JPH0334610B2 - - Google Patents

Info

Publication number
JPH0334610B2
JPH0334610B2 JP198482A JP198482A JPH0334610B2 JP H0334610 B2 JPH0334610 B2 JP H0334610B2 JP 198482 A JP198482 A JP 198482A JP 198482 A JP198482 A JP 198482A JP H0334610 B2 JPH0334610 B2 JP H0334610B2
Authority
JP
Japan
Prior art keywords
substrate
temperature
tape
rotating support
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP198482A
Other languages
Japanese (ja)
Other versions
JPS58121132A (en
Inventor
Koichi Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP198482A priority Critical patent/JPS58121132A/en
Publication of JPS58121132A publication Critical patent/JPS58121132A/en
Publication of JPH0334610B2 publication Critical patent/JPH0334610B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 本発明は、高分子成形物基板上に、金属強磁性
層を磁気記録層として配した、蒸着テープ等の磁
気記録媒体の製造方法に係り、大面積にわたり特
性の均一な媒体を製造する方法の提供を目的とす
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium such as a vapor-deposited tape in which a metal ferromagnetic layer is disposed as a magnetic recording layer on a polymer molded substrate, and the present invention relates to a method for producing a magnetic recording medium such as a vapor-deposited tape, which has uniform characteristics over a large area. The purpose of the present invention is to provide a method for producing a medium that can be used in a variety of ways.

蒸着テープは短波長記録に適する媒体として
1970年代初めから期待されていたが、耐久性耐蝕
性等面での課題の克服に多くの時間を必要とし、
近年、一部オーデイオ用途で実用化されたところ
である。
Vapor-deposited tape is a suitable medium for short wavelength recording
Although expectations have been high since the early 1970s, it took a lot of time to overcome issues such as durability and corrosion resistance.
In recent years, it has been put into practical use in some audio applications.

ビデオ用途に蒸着テープを用いる試みも進んで
いるが、長尺方向、幅方向に均一な特性を得る面
で、磁気特性の制御では、実用レベルの精度が達
成されているものの、実用特性面からは改良すべ
き点が残つている。
Attempts to use vapor-deposited tape for video applications are progressing, but although a practical level of accuracy has been achieved in controlling magnetic properties in order to obtain uniform properties in the longitudinal and width directions, There are still points to be improved.

すなわち、大面積の記録媒体原反をバツチ方式
で製造し、それをテープ、デイスク等として、特
性を調べると、短波長での出力安定性に劣る部分
が存在することと、ノイズが異なることである。
In other words, if you manufacture large-area recording media in batches and examine their characteristics as tapes, disks, etc., you will find that there are parts with poor output stability at short wavelengths and differences in noise. be.

そこでこの原因を究明すべく磁気特性を克明に
調査し、その結果媒体の表面性に原因があること
を見出し、これの対策を検討し、本発明に至つ
た。
Therefore, in order to find out the cause of this, we investigated the magnetic properties in detail, and as a result, we found that the cause was due to the surface properties of the medium.We investigated countermeasures for this problem and arrived at the present invention.

すなわち蒸着時、高分子成形物基板は、短時間
であるが高温にさらされる。このとき冷却が不充
分であると、高分子成形物特有のクリープ現象
や、巻き取り時に受ける張力、圧力で局部的に変
形をきたすことが起こることと関連しているので
ある。
That is, during vapor deposition, the polymer molded substrate is exposed to high temperature for a short time. Insufficient cooling at this time is associated with the creep phenomenon peculiar to polymer molded products and local deformation caused by the tension and pressure applied during winding.

従つて、回転支持体に沿つて基板を移動しなが
ら蒸着し、蒸着完了后、回転支持体を基板が離れ
るまでに、基板をそのガラス転移点Tg以下にま
で冷却することで上述の問題を解決し得るのであ
る。
Therefore, the above problem can be solved by performing vapor deposition while moving the substrate along the rotating support, and cooling the substrate to below its glass transition point Tg before the substrate leaves the rotating support after the vapor deposition is completed. It is possible.

