JPH0334646B2 - - Google Patents

Info

Publication number
JPH0334646B2
JPH0334646B2 JP55115256A JP11525680A JPH0334646B2 JP H0334646 B2 JPH0334646 B2 JP H0334646B2 JP 55115256 A JP55115256 A JP 55115256A JP 11525680 A JP11525680 A JP 11525680A JP H0334646 B2 JPH0334646 B2 JP H0334646B2
Authority
JP
Japan
Prior art keywords
electron beam
dimension
cross
section
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP55115256A
Other languages
Japanese (ja)
Other versions
JPS5739536A (en
Inventor
Tatsuhiko Yamao
Kazumitsu Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11525680A priority Critical patent/JPS5739536A/en
Publication of JPS5739536A publication Critical patent/JPS5739536A/en
Publication of JPH0334646B2 publication Critical patent/JPH0334646B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Description

【発明の詳細な説明】 本発明は、台形あるいは樽形などのように対向
する2辺の間隔が連続的に変化する図形あるいは
対向する2辺の少なくとも一方の辺にくびれ部あ
るいは突出部をもち、2辺の対向間隔が局部的に
変化する図形などの描画に好適な電子線露光方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a shape having a shape such as a trapezoid or a barrel shape in which the distance between two opposing sides changes continuously, or a shape having a constriction or a protrusion on at least one of the two opposing sides. , relates to an electron beam exposure method suitable for drawing figures in which the opposing distance between two sides changes locally.

電子線露光により半導体基板などの試料上に図
形、例えば台形の図形を描画する場合、試料上に
照射する電子線の断面形状を短冊形に形成すると
ともに、その幅を0.5μm程度の一定値に保ち一
方、長手方向の寸法を可変しつつ電子線を上記の
幅よりも小さなピツチで長手方向と直交する方向
へ向けて移動させる描画方法が採られる。なお、
電子線の断面寸法を変化させるにあたり、例え
ば、電子線の通路上に多角形状の孔を持つ2枚の
スリツト板を配置するとともに、このスリツト板
の間に偏向器を配置し、偏向器の偏向力の制御で
上方に位置するスリツト板の孔を通過した電子線
の下方に位置するスリツト板への照射位置を変化
させる方法が採用されている。
When drawing a figure, for example a trapezoidal figure, on a sample such as a semiconductor substrate by electron beam exposure, the cross-sectional shape of the electron beam irradiated onto the sample is formed into a rectangular shape, and its width is set to a constant value of about 0.5 μm. On the other hand, a drawing method is adopted in which the electron beam is moved in a direction perpendicular to the longitudinal direction at a pitch smaller than the above-mentioned width while changing the longitudinal dimension. In addition,
To change the cross-sectional dimension of the electron beam, for example, two slit plates with polygonal holes are placed on the path of the electron beam, and a deflector is placed between the slit plates to change the deflection force of the deflector. A method is adopted in which the irradiation position of the electron beam passing through the hole in the slit plate located above is irradiated onto the slit plate located below by control.

このように、電子線を幅よりも小さなピツチで
長手方向と直交する方向へ向けて移動させる描画
法では、描画される大部分の領域が微小幅の電子
線にて複数回露光されることになるため、幅方向
の寸法精度はあまり正確でなくてもよいと考えら
れる。すなわち、このような描画の場合、電子線
の幅についてはあまり配慮がなされていない現状
である。
In this way, with the drawing method in which the electron beam is moved in a direction perpendicular to the longitudinal direction at a pitch smaller than the width, most of the area to be drawn is exposed multiple times to the electron beam with a minute width. Therefore, it is considered that the dimensional accuracy in the width direction does not need to be very accurate. That is, in the case of such drawing, the current situation is that little consideration is given to the width of the electron beam.

