JPS58121132A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS58121132A
JPS58121132A JP198482A JP198482A JPS58121132A JP S58121132 A JPS58121132 A JP S58121132A JP 198482 A JP198482 A JP 198482A JP 198482 A JP198482 A JP 198482A JP S58121132 A JPS58121132 A JP S58121132A
Authority
JP
Japan
Prior art keywords
substrate
supporter
recording medium
magnetic recording
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP198482A
Other languages
Japanese (ja)
Other versions
JPH0334610B2 (en
Inventor
Koichi Shinohara
紘一 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP198482A priority Critical patent/JPS58121132A/en
Publication of JPS58121132A publication Critical patent/JPS58121132A/en
Publication of JPH0334610B2 publication Critical patent/JPH0334610B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To ensure the uniform magnetic properties over a wide area, by vapor depositing a ferromagnetic layer on a high polymer molded product substrate while moving this substrate along a rotary supporter and then taking up the substrate when the temperature of the substrate is set at a level lower than the glass transition point after cooling the supporter. CONSTITUTION:A high polymer substrate 1 of a polyethylene telephthalate film within a vacuum vapor depositing device is rewound by a shaft 3 and then moved along a rotary supporter 2 having 2m diameter and flowing a refrigerant of 5 deg.C. Then Co and Ni is vapor deposited obliquely on the substrate 1 from an evaporating source 5 via a mask 6. Thus a ferromagnetic layer is formed on the substrate 1. In this case, the supporter 2 is cooled down at 5 deg.C which is lower than the glass transition point 69 deg.C of the film substrate 1. Therefore the substrate 1 is cooled continuously down to a level lower than 69 deg.C until it is separated from a roller 7 at a point D3. As a result, a creep or a distortion due to a local deformation is not produced. Thus the output stability is improved without generation of noises for a magnetic recording medium.

Description

【発明の詳細な説明】 本発明は、高分子成形物基板上に、金属強磁性層を磁気
記録層として配した、蒸着テープ等の磁気記録媒体の製
造方法に係り、大面積にわたり特性の均一な媒体を製造
する方法の提供を目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium such as a vapor-deposited tape in which a metal ferromagnetic layer is disposed as a magnetic recording layer on a polymer molded substrate, and the present invention relates to a method for producing a magnetic recording medium such as a vapor-deposited tape, which has uniform characteristics over a large area. The purpose of the present invention is to provide a method for producing a medium that can be used in a variety of ways.

蒸着テープは短波長記録に適する媒体として1970年
代初めから期待されていたが、耐久性耐蝕性等の面での
課題の克服に多くの時間を必要とし、近年、一部オーデ
ィオ用途で実用化されたところである。
Vapor-deposited tape has been expected to be a medium suitable for short wavelength recording since the early 1970s, but it took a long time to overcome issues such as durability and corrosion resistance, and in recent years it has not been put into practical use for some audio applications. That's where it was.

ビデオ用途に蒸着テープを用いる試みも進んでいるが、
長尺方向1幅方向に均一な特性を得る面で、磁気特性の
制御では、実用レベルの軸度が達成さ扛ているものの、
実用特性面からは改良すべき点が残っている。
Attempts to use vapor-deposited tape for video applications are progressing, but
In terms of obtaining uniform properties in the longitudinal direction and width direction, although a practical level of axiality has been achieved in controlling the magnetic properties,
There are still points to be improved in terms of practical characteristics.

すなわち、大面積の記録媒体原反をバッチ方式で製造し
、それをテープ、ディスク等として、特性を調べると、
短波長での出力安定性に劣る部分が存在することと、ノ
イズが異なることである。
In other words, if you manufacture a large area recording medium in a batch process, make it into a tape, disk, etc., and examine its characteristics,
The two problems are that there are parts with poor output stability at short wavelengths and that the noise is different.

そこでこの原因を究明すべく磁気特性を究明に調査し、
その結果媒体の表面性に原因があることを見出し、これ
の対策を検討し、本発明に至ったすなわち蒸着時、高分
子成形物基板は、短時間であるが高温にさらされる。こ
のとき冷却が不充分であると、高分子成形物特有のクリ
ープ現象や、巻き取り時に受ける張力、圧力で局部的に
変形をきたすことが起ることと関連しているのである。
Therefore, in order to find out the cause of this, we thoroughly investigated the magnetic properties.
As a result, it was discovered that the cause was due to the surface properties of the medium, and countermeasures were investigated, leading to the present invention.That is, during vapor deposition, the polymer molded substrate is exposed to high temperature for a short time. Insufficient cooling at this time is associated with the creep phenomenon peculiar to polymer molded products and local deformation caused by the tension and pressure applied during winding.