以下に図面を用い本発明の説明を行う。図は本
発明を実施するための装置の要部を示す。図に示
すように基体1は、回転支持体2に沿つて、送り
出し軸3より、巻取り軸4へと移動する際、蒸発
源5より放射される蒸気流により、斜方蒸着の場
合マスク6で一部入射角の限定を受けた状態で、
蒸着される。垂直記録用の媒体の製造ではマスク
が異なるが、他は同じである。
The present invention will be explained below using the drawings. The figure shows the main parts of an apparatus for carrying out the invention. As shown in the figure, when the substrate 1 moves along the rotary support 2 from the delivery shaft 3 to the take-up shaft 4, the vapor flow emitted from the evaporation source 5 causes the mask 6 to be removed in the case of oblique evaporation. With some angle of incidence limited by
Deposited. In manufacturing media for perpendicular recording, the mask is different, but everything else is the same.

回転支持体2は内部に媒体を循環させて表面温
度を一定に保持し、磁気特性を一定にするための
条件を作りだすと共に、融点の低い高分子成形物
の受ける熱影響を軽減する役割を果す。
The rotating support 2 circulates a medium inside to keep the surface temperature constant, creating conditions for making the magnetic properties constant, and also plays the role of reducing the thermal effects of the low melting point polymer molding. .

ここで、模式的に回転支持体2の軸中心をOと
し基体1での蒸着開始点をD0、終了時をD1、基
体1が回転支持体2をはなれる点をD3とする角
a(∠D0OD1)と角β(∠D1OD3)は任意に選び
うるが、通常装置の対称性を保つ設計思想が支配
的であるため∠βは∠αの倍以上に設定されるこ
とは殆んどなかつた。
Here, schematically, the axial center of the rotating support 2 is O, the starting point of vapor deposition on the substrate 1 is D 0 , the end point is D 1 , and the point where the substrate 1 leaves the rotating support 2 is D 3 . Although a (∠D 0 OD 1 ) and angle β (∠D 1 OD 3 ) can be chosen arbitrarily, ∠β is usually set to more than twice ∠α because the design concept that maintains the symmetry of the device is dominant. There was very little to be done.

製造条件により多少異なるが、点D3での基板
温度を計測すると、Tg以下にするには、∠βを
∠αの倍以上にするか、回転支持体の直径を大き
くする等の条件のいずれかを満足させる必要のあ
ることがわかつた。
Although it varies somewhat depending on the manufacturing conditions, when measuring the substrate temperature at point D 3 , in order to make it below Tg, one of the conditions is to make ∠β more than twice ∠α, or to increase the diameter of the rotating support. I realized that I needed to satisfy someone.

それと同時に基板温度をTg以下に制御するこ
とで、後述の実施例の説明で明らかなように、特
性の安定化が図れ、実用化の隘路を排除できるこ
とが確認されたのである。
At the same time, it was confirmed that by controlling the substrate temperature below Tg, the characteristics could be stabilized and the bottleneck in practical application could be eliminated, as will be clear from the description of the examples below.

即ち、ローラ7の温度と図示せぬ、ローラー、
エキスパンダ、ゴムローラ等の巻き取り系の要素
の温度が、時間とともに上昇し、その温度がTg
を越えることで、基板がそれら巻き取り系要素か
ら受ける張力、圧力等で局部的に変形し、それが
永久変形となることが従来起つていたが、本発明
により、それを防止し得ることになるのである。
That is, the temperature of the roller 7 and the roller (not shown)
The temperature of winding system elements such as expanders and rubber rollers increases over time, and the temperature reaches Tg.
Conventionally, the substrate would be locally deformed due to the tension, pressure, etc. received from the winding system elements, resulting in permanent deformation, but the present invention can prevent this. It becomes.

次に具体的に本発明の実施例を説明する。 Next, embodiments of the present invention will be specifically described.

実施例 1 直径1.4mの回転支持体に0℃の冷却用媒体を
循環させ、∠α=60°、∠β=120°とし、ポリエ
チレンテレフタレートフイルム(Tg=69℃、厚
さ9.5μm)上に、2.5×10-5Torrの酸素雰囲気中
でCo80%、Ni20%を入射角35°以上で電子ビーム
蒸着した。蒸着厚みは0.1μmで、基板の移動速度
は50m/minである。
Example 1 A cooling medium at 0°C was circulated through a rotating support with a diameter of 1.4 m, and ∠α = 60° and ∠β = 120°, and was placed on a polyethylene terephthalate film (Tg = 69°C, thickness 9.5 μm). , 80% Co and 20% Ni were deposited by electron beam at an incident angle of 35° or more in an oxygen atmosphere of 2.5×10 -5 Torr. The deposition thickness was 0.1 μm, and the substrate movement speed was 50 m/min.