しかるに、電子線の電子線電流密度分布は、厳
密には均一ではなく、矩形の断面形状を持つ電子
線ではそのエツジ部で小さくなり、理想的な電子
線電流密度分布に対してだれを持つ。このだれに
より電子線電流量は理想的な電子線電流量よりも
減少するが、減少の割合は矩形の断面形状を持つ
電子線の長手方向にくらべて幅方向において極め
て大きくなる。したがつて、長手方向は勿論であ
るが幅方向の寸法の設定に特に高い精度が要求さ
れる。この設定精度が低いと照射電子線量が、適
正な照射電子線量に対して変化するところとな
る。一方、台形などの図形とは異なり、適当な短
形もしくは正方形の断面を持つ電子ビームを重ね
ることなく移動させることによつて描画が可能な
矩形の図形では、台形などの図形の描画のときの
ように電子線断面の長手方向の寸法を1回の照射
毎に変化させる必要がなく、また、電子線幅を微
小幅に設定し、多数回の照射で描画する必要もな
いために、照射電子線量が変化する要因が少な
い。
However, the electron beam current density distribution of an electron beam is not strictly uniform; in the case of an electron beam having a rectangular cross-sectional shape, the electron beam becomes smaller at its edges, and has a deviation from the ideal electron beam current density distribution. Due to this sag, the electron beam current amount is reduced from the ideal electron beam current amount, but the rate of reduction is much larger in the width direction than in the longitudinal direction of the electron beam, which has a rectangular cross-sectional shape. Therefore, particularly high accuracy is required in setting the dimensions not only in the longitudinal direction but also in the width direction. If this setting accuracy is low, the irradiation electron dose will vary from the appropriate irradiation electron dose. On the other hand, unlike shapes such as trapezoids, rectangular shapes that can be drawn by moving electron beams with appropriate rectangular or square cross sections without overlapping each other, There is no need to change the longitudinal dimension of the electron beam cross section for each irradiation, and there is no need to set the electron beam width to a very small width and draw it by multiple irradiations. There are few factors that change the dose.

したがつて、台形などの図形と矩形の図形が共
存する図形を描画した場合、両図形を描画すると
きの露出量の違いに基づく露光むらの生じること
が判明した。ところで、上記の断面寸法可変法に
よると、電子線の断面寸法(長手方向の寸法)を
変化させることができるものの、電子線の断面形
状を短冊形とするための2枚のスリツト板の位置
精度を決定する偏向器の電圧制御性あるいはスリ
ツトの直角を作ることの困難さなどの要因によつ
て電子線断面の幅を正確に設定することが困難で
あつた。
Therefore, it has been found that when drawing a figure in which a figure such as a trapezoid and a rectangular figure coexist, exposure unevenness occurs due to the difference in exposure amount when drawing both figures. By the way, although the cross-sectional dimension variable method described above allows the cross-sectional dimension (longitudinal dimension) of the electron beam to be changed, the positional accuracy of the two slit plates for making the cross-sectional shape of the electron beam into a rectangular shape is difficult. It has been difficult to accurately set the width of the cross section of the electron beam due to factors such as the voltage controllability of the deflector that determines the width of the electron beam, and the difficulty in making the slit at right angles.

たとえば、0.5μmと設定すべき幅が0.6μmと設
定されると、微小な幅の電子線を長手方向と直交
する方向にある一定のピツチで移動させて描画す
る場合、電子線露光量が約20%も増加するところ
となり適正露光量からのずれを生じ露光むらが生
じる。
For example, if the width that should be set to 0.5 μm is set to 0.6 μm, when drawing is performed by moving an electron beam with a minute width at a certain pitch in a direction perpendicular to the longitudinal direction, the electron beam exposure amount will be approximately This increases by as much as 20%, resulting in a deviation from the appropriate exposure amount and uneven exposure.

本発明は、断面形状が短冊形とされた電子線を
その長手方向と直交する方向へ移動させ、かつ、
移動の過程で長手方向の寸法を変化させることに
よつて描画が可能な図形の描画に際して発生した
上記の不都合に鑑みてなされたもので、電子線照
射量に基づいて、短冊形の断面をもつ電子線の短
辺(幅)方向の寸法を制御する点に本発明の特徴
がある。
The present invention moves an electron beam having a rectangular cross-sectional shape in a direction perpendicular to its longitudinal direction, and
This was done in view of the above-mentioned inconveniences that occurred when drawing figures that could be drawn by changing the longitudinal dimension during the movement process. The present invention is characterized in that the dimension of the electron beam in the short side (width) direction is controlled.

