率的に計測対象磁界成分に対応する磁界に環境磁場成分に対応する磁界を重畳することができ、応じて、環境磁気雑音に対応する低周波磁場ノイズ成分を抑制することができる。   In addition, it is not necessary to adjust the arrangement position for each of the compensation coil and the modulation coil in consideration of the magnetic coupling coefficient, and the magnetic field corresponding to the environmental magnetic field component is efficiently superimposed on the magnetic field corresponding to the measurement target magnetic field component. Accordingly, the low-frequency magnetic field noise component corresponding to the environmental magnetic noise can be suppressed.

[実施の形態4]
図4は、この発明の実施の形態4に従う磁気検出装置の全体の構成を概略的に示す図である。この図4に示す磁気検出装置は、図2に示す磁気検出装置と以下の点でその構成が異なる。すなわち、減衰器5の出力信号を受ける補償用抵抗素子2の出力電流が、変調コイル16へ、フィードバック抵抗素子15の供給電流とともに供給される。この図4に示す構成においても、専用の環境磁気雑音補償用コイル(3)は設けられない。
[Embodiment 4]
FIG. 4 schematically shows an overall configuration of the magnetic detection apparatus according to the fourth embodiment of the present invention. The magnetic detection device shown in FIG. 4 differs in configuration from the magnetic detection device shown in FIG. 2 in the following points. That is, the output current of the compensation resistance element 2 that receives the output signal of the attenuator 5 is supplied to the modulation coil 16 together with the supply current of the feedback resistance element 15. In the configuration shown in FIG. 4, the dedicated environmental magnetic noise compensation coil (3) is not provided.

この図4に示す磁気検出装置の他の構成は、図2に示す磁気検出装置の構成と同じであり、対応する部分には同一参照番号を付し、その詳細説明は省略する。   The other configuration of the magnetic detection device shown in FIG. 4 is the same as the configuration of the magnetic detection device shown in FIG. 2, and corresponding portions are denoted by the same reference numerals, and detailed description thereof is omitted.

この図4に示す磁気検出装置の構成は、図2に示す磁気検出装置の効果に加えて、さらに、以下の効果を有する。すなわち、変調コイル16が、環境磁気雑音を含む低周波磁場成分補償用コイルとしても用いられ、応じて、回路点数を低減でき、装置規模を低減できる。また、図3に示す実施の形態3の構成と同様、効率的に低周波磁場成分を抑制することができる。   The configuration of the magnetic detection device shown in FIG. 4 has the following effects in addition to the effects of the magnetic detection device shown in FIG. That is, the modulation coil 16 is also used as a low-frequency magnetic field component compensation coil including environmental magnetic noise, and accordingly, the number of circuits can be reduced and the device scale can be reduced. Moreover, a low frequency magnetic field component can be efficiently suppressed as in the configuration of the third embodiment shown in FIG.

以上のように、この発明の実施の形態4に従えば、低周波磁場成分に対応する補償用磁場を生成するための増幅器および減衰器を設け、さらに、計測対象磁界を検出するための変調コイルを低周波磁場補償用コイルとしても利用しており、少ない回路点数で正確に、不要な低周波磁場成分を抑制して、計測対象磁界に応じた出力電圧を生成することができる。   As described above, according to the fourth embodiment of the present invention, the amplifier and the attenuator for generating the compensation magnetic field corresponding to the low frequency magnetic field component are provided, and the modulation coil for detecting the measurement target magnetic field is further provided. Is also used as a low-frequency magnetic field compensation coil, and an unnecessary low-frequency magnetic field component can be accurately suppressed with a small number of circuits, and an output voltage corresponding to the measurement target magnetic field can be generated.

この発明に従う磁気検出装置は、SQUIDにより磁界を計測する装置に利用することができ、生体磁場計測および非破壊検査など種々の用途に対して適用することができる。   The magnetic detection device according to the present invention can be used for a device that measures a magnetic field by SQUID, and can be applied to various uses such as biomagnetic field measurement and non-destructive inspection.

