JPH0334132B2 - - Google Patents

Info

Publication number
JPH0334132B2
JPH0334132B2 JP146282A JP146282A JPH0334132B2 JP H0334132 B2 JPH0334132 B2 JP H0334132B2 JP 146282 A JP146282 A JP 146282A JP 146282 A JP146282 A JP 146282A JP H0334132 B2 JPH0334132 B2 JP H0334132B2
Authority
JP
Japan
Prior art keywords
substrate
roller
tape
vapor deposition
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP146282A
Other languages
Japanese (ja)
Other versions
JPS58121131A (en
Inventor
Koichi Shinohara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP146282A priority Critical patent/JPS58121131A/en
Publication of JPS58121131A publication Critical patent/JPS58121131A/en
Publication of JPH0334132B2 publication Critical patent/JPH0334132B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 本発明は、高分子成形物基板上の、金属強磁性
層を磁気記録層とする蒸着テープ等の磁気記録媒
体の製造方法に係り、長尺で特性の均一な磁気記
録媒体の製造に適した方法の提供を目的とする。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium such as a vapor-deposited tape having a metal ferromagnetic layer as a magnetic recording layer on a polymer molded substrate. The purpose is to provide a method suitable for manufacturing recording media.

蒸着テープは短波長記録を適する媒体として、
1970年代初めから期待されていたが、耐久性、耐
蝕性等の面での課題の克服に多くの時間を必要と
して、近年一部オーデイオ用途で実用化されたと
ころである。
Vapor-deposited tape is a medium suitable for short wavelength recording.
Although it has been expected since the early 1970s, it took a lot of time to overcome issues such as durability and corrosion resistance, and it has only recently been put into practical use for some audio applications.

ビデオ用途に蒸着テープを用いる試みも進んで
おり、その場合長尺方向、幅方向に均一な特性を
得ることに関し、磁気特性の制御では、実用レベ
ルの精度が達成されているものの、実用性能面か
らは改良を必要とする課題が残つている。
Attempts to use vapor-deposited tape for video applications are also progressing, and although a practical level of accuracy has been achieved in controlling the magnetic properties in order to obtain uniform properties in the longitudinal and width directions, there are still problems in terms of practical performance. There are still issues that require improvement.

そのひとつは、長尺のテープで比較検討した時
磁気特性は全く同一でも出力変動が異なること
で、もうひとつはノイズが異なつてくることであ
る。
One of these is that when comparing long tapes, even if the magnetic properties are exactly the same, the output fluctuations are different, and the other is that the noise is different.

本発明者は、媒体の表面性に有意差があること
をつきとめ、製造時のどこにかかる有意差を引き
起す原因があるかを詳細に検討して本発明を完成
させたものである。以下に本発明の説明を行う。
The present inventor found that there is a significant difference in the surface properties of the media, and completed the present invention by examining in detail where the cause of the significant difference is at the time of manufacturing. The present invention will be explained below.

第1図は本発明を実施するための製造装置の要
部を示し、第2図は他の要部を示す。
FIG. 1 shows the main parts of a manufacturing apparatus for carrying out the present invention, and FIG. 2 shows other main parts.

図に示すように基板1は、回転支持体2に沿つ
て、送り出し軸3より巻取り軸4へと移動する際
蒸発源5より放射される強磁性物質の蒸気流によ
り、マスク6で一部入射角の限定を受けた状態で
蒸着される。
As shown in the figure, the substrate 1 is partially covered by the mask 6 due to the vapor flow of the ferromagnetic material emitted from the evaporation source 5 as it moves along the rotating support 2 from the delivery shaft 3 to the take-up shaft 4. It is deposited under a limited angle of incidence.