台形あるいは三角形などのように、電子線を一
定方向に移動させるとともに、移動の過程で電子
線の長手方向の寸法を変化させることが必要な図
形の描画精度は、短冊形の断面をもつ電子線の長
手方向の寸法精度によつて大きく左右されるが、
幅方向の寸法精度の影響は殆ど受けない。ところ
で、短冊形の断面をもつ電子線の長手方向の寸法
精度は、前述した断面寸法可変法によつて正確に
制御することが可能であり、したがつて、描画精
度のみに着目する限りでは、既知の断面寸法可変
法によつて所期の描画精度を確保することができ
る。
The drawing accuracy of shapes such as trapezoids or triangles that require the electron beam to move in a fixed direction and change the longitudinal dimensions of the electron beam during the movement process is as follows: Although it is greatly influenced by the dimensional accuracy in the longitudinal direction of
It is hardly affected by the dimensional accuracy in the width direction. By the way, the dimensional accuracy in the longitudinal direction of an electron beam having a rectangular cross section can be accurately controlled by the cross-sectional dimension variable method described above. Therefore, as long as we focus only on drawing accuracy, The desired drawing accuracy can be ensured by the known cross-sectional dimension variable method.

一方、前述したごとく描画精度自体には殆ど影
響を及ぼすことのない幅方向の寸法精度も、これ
を正確に設定しないと露光むらに著しい影響を与
える。
On the other hand, as described above, the dimensional accuracy in the width direction, which has little effect on the drawing accuracy itself, will have a significant effect on exposure unevenness if it is not set accurately.

本発明の電子線露光方法では、先ず、断面寸法
可変法によつて電子線断面の長辺方向の寸法と電
子線の移動方向の寸法とを同一の第1の寸法に設
定するとともに、この時の電子線電流を測定して
第1の電子線電流値を求める。次いで、短冊形状
の断面の電子線の長辺方向の寸法を第1の寸法に
固定しておいて、前記短冊形状の断面の電子線移
動方向の寸法を前記第1の寸法より短い第2の寸
法に設定し、前記短冊形状の断面の電子線の前記
第2の寸法と前記第1の寸法との比の値と実測し
た前記第1の電子線電流値との乗算演算により電
子線電流の基準値を求める。この後で、該電子線
電流を実測して得られる第2の電子線電流値が前
記電子線電流の基準値と等しくなるように前記短
冊形状の断面の電子線移動方向の寸法を第3の寸
法に設定し、この第3の寸法を前記電子線移動方
向の幅として露光し、目的とする図形を描画す
る。かかる本発明の電子線露光方法によれば、露
光むらがなく、しかも、高い描画精度の図形を描
画することが可能になる。
In the electron beam exposure method of the present invention, first, the dimension in the long side direction of the electron beam cross section and the dimension in the moving direction of the electron beam are set to the same first dimension by a cross-sectional dimension variable method. A first electron beam current value is determined by measuring the electron beam current. Next, the dimension of the rectangular cross section in the long side direction of the electron beam is fixed to a first dimension, and the dimension of the rectangular cross section in the electron beam movement direction is set to a second dimension shorter than the first dimension. The electron beam current is set to Find the reference value. After this, the dimension of the cross section of the rectangular shape in the electron beam movement direction is adjusted to a third value so that the second electron beam current value obtained by actually measuring the electron beam current is equal to the reference value of the electron beam current. This third dimension is set as the width in the direction of electron beam movement and exposure is performed to draw a target figure. According to the electron beam exposure method of the present invention, it becomes possible to draw figures with high drawing accuracy without exposure unevenness.