従って、回転支持体に沿って基板を移動しながら蒸着し
、蒸着完了后、回転支持体を基板が離扛るまでに、基板
をそのガラス転移点Tq以下に1で冷却することで上述
の問題を解決し得るのである。
Therefore, the above-mentioned problem can be solved by performing vapor deposition while moving the substrate along the rotating support, and cooling the substrate to below its glass transition point Tq after the vapor deposition is completed and before the substrate leaves the rotating support. can be solved.

以下に図面を用い本発明の説明を行う。The present invention will be explained below using the drawings.

図は本発明を実施するための装置の要■を示1図に示す
ように基板1は、回転支持体2に沿っ℃送り出し軸3よ
り、巻取り軸4へと移動する際、蒸発源6より放射され
る蒸気流により、斜方蒸着の場合マスク6で一部入射角
の限定を受けた状態で、蒸着される。垂直記録用の媒体
の製造ではマスクが異なるが、他は同じである。
The figure shows the main points of the apparatus for carrying out the present invention. As shown in figure 1, when the substrate 1 is moved along the rotating support 2 from the °C delivery shaft 3 to the winding shaft 4, the evaporation source 6 In the case of oblique deposition, the vapor flow is radiated by the vapor flow, and the incident angle is partially limited by the mask 6 during oblique vapor deposition. In manufacturing media for perpendicular recording, the mask is different, but everything else is the same.

回転支持体2は内部に媒体を循環させて表面温度を一定
に保持し、磁気特性を一定にするだめの条件を作りだす
と共に、融点の低い高分子成形物の受ける熱影響を軽減
する役割を果す。
The rotating support 2 circulates a medium inside to keep the surface temperature constant, creating the conditions for constant magnetic properties, and also plays the role of reducing the thermal effects of the polymer molded material with a low melting point. .

ここで、模式的に回転支持体2の軸中心をOとし基板1
での蒸着開始点f:D  終了時をDl、基板p 1が回転支持体2をはなれる点をD3とする。角α(/
D OD )と角β(/D1oD3)は任意に選びうo
す るが、通常装置の対称性を保つ設計思想が支配的である
ため/βは/a の倍以」二に設定されることは殆んど
なかった。
Here, the axial center of the rotating support 2 is assumed to be O, and the substrate 1
The starting point of vapor deposition at f:D is assumed to be Dl, and the point at which the substrate p1 leaves the rotating support 2 is assumed to be D3. Angle α (/
D OD ) and angle β (/D1oD3) can be arbitrarily selected.
However, since the design concept of maintaining the symmetry of the device is usually dominant, /β is almost never set to more than twice /a.

製造条件により多少異なるが、点D3での基板温度を計
測すると、Tg以下にするKは、/βを/αの倍以上に
するか、回転支持体の直径を大きくする等の条件のいず
れかを満足させる必要のあることがわかった。
Although it varies somewhat depending on the manufacturing conditions, when measuring the substrate temperature at point D3, K can be lowered to below Tg by either increasing /β to more than twice /α or increasing the diameter of the rotating support. It was found that it was necessary to satisfy the

それと同時に基板温度をTq以下に側倒することで、後
述の実6説明で明らかなように、特性の安定化が図れ、
実用化の隘路を排除できることが確認されたのである。
At the same time, by lowering the substrate temperature to below Tq, the characteristics can be stabilized, as will be clear from the explanation of Act 6 below.
It was confirmed that the bottleneck in practical application could be eliminated.

即ち、ローラ7の温度と図示せぬ、ローラー。That is, the temperature of the roller 7 and the roller (not shown).

エキスパンタ、ゴムローラ等の巻き取り系のW素の温度
が、時間とともに上昇し、その温度がTqを越えること
で、基板がそれら巻き取り系要素から受ける張力、圧力
等で局部的に変形し、それが永久変形となることが従来
起っていたが、本発明により、それを防止し得ることに
なるのである。
The temperature of the W elements in the winding systems such as expanders and rubber rollers increases over time, and when that temperature exceeds Tq, the substrate is locally deformed due to the tension, pressure, etc. received from these winding system elements. Conventionally, this has caused permanent deformation, but the present invention can prevent this.

次に具体的に本発明の詳細な説明する。Next, the present invention will be specifically explained in detail.