このようにして作成した磁気テープ(テープ幅
は7mm)の全長3000mにわたつて再生出力変動を
調べた。なお記録波長は0.65μmである。
Fluctuations in reproduction output were investigated over a total length of 3000 m of the magnetic tape thus prepared (tape width: 7 mm). Note that the recording wavelength is 0.65 μm.

その結果、点D3での温度は50℃±5℃で、出
力変動は±0.3dBと極めて良好であつた。
As a result, the temperature at point D3 was 50° C.±5° C., and the output fluctuation was ±0.3 dB, which was extremely good.

それに比べて、∠β=90°とした時、D3の温度
が78°±5℃となり、1500m〜3000mの間での出
力変動が±3dBとなり、ドロツプアウトも2〜4
倍に増加した。
In comparison, when ∠β = 90°, the temperature of D 3 is 78° ± 5°C, the output fluctuation is ±3 dB between 1500 m and 3000 m, and the dropout is 2 to 4 dB.
doubled.

逆に、∠β=220°とし、D3での温度を35°±3
℃にしても出力変動は±0.3dBで同じであり、Tg
以下であれば同じ効果が得られることを物語つて
いる。
Conversely, if ∠β=220°, the temperature at D 3 is 35°±3
℃, the output fluctuation is the same at ±0.3dB, and Tg
The following shows that the same effect can be obtained.

実施例 2 直径2mの回転支持体に5℃の冷却用媒を流
し、ポリエチレンテレフタレートフイルム(Tg
=68.5℃、厚さ11.5μm)の両面に微小の突起を
有する塗布層を有する基板上に、同様に入射角
46°以上でCo 100%を0.13μmの厚さに電子ビーム
蒸着した。
Example 2 A cooling medium of 5°C was poured into a rotating support with a diameter of 2 m, and a polyethylene terephthalate film (Tg
= 68.5℃, thickness 11.5μm), the incident angle was
100% Co was electron beam evaporated to a thickness of 0.13 μm above 46°.

なお酸素分圧は3.3×10-5Torr一定とした。 The oxygen partial pressure was kept constant at 3.3×10 -5 Torr.

このようにして3300mの長さにわたり蒸着し、
諸条件によるテープ性能比較を行つた。なおテー
プ幅は7mmとし、記録波長は0.6μmとした。
In this way, it was deposited over a length of 3300m,
We compared tape performance under various conditions. Note that the tape width was 7 mm, and the recording wavelength was 0.6 μm.

ここで基板速度、∠α、∠βの条件組み合わせ
を列記する。
Here, condition combinations of substrate speed, ∠α, and ∠β are listed.

(A) 基板速度 72m/min、∠α=55°、∠β=
100° (B) 基板速度 60m/min、∠α=55°∠β=90° (C) 基板速度 60m/min∠α=55°∠β=60° 上記(A)、(B)、(C)各条件での点D3の基板温度は、
それぞれ29°±3℃、34±3℃、59±5℃で、出
力変動は、(A)の場合±0.34dB、(B)の場合±
0.32dB、(C)の場合±0.37dBと何れの場合も良好
であつた。
(A) Substrate speed 72m/min, ∠α=55°, ∠β=
100° (B) Substrate speed 60m/min, ∠α=55°∠β=90° (C) Substrate speed 60m/min∠α=55°∠β=60° Above (A), (B), (C ) The substrate temperature at point D3 under each condition is
At 29°±3℃, 34±3℃, and 59±5℃, respectively, the output fluctuation is ±0.34dB for (A) and ±0.3dB for (B).
It was 0.32 dB, and ±0.37 dB for (C), which was good in both cases.

これらに比して、媒体の温度を60℃としてD3
での温度が71±2℃になつた時は、長さ3300mの
うち、延べ長さ950m相当のテープに出力変動が
±3.8dB、ノイズの増加が4dBもあつた。
Compared to these, when the temperature of the medium is 60℃, D 3
When the temperature reached 71 ± 2 degrees Celsius, there was an output fluctuation of ± 3.8 dB and an increase in noise of 4 dB for the tape, which was equivalent to a total length of 950 m out of a length of 3,300 m.