第1図は本発明の露光法を使用した電子線露光
装置の概略図である。図中1は電子銃で、該電子
銃からの電子線はレンズ2によつて下方に照射さ
れる。3は電子線断面寸法(及び形状)可変手段
で、孔を有するスリツト板4,5、これら2枚の
スリツト板の間に配置されたレンズ6、偏向器7
から成る。偏向器7は実際にはX方向用、Y方向
用のものから成り、電子計算機8から電子線断面
寸法指定信号が増幅器9を介して送られてくるの
で、上方スリツト板4の孔を通過した電子線は電
子線断面指定信号に応じた偏向力によつて下方ス
リツト板5上での結像位置がコントロールされ、
下方スリツト板5の孔から前記電子線断面寸法指
定信号に応じた寸法の断面を有する電子線が発生
される。この電子線は投影レンズ6によつて半導
体基板あるいはマスク等の試料(図示せず)上に
投影されると同時に、増幅器10を介して前記電
子計算機8から図形描画位置信号から送られて来
る偏向器11の偏向力によつて試料上で走査さ
れ、所期の図形が試料(図示せず)上に描画され
る。12は前記下方スリツト板5の孔からの電子
線を収集するために、試料と交換可能に配置され
たフアラデイカツプで非図形描画時に試料に代わ
つて光軸上に配置される。このフアラデイカツプ
12によつて収集された電子線の電流は増幅器1
3を介して前記電子計算機8に送られる。
FIG. 1 is a schematic diagram of an electron beam exposure apparatus using the exposure method of the present invention. In the figure, reference numeral 1 denotes an electron gun, and an electron beam from the electron gun is irradiated downward through a lens 2. 3 is an electron beam cross-sectional dimension (and shape) variable means, which includes slit plates 4 and 5 having holes, a lens 6 disposed between these two slit plates, and a deflector 7.
Consists of. The deflector 7 actually consists of one for the X direction and one for the Y direction, and since an electron beam cross-sectional dimension designation signal is sent from the electronic computer 8 via the amplifier 9, the electron beam passes through the hole in the upper slit plate 4. The imaging position of the electron beam on the lower slit plate 5 is controlled by a deflection force according to the electron beam cross section designation signal,
From the hole in the lower slit plate 5, an electron beam having a cross section of a size corresponding to the electron beam cross section size designation signal is generated. This electron beam is projected by a projection lens 6 onto a sample (not shown) such as a semiconductor substrate or a mask, and at the same time is deflected by a pattern drawing position signal sent from the electronic computer 8 via an amplifier 10. The sample is scanned by the deflection force of the device 11, and a desired figure is drawn on the sample (not shown). Reference numeral 12 denotes a Faraday cup which is arranged to be replaceable with the sample in order to collect the electron beam from the hole in the lower slit plate 5, and is arranged on the optical axis in place of the sample during non-graphic drawing. The current of the electron beam collected by the Faraday cup 12 is transmitted to the amplifier 1.
3 to the electronic computer 8.

斯くの如き装置を用いて第2図に示す如き台形
Aを描画する場合について説明する。先ず試料の
代わりにフアラデイカツプ12を試料位置に置
く。次に電子計算機8から電子線断面が第2図で
Bに示すようにX方向とY方向の寸法が各々x1
y1(=x1)となる同一寸法の指定信号を増幅器9
を介して偏向器7へ送る。ところで、電子線断面
の寸法xとyの寸法指定にあたつては以下のよう
な配慮を払う。
The case of drawing a trapezoid A as shown in FIG. 2 using such an apparatus will be described. First, the Faraday cup 12 is placed at the sample position instead of the sample. Next, the cross section of the electron beam from the electronic computer 8 is shown as B in FIG. 2, and the dimensions in the X direction and Y direction are x 1 ,
Amplifier 9 sends a designated signal with the same dimensions as y 1 (=x 1 ).
is sent to the deflector 7 via the. By the way, when specifying the dimensions x and y of the electron beam cross section, the following considerations should be taken.

台形パターンを描画するにあたり、先ず、台形
パターンを描画するための最初の短冊状断面の長
手方向(X方向)の寸法と等しい寸法にx1を設定
し、さらにこの寸法x1と同一の寸法となるように
幅方向(Y方向)の寸法y1を設定して正方形の断
面状を持つ電子線を形成する。この寸法x1と寸法
y1を第1の寸法とする。
To draw a trapezoidal pattern, first set x 1 to be equal to the longitudinal direction (X direction) dimension of the first rectangular cross section for drawing the trapezoidal pattern, and then set x 1 to the same dimension as this dimension x 1 . The dimension y1 in the width direction (Y direction) is set so that the electron beam has a square cross section. This dimension x 1 and dimension
Let y 1 be the first dimension.