〔実施例1〕 直径1.4mの回転支持体に0°Cの冷却用媒体を循環
させ、/α−6o0./β−1200とし、ポリエチレ
ンテレフタレートフィルム(rg=69’c、 厚さ9
.61ttn)上に、2−5x 10−”Torrの酸
素雰囲気中でCo80%、Ni 20% を入射角36
°以上で′電子ビーム蒸着した。蒸着厚みは0.1μm
で、基板の移動速度は50 m/mi nである。
[Example 1] A cooling medium at 0°C was circulated through a rotating support having a diameter of 1.4 m, and a temperature of /α-6o0. /β-1200, polyethylene terephthalate film (rg=69'c, thickness 9
.. 61ttn) at an incident angle of 36% in an oxygen atmosphere of 2-5x 10-” Torr.
Electron beam evaporation was carried out at temperatures above 100°C. Vapor deposition thickness is 0.1μm
The moving speed of the substrate is 50 m/min.

このようにして作成した磁気テープ(テープ幅は7mm
)の全長3000mにわたって再生出力変動を調べた。
The magnetic tape created in this way (tape width is 7 mm)
) The reproduction output fluctuation was investigated over the entire length of 3000 m.

なお記録波長は0.65μmである。Note that the recording wavelength is 0.65 μm.

その結果、点りでの温度は60℃±5℃で、出力変動は
10.3dB、:iめて良好であった。
As a result, the temperature at the point was 60°C±5°C, and the output fluctuation was 10.3dB, which was excellent.

それに比べて、/β=90°とした時、D3の温度が7
8′・15℃となり、1500/7Z〜3000771
の間での出力変動がtadB  となり、ドロップアウ
トも2〜4倍に増加した。
In comparison, when /β=90°, the temperature of D3 is 7
8'・15℃, 1500/7Z~3000771
The output fluctuation between the two became tadB, and the dropout also increased by 2 to 4 times.

逆に、/β−220°とし、D3での温度を35′士3
℃にしても出力変動は±0.3dBで同じであり、Tq
以下であれば同じ効果が得られることを物語っている。
Conversely, /β-220° and the temperature at D3 is 35'
℃, the output fluctuation is the same at ±0.3 dB, and Tq
The following shows that the same effect can be obtained.

〔実施例2〕 直径2mの回転支持体に5°Cの冷却用媒を流しポリエ
チレンテレフタレートフィルム(Tq=ea、ts℃、
厚さ11.6put )の両面に微小の突起を有する塗
布層を有する基板上に、同様に入射角46° 以上でc
o 100%io、13μmの厚さに電子ビーム蒸着し
た。
[Example 2] A cooling medium of 5°C was poured onto a rotating support with a diameter of 2 m, and a polyethylene terephthalate film (Tq=ea, ts°C,
Similarly, on a substrate having a coating layer with minute protrusions on both sides with a thickness of
o 100% io, electron beam evaporated to a thickness of 13 μm.

なお酸素分圧は3−3 X 10−”Torr一定とし
た。
Note that the oxygen partial pressure was kept constant at 3-3×10-” Torr.

このようにして3300 triの長さにわたり蒸着し
諸条件によるテープ性能比較を行った。なおテープ幅i
d 7 mmとし、記録波長は0 、6 /J or 
とした。
In this way, the tape was deposited over a length of 3300 tri, and the tape performance was compared under various conditions. Note that the tape width i
d 7 mm, and the recording wavelength is 0,6/J or
And so.

ここで基板速度、1.a+ /βの条件組み合せt +
11記する。
Here, the substrate speed, 1. Condition combination t + of a+ /β
11.

(8)基板速$  72zn/min、/α−55°、
/β=1000(1ヨl)       #     
  60’ノZ/mi n 、 /a=66 °/β=
  900(q       60m/m i n /
a=56°乙β二600上記(A) 、 (B) 、 
(Q各条件での点D3の基板温度は、それぞれ29°±
3℃、34±3℃、 59−t 5℃で、出力変動は、
(への場合±0.34dB、申)の場合土o、32dB
、(C)tD場合士0.37dB と何レノ場合も良好
であった。
(8) Substrate speed $72zn/min, /α-55°,
/β=1000 (1yol) #
60' no Z/min, /a=66°/β=
900 (q 60m/min/
a = 56° O β 2 600 above (A), (B),
(The substrate temperature at point D3 under each Q condition is 29°±
3℃, 34±3℃, 59-t At 5℃, the output fluctuation is
(±0.34 dB for (to), 32 dB for (to)
, (C) tD case was 0.37 dB, which was good in all cases.