なお、上述の説明においては、磁気センサとして、SQUIDが用いられている。このSQUIDとしては、液体窒素温度で超電導状態となる高温超電導体を利用するものであってもよく、また、液体ヘリウム温度で超電導体状態となる低温超電導体を利用するものであってもよい。   In the above description, the SQUID is used as the magnetic sensor. As this SQUID, a high-temperature superconductor that becomes a superconductor state at a liquid nitrogen temperature may be used, or a low-temperature superconductor that becomes a superconductor state at a liquid helium temperature may be used.

また、SQUIDとしては、ジョセフソン接合を1つ含むRF−SQUIDが用いられてもよい。   Further, as the SQUID, an RF-SQUID including one Josephson junction may be used.

また、磁気検出装置の構成としては、計測対象磁界をピックアップコイルを用いて検出し、このピックアップコイルをSQUIDに磁気結合することにより計測対象磁界を測定する構成が用いられてもよい。   As a configuration of the magnetic detection device, a configuration may be used in which a measurement target magnetic field is detected using a pickup coil and the measurement target magnetic field is measured by magnetically coupling the pickup coil to a SQUID.

また、磁気センサとして、アモルファス金属ワイヤを利用するMI(磁気インピーダンス)センサなどであってもよく、また他の半導体素子を利用する磁気センサまたは磁気抵抗効果を利用する磁気センサなどであってもよい。   The magnetic sensor may be an MI (magnetic impedance) sensor using an amorphous metal wire, a magnetic sensor using another semiconductor element, or a magnetic sensor using a magnetoresistive effect. .

この発明の実施の形態1に従う磁気検出装置の全体の構成を概略的に示す図である。It is a figure which shows roughly the whole structure of the magnetic detection apparatus according to Embodiment 1 of this invention. この発明の実施の形態2に従う磁気検出装置の全体の構成を概略的に示す図である。It is a figure which shows schematically the whole structure of the magnetic detection apparatus according to Embodiment 2 of this invention. この発明の実施の形態3に従う磁気検出装置の全体の構成を概略的に示す図である。It is a figure which shows roughly the whole structure of the magnetic detection apparatus according to Embodiment 3 of this invention. この発明の実施の形態4に従う磁気検出装置の全体の構成を概略的に示す図である。It is a figure which shows roughly the whole structure of the magnetic detection apparatus according to Embodiment 4 of this invention. 従来の磁気検出装置の全体の構成を概略的に示す図である。It is a figure which shows schematically the whole structure of the conventional magnetic detection apparatus. SQUIDの出力電圧と印加磁界の関係を示す図である。It is a figure which shows the relationship between the output voltage of SQUID, and an applied magnetic field. 従来の磁気検出装置の周波数特性を示す図である。It is a figure which shows the frequency characteristic of the conventional magnetic detection apparatus. 従来の磁気検出装置の問題点を説明するための図である。It is a figure for demonstrating the problem of the conventional magnetic detection apparatus.

符号の説明Explanation of symbols

1 ローパスフィルタ、2 補償用抵抗素子、3 補償用コイル、4 増幅器、5 減衰器、10 SQUID、12 バイアス電流源、13 増幅回路、14 積分回路、15 フィードバック抵抗素子。   DESCRIPTION OF SYMBOLS 1 Low pass filter, 2 Compensation resistance element, 3 Compensation coil, 4 Amplifier, 5 Attenuator, 10 SQUID, 12 Bias current source, 13 Amplification circuit, 14 Integration circuit, 15 Feedback resistance element

Claims (5)