そして、この電子線をフアラデイカツプ12で
収集し、この電子線電流を増幅器13を介して電
子計算機8へ送る。電子計算機8はこの第1の電
子線電流値Isを内臓のメモリへ記憶する。次に、
台形Aを描画するための最初の電子線断面Cの寸
法(X方向の寸法が第1の寸法であるx1、Y方向
の寸法が第2の寸法であるyc、但し、yc≪x1)を
指定する信号を電子計算機8から増幅器9を介し
て偏向器7へ送り、この時の電子線電流I1(第2
の電子線電流)をフアラデイカツプ12と増幅器
13を介して電子計算器8へ送る。この間すで
に、電子計算機8は前記第1の電子線電流Isと第
2の寸法ycと第1の寸法y1(=x1)の比の値との
乗算(Is×yc/y1)を行なつてこの結果を基準値と してメモリに記憶しており、送られて来た第2の
電子線電流I1とこの基準値を比較し、二つの値の
差が零になるように、誤差に対応した信号をY方
向寸法指定信号に加算(若しくは滅算)する動作
を実行してY方向の第2の寸法ycを調整して適正
なY方向の第3の寸法yc′を正確に設定する。次
に、フアラデイカツプ12と試料を交換し、台形
Aの描画に入る。この描画の仕方は、細長い矩形
状断面を有する電子線を第2図に示すように、電
子線断面のX方向の寸法を可変しつつ(Y方向の
寸法は調整された第3の寸法yc′と一定である)
上底から矢印Q方向に僅かずつ移動させていく。
X方向の寸法可変は電子計算機8の指令により電
子線断面寸法(及び形状)可変手段3の偏向器7
により行なわれ、電子線の移動は電子計算機8の
指令により偏向器11によつて行なわれる。
Then, this electron beam is collected by a Faraday cup 12, and this electron beam current is sent to an electronic computer 8 via an amplifier 13. The electronic computer 8 stores this first electron beam current value Is in its internal memory. next,
Dimensions of the first electron beam cross section C for drawing trapezoid A (the dimension in the X direction is the first dimension x 1 , the dimension in the Y direction is the second dimension y c , where y c ≪ x 1 ) is sent from the electronic computer 8 to the deflector 7 via the amplifier 9, and the electron beam current I 1 (second
(electron beam current) is sent to the electronic calculator 8 via the far day cup 12 and amplifier 13. During this period, the electronic computer 8 has already multiplied the first electron beam current I s by the ratio value of the second dimension y c and the first dimension y 1 (=x 1 ) (I s ×y c /y 1 ) and store this result in the memory as a reference value.Compare the sent second electron beam current I1 with this reference value and make sure that the difference between the two values becomes zero. Then, the signal corresponding to the error is added to (or subtracted from) the Y-direction dimension designation signal to adjust the second Y-direction dimension y c to obtain an appropriate Y-direction third dimension y c Set ′ accurately. Next, the Faraday cup 12 and the sample are replaced, and trapezoid A is drawn. This method of drawing involves changing the dimension of the electron beam cross section in the X direction (the dimension in the Y direction is the adjusted third dimension y c )
Move it little by little in the direction of arrow Q from the top.
The dimension in the X direction is changed by the deflector 7 of the electron beam cross-sectional dimension (and shape) varying means 3 according to the command from the computer 8.
The electron beam is moved by a deflector 11 according to instructions from an electronic computer 8.

なお、第2図に示す如き台形Aに対して90°傾
いた台形を描く場合は、電子線断面のX方向寸法
を一定にし、Y方向寸法を可変しつつ前記の如く
描画を行なう。
When drawing a trapezoid inclined at 90 degrees with respect to the trapezoid A as shown in FIG. 2, drawing is performed as described above while keeping the dimension of the electron beam cross section in the X direction constant and varying the dimension in the Y direction.