これらに比して、媒体の温度を60℃としてD3での温
度が71±2°CKなった時は、長さ33oOIηのう
ち、延べ長さ960m相当のテープに出力変動が±3.
adB 、ノイズの増加が4dBもあった。
In comparison, when the temperature of the medium is 60°C and the temperature at D3 is 71±2°CK, the output fluctuation is ±3.0° for a tape equivalent to a total length of 960m out of a length of 33oOIη.
adB, the noise increase was 4 dB.

なお本発明は磁気テープ、ディスクを完成させるための
後工程での塗布工程などに限定を付すものでないのは明
らかである。
It is clear that the present invention does not limit the coating process in the post-process for completing magnetic tapes and disks.

また基板についてポリアセテート、ポリアミドポリイミ
ド等フィルムの種類、および厚み1表面性1表面塗布層
の種類、条件によらないことと、磁性層の種類、厚み、
蒸発法の種類によらないことを、蒸着長さ300077
1〜15000mにわたって確認した。
Regarding the substrate, it does not depend on the type of film such as polyacetate, polyamide polyimide, thickness, surface properties, type of surface coating layer, and conditions, and the type and thickness of the magnetic layer.
Regardless of the type of evaporation method, the evaporation length is 300077.
It was confirmed over a distance of 1 to 15,000 m.

以上に説明したように本発明によると、広い面積にわた
って特性が均一で高性能の、短波長記録に適する磁気記
録媒体を安定に製造し得ることになジ、その工業的有価
値性は極めて大きい。
As explained above, according to the present invention, it is possible to stably manufacture a magnetic recording medium with uniform characteristics over a wide area, high performance, and suitable for short wavelength recording, and its industrial value is extremely large. .

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明を実施するための製造装置の要部の一例を示
す図である。 1・・・・・・基板、2・・・・・・回転支持体、5・
・・・・・蒸発源、7・・・・・・ローラ。
The figure is a diagram showing an example of a main part of a manufacturing apparatus for carrying out the present invention. 1...Substrate, 2...Rotating support, 5.
...Evaporation source, 7...Roller.

Claims (1)

【特許請求の範囲】[Claims] 支持体に沿って移動する高分子成形物基板上に蒸着法に
より強磁性層を形成した後、前記基板のガラス転移点を
Tqとするとき、前記基板の温度がTq以下になった状
態で前記基板を前記支持体から離脱せしめ巻き取ること
を特徴とする磁気記録媒体の製造方法。
After forming a ferromagnetic layer by vapor deposition on a polymer molded substrate moving along a support, the temperature of the substrate is below Tq, where the glass transition point of the substrate is Tq. A method for manufacturing a magnetic recording medium, comprising separating the substrate from the support and winding it up.
JP198482A 1982-01-08 1982-01-08 Production of magnetic recording medium Granted JPS58121132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP198482A JPS58121132A (en) 1982-01-08 1982-01-08 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP198482A JPS58121132A (en) 1982-01-08 1982-01-08 Production of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS58121132A true JPS58121132A (en) 1983-07-19
JPH0334610B2 JPH0334610B2 (en) 1991-05-23

Family

ID=11516760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP198482A Granted JPS58121132A (en) 1982-01-08 1982-01-08 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58121132A (en)

Also Published As

Publication number Publication date
JPH0334610B2 (en) 1991-05-23

Similar Documents

Publication Publication Date Title
JPS61139932A (en) Production of magnetic recording medium
JPS58121132A (en) Production of magnetic recording medium
JP3365207B2 (en) Vacuum deposition equipment
JPS5924449A (en) Manufacture of magnetic recording film
JPS58121131A (en) Production of magnetic recording medium
JPS60133546A (en) Production of magnetic recording medium
JPS59150083A (en) Vacuum deposition device
JPS63845B2 (en)
JPS61187127A (en) Manufacture of magnetic recording medium
JPS59112436A (en) Manufacture of magnetic tape
JPS62185243A (en) Production of magnetic recording medium
JPS62219234A (en) Production of magnetic recording medium
JPS60111345A (en) Manufacture of magnetic recording medium
JPS60117420A (en) Method for forming continuous thin film
JPS60147934A (en) Apparatus for producing magnetic recording medium
JPH0222038A (en) Manufacture of polyester film for magnetic recording flexible disc
JPS63106927A (en) Production of magnetic recording medium
JPH04172620A (en) Manufacture of magnetic recording medium
JPS62236138A (en) Production of magnetic recording medium
JPS58118034A (en) Production of magnetic recording medium
JPS6074609A (en) Continuous film forming equipment
JPH04362521A (en) Production of thin film
JPH06295435A (en) Production of magnetic recording medium
JPS62112226A (en) Production of vertical magnetic recording medium
JPS644254B2 (en)