磁界を検出する磁気センサ、
前記磁気センサの出力信号に従って、前記磁気センサの検出磁界に対応する電気信号を生成して磁界検出信号として出力する検出出力生成回路、
前記磁界検出信号を受け、前記検出出力生成回路の有する周波数領域の低域の周波数領域の信号成分を通過させる低域通過フィルタ、および
前記低域通過フィルタの出力信号に従って前記低域通過フィルタの出力信号に対応する磁界を発生して前記磁気センサに印加する低周波負帰還回路を備える、磁気検出装置。
A magnetic sensor for detecting a magnetic field,
A detection output generating circuit that generates an electric signal corresponding to the detected magnetic field of the magnetic sensor in accordance with the output signal of the magnetic sensor and outputs the electric signal as a magnetic field detection signal;
A low-pass filter that receives the magnetic field detection signal and passes a signal component in a low-frequency region of the frequency region of the detection output generation circuit; and an output of the low-pass filter according to the output signal of the low-pass filter A magnetic detection device comprising a low-frequency negative feedback circuit that generates a magnetic field corresponding to a signal and applies the magnetic field to the magnetic sensor.
前記低域通過フィルタは、計測対象の磁界の周波数領域よりも低域の周波数領域の信号を通過させる、請求項1記載の磁気検出装置。   The magnetic detection device according to claim 1, wherein the low-pass filter passes a signal in a frequency region lower than a frequency region of a magnetic field to be measured. 前記磁気センサは、超電導量子干渉素子を備える、請求項1記載の磁気検出装置。   The magnetic detection apparatus according to claim 1, wherein the magnetic sensor includes a superconducting quantum interference element. 前記磁気検出装置は、さらに、前記検出出力生成回路の生成する磁界検出信号に対応する磁界を生成して前記磁気センサに印加する帰還磁界発生回路をさらに備え、
前記検出出力生成回路は、
前記磁気センサの出力信号を受ける増幅器と、
前記増幅器の出力信号を受けて前記磁界検出信号を生成する積分回路とを備え、
前記低周波負帰還回路は、
前記低域通過フィルタの出力信号に対応する磁界を生成して前記磁気センサに印加する補償コイルを備える、請求項1記載の磁気検出装置。
The magnetic detection device further includes a feedback magnetic field generation circuit that generates a magnetic field corresponding to the magnetic field detection signal generated by the detection output generation circuit and applies the magnetic field to the magnetic sensor.
The detection output generation circuit includes:
An amplifier for receiving an output signal of the magnetic sensor;
An integration circuit that receives the output signal of the amplifier and generates the magnetic field detection signal;
The low-frequency negative feedback circuit is
The magnetic detection device according to claim 1, further comprising a compensation coil that generates a magnetic field corresponding to an output signal of the low-pass filter and applies the magnetic field to the magnetic sensor.
前記検出出力生成回路は、
前記磁気センサの出力信号を受ける増幅器と、
前記増幅器の出力信号を受けて前記磁界検出信号を生成する積分回路とを備え、
前記低周波負帰還回路は、前記積分回路の生成する磁界検出信号と前記低域通過フィルタの出力信号とに対応する磁界を生成して前記磁気センサに印加する帰還磁界発生コイルを備える、請求項1記載の磁気検出装置。
The detection output generation circuit includes:
An amplifier for receiving an output signal of the magnetic sensor;
An integration circuit that receives the output signal of the amplifier and generates the magnetic field detection signal;
The low-frequency negative feedback circuit includes a feedback magnetic field generation coil that generates a magnetic field corresponding to a magnetic field detection signal generated by the integration circuit and an output signal of the low-pass filter and applies the magnetic field to the magnetic sensor. The magnetic detection device according to 1.
JP2003426994A 2003-12-24 2003-12-24 Magnetic detector Pending JP2005188947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003426994A JP2005188947A (en) 2003-12-24 2003-12-24 Magnetic detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003426994A JP2005188947A (en) 2003-12-24 2003-12-24 Magnetic detector

Publications (1)

Publication Number Publication Date
JP2005188947A true JP2005188947A (en) 2005-07-14

Family

ID=34786384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003426994A Pending JP2005188947A (en) 2003-12-24 2003-12-24 Magnetic detector

Country Status (1)