以上のようにして描画された台形の描画精度は
電子線断面のX方向の寸法可変が正確に制御され
ているためすこぶる高く、また、Q方向への移動
にともなうX方向の寸法変化があつても、Y方向
の寸法制御によつて電子線照射量を適正な露光量
とする制御動作が付加されているため、露光むら
も確実に排除される。
The drawing accuracy of the trapezoid drawn as described above is extremely high because the dimensional change in the X direction of the electron beam cross section is accurately controlled, and also because of the dimensional change in the X direction due to movement in the Q direction. Also, since a control operation is added to adjust the amount of electron beam irradiation to an appropriate amount by controlling the dimension in the Y direction, uneven exposure can be reliably eliminated.

以上の説明から明らかなように、本発明の電子
線露光方法は、理想的な電子線電流密度分布によ
る電子線電流量と同一の電子線電流量となるよう
に矩形断面を持つ電子線の幅方向(Y方向)の寸
法を制御し、この制御された幅寸法を持つ電子線
で台形等の図形を描画する方法であるため、既知
の断面寸法可変法を駆使して描画した場合に、露
光むらの発生を阻止することが困難であつた図形
を、露光むらがなく、しかも高い描画精度で描画
することが可能となる。
As is clear from the above explanation, the electron beam exposure method of the present invention uses an electron beam having a width having a rectangular cross section so that the electron beam current amount is the same as the electron beam current amount due to the ideal electron beam current density distribution. This method controls the dimension in the direction (Y direction) and draws figures such as trapezoids with an electron beam having the controlled width dimension. It is now possible to draw figures with high drawing precision without exposure unevenness, for which it has been difficult to prevent the occurrence of unevenness.

なお、以上の説明では台形の描画を例示した
が、樽形、三角形、菱形あるいは対向する2辺の
少なくとも一方の辺にくびれ部もしくは突出部を
もつ図などのように、短冊形の断面をもつ電子線
の走査ならびに、かかる走査の過程で寸法の変化
を必要とする図形の描画も可能であることは勿論
である。
In the above explanation, a trapezoid is drawn as an example, but drawings with a rectangular cross section, such as barrel shapes, triangles, rhombuses, or drawings with a constriction or protrusion on at least one of two opposing sides, Of course, it is also possible to scan with an electron beam and to draw figures that require changes in dimensions during the scanning process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の電子線露光方法で用いる露光
装置の構成を示す図、第2図は台形の描画方法を
具体的に説明するための図である。 1……電子銃、2,6……レンズ、3……電子
線断面寸法可変手段、4,5……スリツト板、
7,11……偏向器、8……電子計算機、9,10,
13……増幅器、12……フアラデイカツプ。
FIG. 1 is a diagram showing the configuration of an exposure apparatus used in the electron beam exposure method of the present invention, and FIG. 2 is a diagram specifically explaining the trapezoid drawing method. 1... Electron gun, 2, 6... Lens, 3... Electron beam cross-sectional dimension variable means, 4, 5... Slit plate,
7,11...deflector, 8...electronic computer, 9,10,
13...Amplifier, 12...Fuaraday cup.

Claims (1)