なお本発明は磁気テープ、デイスクを完成させ
るための後工程などでの塗布工程に限定を付すも
のでないのは明らかである。
It is clear that the present invention does not limit the coating process in the post-process to complete the magnetic tape or disk.

また基板についてポリアセテート、ポリアミド
ポリイミド等フイルムの種類、および厚み、表面
性、表面塗布層の種類、条件によらないことと、
磁性層の種類、厚み、蒸発法の種類によらないこ
とを、蒸着長さ3000m〜15000mにわたつて確認
した。
In addition, regarding the substrate, it does not depend on the type of film such as polyacetate, polyamide polyimide, thickness, surface property, type of surface coating layer, and conditions.
It was confirmed that the results were independent of the type and thickness of the magnetic layer and the type of evaporation method used over a deposition length of 3,000 m to 15,000 m.

以上に説明したように本発明によると、広い面
積にわたつて特性が均一で高性能の、短波長記録
に適する磁気記録媒体を安定に製造し得ることに
なり、その工業的有価値性は極めて大きい。
As explained above, according to the present invention, it is possible to stably manufacture a magnetic recording medium with uniform characteristics over a wide area, high performance, and suitable for short wavelength recording, and its industrial value is extremely high. big.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明を実施するための製造装置の要部の
一例を示す図である。 1……基板、2……回転支持体、5……蒸発
源、7……ローラ。
The figure is a diagram showing an example of a main part of a manufacturing apparatus for carrying out the present invention. DESCRIPTION OF SYMBOLS 1... Substrate, 2... Rotating support body, 5... Evaporation source, 7... Roller.

Claims (1)

【特許請求の範囲】[Claims] 1 支持体に沿つて移動する高分子成形物基板上
に蒸着法により強磁性層を形成した後、前記基板
のガラス転移点をTgとするとき、前記基板の温
度がTg以下になつた状態で前記基板を前記支持
体から離脱せしめ巻き取ることを特徴とする磁気
記録媒体の製造方法。
1 After forming a ferromagnetic layer by vapor deposition on a polymer molded substrate that moves along a support, when the temperature of the substrate is below Tg, where the glass transition point of the substrate is Tg. A method for manufacturing a magnetic recording medium, comprising separating the substrate from the support and winding it up.
JP198482A 1982-01-08 1982-01-08 Production of magnetic recording medium Granted JPS58121132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP198482A JPS58121132A (en) 1982-01-08 1982-01-08 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP198482A JPS58121132A (en) 1982-01-08 1982-01-08 Production of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS58121132A JPS58121132A (en) 1983-07-19
JPH0334610B2 true JPH0334610B2 (en) 1991-05-23

Family

ID=11516760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP198482A Granted JPS58121132A (en) 1982-01-08 1982-01-08 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58121132A (en)

Also Published As

Publication number Publication date
JPS58121132A (en) 1983-07-19

Similar Documents

Publication Publication Date Title
JPH0334610B2 (en)
JPH0334132B2 (en)
JPS60133546A (en) Production of magnetic recording medium
JPH0319612B2 (en)
JP3365207B2 (en) Vacuum deposition equipment
JPS62185243A (en) Production of magnetic recording medium
JPS6020809B2 (en) Magnetic film and its manufacturing method
JPS62236141A (en) Production of magnetic recording medium
JPH0370290B2 (en)
JPS62219234A (en) Production of magnetic recording medium
JPH0319620B2 (en)
JPH0550046B2 (en)
JPS644254B2 (en)
JPH0214423A (en) Vacuum deposition device for producing magnetic recording medium
JPS58118034A (en) Production of magnetic recording medium
JPH04172620A (en) Manufacture of magnetic recording medium
JPS62236138A (en) Production of magnetic recording medium
JPS58115634A (en) Manufacture of magnetic recording medium
JPS6032127A (en) Production of magnetic recording medium
JPS62112226A (en) Production of vertical magnetic recording medium
JPS63144422A (en) Production of magnetic recording medium
JPH0319619B2 (en)
JPS60147934A (en) Apparatus for producing magnetic recording medium
JPS60111345A (en) Manufacture of magnetic recording medium
JPH02168425A (en) Production of thin alloy film type magnetic recording medium