Country Link
JP (1) JP2005188947A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322125A (en) * 2006-05-30 2007-12-13 Uchihashi Estec Co Ltd Magnetic impedance effect sensor and method for detecting external magnetic field
WO2018190261A1 (en) * 2017-04-12 2018-10-18 Tdk株式会社 Magnetic sensor
CN109765505A (en) * 2018-12-29 2019-05-17 中国船舶重工集团公司第七一0研究所 A kind of magnetic field compensation apparatus
US10802086B2 (en) * 2019-03-06 2020-10-13 United States Of America As Represented By The Secretary Of The Navy Circuits and method for biasing magnetic flux through a superconducting quantum interference array
JP2020535747A (en) * 2017-10-31 2020-12-03 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Parametric amplifier system
US11211722B2 (en) 2017-03-09 2021-12-28 Microsoft Technology Licensing, Llc Superconductor interconnect system
US11342920B1 (en) 2021-01-06 2022-05-24 Northrop Grumman Systems Corporation Pulse selector system
US11630166B1 (en) 2021-08-30 2023-04-18 United States Of America As Represented By The Secretary Of The Navy Superconducting quantum interference array receiver and method for digitally controlling magnetic flux bias thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007322125A (en) * 2006-05-30 2007-12-13 Uchihashi Estec Co Ltd Magnetic impedance effect sensor and method for detecting external magnetic field
US11211722B2 (en) 2017-03-09 2021-12-28 Microsoft Technology Licensing, Llc Superconductor interconnect system
US11199593B2 (en) 2017-04-12 2021-12-14 Tdk Corporation Magnetic sensor
WO2018190261A1 (en) * 2017-04-12 2018-10-18 Tdk株式会社 Magnetic sensor
JP2018179738A (en) * 2017-04-12 2018-11-15 Tdk株式会社 Magnetic sensor
CN110494760B (en) * 2017-04-12 2022-01-04 Tdk株式会社 Magnetic sensor
CN110494760A (en) * 2017-04-12 2019-11-22 Tdk株式会社 Magnetic Sensor
JP2020535747A (en) * 2017-10-31 2020-12-03 ノースロップ グラマン システムズ コーポレイションNorthrop Grumman Systems Corporation Parametric amplifier system
JP7015912B2 (en) 2017-10-31 2022-02-03 ノースロップ グラマン システムズ コーポレーション Parametric amplifier system
CN109765505A (en) * 2018-12-29 2019-05-17 中国船舶重工集团公司第七一0研究所 A kind of magnetic field compensation apparatus
US10802086B2 (en) * 2019-03-06 2020-10-13 United States Of America As Represented By The Secretary Of The Navy Circuits and method for biasing magnetic flux through a superconducting quantum interference array
US11342920B1 (en) 2021-01-06 2022-05-24 Northrop Grumman Systems Corporation Pulse selector system
US11630166B1 (en) 2021-08-30 2023-04-18 United States Of America As Represented By The Secretary Of The Navy Superconducting quantum interference array receiver and method for digitally controlling magnetic flux bias thereof

Similar Documents

Publication Publication Date Title
Koch et al. Three SQUID gradiometer
Schmelz et al. Field-stable SQUID magnetometer with sub-fT Hz− 1/2 resolution based on sub-micrometer cross-type Josephson tunnel junctions
JP3009729B2 (en) Method and apparatus for processing an output signal from a low noise sensor
US9377515B2 (en) Flux-locked loop circuit, flux-locked loop method, and squid measuring apparatus
JP5978310B2 (en) DCSQUID-based RF magnetometer that operates over 200MHz bandwidth
US20080224695A1 (en) Method of Measuring a Weak Magnetic Field and Magnetic Field Sensor of Improved Sensitivity
US7271587B2 (en) High resolution and low power magnetometer using magnetoresistive sensors
US9529059B2 (en) Dual squid measurement device
Shirotori et al. Symmetric response magnetoresistance sensor with low 1/f noise by using an antiphase AC modulation bridge
JP2005188947A (en) Magnetic detector
JP2002148322A (en) Signal detector using superconducting quantum interference element and its measuring method
Tsukada et al. Hybrid magnetic sensor combined with a tunnel magnetoresistive sensor and high-temperature superconducting magnetic-field-focusing plates
Vopálenský et al. Wattmeter with AMR sensor
KR20000067035A (en) apparatus and method for second order gradient of magnetic field to use SQUID
JP2006184116A (en) Device for detecting magnetism
JPH05232202A (en) Software gradiometer
JP2005188946A (en) Magnetic detector
Doan et al. Magnetization measurement system with giant magnetoresistance zero-field detector
JPH0943328A (en) Superconductive magnetic detecting device
Zhang et al. Magnetic field-to-voltage coefficient evaluation of axial SQUID gradiometer in unshielded environment
Qian et al. Integrated driving and readout circuits for orthogonal fluxgate sensor
JP3710778B2 (en) SQUID temperature control apparatus and method
JP3291858B2 (en) Magnetic detector
Riveros et al. High sensitivity GMI gradiometer with an active interference compensation system
JPH0353154A (en) Method and apparatus for judging super- conductor

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20060623

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090317