【特許請求の範囲】[Claims] 1 短冊形状の断面をもつ電子線を、試料上で前
記断面の長辺と直交する方向に移動させるととも
に、この移動過程でその断面の長辺方向の寸法を
変化させて所定の図形を描画するにあたり、ま
ず、電子線断面の長辺方向の寸法と電子線の移動
方向の寸法とを同一の第1の寸法に設定し、同設
定時の電子線電流を実測して第1の電子線電流値
を求め、次いで、前記短冊形状の断面の電子線の
長辺方向の寸法を前記第1の寸法に固定しておい
て前記短冊形状の断面の電子線移動方向の寸法を
前記第1の寸法より短い第2の寸法に設定し、前
記短冊形状の断面の電子線の前記第2の寸法と前
記第1の寸法との比の値と実測した前記第1の電
子線電流値との乗算演算により電子線電流の基準
値を求めた後で、前記短冊形状の断面の電子線移
動方向の寸法を該電子線電流を実測して得られる
第2の電子線電流値が前記電子線電流の基準値と
等しくなる第3の寸法に設定し、前記第3の寸法
を前記電子線移動方向の幅として露光することを
特徴とする電子線露光方法。
1. An electron beam with a rectangular cross section is moved over the sample in a direction perpendicular to the long side of the cross section, and in the process of movement, the dimension of the long side of the cross section is changed to draw a predetermined figure. First, the dimension in the long side direction of the electron beam cross section and the dimension in the moving direction of the electron beam are set to the same first dimension, and the electron beam current at the same setting is actually measured to determine the first electron beam current. Then, the dimension of the cross section of the rectangular shape in the long side direction of the electron beam is fixed to the first dimension, and the dimension of the cross section of the rectangular shape in the direction of electron beam movement is set to the first dimension. Set to a shorter second dimension, and multiply the ratio value of the second dimension and the first dimension of the electron beam of the rectangular cross section by the actually measured first electron beam current value. After determining the reference value of the electron beam current, a second electron beam current value obtained by actually measuring the dimension of the cross section of the rectangular shape in the electron beam movement direction is the reference value of the electron beam current. An electron beam exposure method, characterized in that a third dimension is set to be equal to the width of the electron beam, and the exposure is performed using the third dimension as the width in the electron beam movement direction.
JP11525680A 1980-08-20 1980-08-20 Method of electron beam exposure Granted JPS5739536A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11525680A JPS5739536A (en) 1980-08-20 1980-08-20 Method of electron beam exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11525680A JPS5739536A (en) 1980-08-20 1980-08-20 Method of electron beam exposure

Publications (2)

Publication Number Publication Date
JPS5739536A JPS5739536A (en) 1982-03-04
JPH0334646B2 true JPH0334646B2 (en) 1991-05-23

Family

ID=14658171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11525680A Granted JPS5739536A (en) 1980-08-20 1980-08-20 Method of electron beam exposure

Country Status (1)

Country Link
JP (1) JPS5739536A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435680A (en) * 1977-08-25 1979-03-15 Cho Lsi Gijutsu Kenkyu Kumiai Device for exposing electron beam
JPS54128680A (en) * 1978-03-30 1979-10-05 Jeol Ltd Exposure method for electron rays
JPS5679432A (en) * 1979-12-04 1981-06-30 Jeol Ltd Electron beam exposure process

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5435680A (en) * 1977-08-25 1979-03-15 Cho Lsi Gijutsu Kenkyu Kumiai Device for exposing electron beam
JPS54128680A (en) * 1978-03-30 1979-10-05 Jeol Ltd Exposure method for electron rays
JPS5679432A (en) * 1979-12-04 1981-06-30 Jeol Ltd Electron beam exposure process

Also Published As

Publication number Publication date
JPS5739536A (en) 1982-03-04

Similar Documents

Publication Publication Date Title
KR100807957B1 (en) Beam dose computing method and writing method and record carrier body and writing apparatus
JP3940824B2 (en) Pattern transfer method and transfer apparatus using charged particle beam
US4151422A (en) Electron beam exposure method
EP2509099B1 (en) Electron beam exposure method
US4393312A (en) Variable-spot scanning in an electron beam exposure system
JP3552344B2 (en) Pattern transfer method and transfer device using charged particle beam
KR20220101689A (en) Charged particle beam writing method and charged particle beam writing apparatus
JPS6222260B2 (en)
JPH0334646B2 (en)
KR0152128B1 (en) Electron beam drawing apparatus and method of drawing with such apparatus
KR20220115826A (en) Multi-charged particle beam writing method and multi-charged particle beam writing apparatus
JPH0697648B2 (en) Electron beam exposure system
JP3914817B2 (en) Charged particle beam writing method
JP3330644B2 (en) Charged particle beam exposure method
JPS58114429A (en) Electron beam exposure method
JPH0466321B2 (en)
JPH05251318A (en) Formation of pattern by charged-particle-beam lithography
JPH03104112A (en) Electron beam exposure device
JPH09186070A (en) Variable shaped beam estimation method
JPS63237526A (en) Charged particle beam lithography
JP3242481B2 (en) Charged particle beam exposure method
JPH03195012A (en) Method for charged particle beam drawing
JPS6320376B2 (en)
JPS631741B2 (en)
JP3366182B2 (en) Charged particle beam exposure apparatus and its exposure method