回転支持体2は内部に媒体を循環させて、表面
温度を一定に保持し、基板の受ける熱影響を軽減
するため冷却作用を行う機能をも有している。な
お回転支持体は、冷却されたエンドレス状の金属
の薄板であつてもいい。
The rotating support 2 also has a function of circulating a medium therein to maintain a constant surface temperature and to perform a cooling effect to reduce the thermal influence on the substrate. Note that the rotating support may be a cooled endless metal thin plate.

蒸着が、マスク6に限定されて終了したあと基
板は冷却されていくが、実用規模の高速で移動す
る場合、基板は室温以上であり、通常の巻き取り
では回転支持体をはなれて、次々に触れる金属ロ
ーラを、熱伝達作用により昇温しある平衡温度に
到達させる。
After the vapor deposition is limited to the mask 6, the substrates are cooled down, but when moving at high speeds on a practical scale, the substrates are at room temperature or higher. The metal roller that is touched is heated up by the heat transfer effect and reaches a certain equilibrium temperature.

そのため第1、第2ローラ7,8(第2図では
7′,8′)を温度制御した時、その制御温度が基
板のガラス転移点Tgを境にして特性の安定性と
強い相関を有することを見出したのである。第1
図では第1ローラ7が蒸着面と反対側に、第2ロ
ーラ8が蒸着面に接している。第2図では逆に第
1ローラ7′が蒸着面に、第2ローラ8′が蒸着面
と反対側の面と接する。
Therefore, when the temperature of the first and second rollers 7 and 8 (7' and 8' in Figure 2) is controlled, the controlled temperature has a strong correlation with the stability of the characteristics at the glass transition point Tg of the substrate. I discovered that. 1st
In the figure, the first roller 7 is in contact with the vapor deposition surface and the second roller 8 is in contact with the vapor deposition surface. In FIG. 2, on the contrary, the first roller 7' is in contact with the vapor deposition surface, and the second roller 8' is in contact with the surface opposite to the vapor deposition surface.

実際の巻取り系では金属ローラ数は、エキスパ
ンダゴムローラの導入等により更に増すが、蒸着
直後の2個のローラ(ローラ径によつては1個だ
けでも良い。)の温度を管理すればよい結果が得
られる。
In an actual winding system, the number of metal rollers will increase further due to the introduction of expander rubber rollers, etc., but it is sufficient to control the temperature of the two rollers (depending on the roller diameter, only one may be sufficient) immediately after vapor deposition. Get results.

しかし3個以上のローラの温度を管理すること
を阻むものではないのは勿論である。
However, it goes without saying that this does not prevent the temperature of three or more rollers from being controlled.

ローラの表面粗さも、平滑であることが好まし
いが実際の管理水準から表面粗さ0.1S〜0.3S程度
であれば良い。
The surface roughness of the roller is also preferably smooth, but in view of actual control standards, the surface roughness may be about 0.1S to 0.3S.

最も重要なことは、温度管理でTg以下に制御
することであり、その時にはローラ表面に傷が入
つて最大粗さが0.5μmを越えて1μmになつてもテ
ープ表面に損傷を与えないことは注目すべきであ
る。
The most important thing is to control the temperature to below Tg, and at that time, even if the roller surface is scratched and the maximum roughness exceeds 0.5 μm and reaches 1 μm, the tape surface will not be damaged. It is noteworthy.

次に具体的に本発明の実施例を説明する。 Next, examples of the present invention will be specifically described.

実施例 1 直径1000mmの回転支持体を25℃に保持し、
35m/minの速度で移動するポリエチレンテレフ
タレートフイルム(Tg=68.5℃)(厚み9.5μm)
上に、電子ビーム蒸着により、2.5×10-5Torrの
酸素雰囲気中でCo85%Ni15%の強磁性層を入射
角40゜以上で0.13μmの厚さに形成し、巻き取り側
のローラを40℃±5℃に制御した上で巻き取り、
1/2インチのテープを作成した。
Example 1 A rotating support with a diameter of 1000 mm was maintained at 25°C,
Polyethylene terephthalate film (Tg=68.5℃) (thickness 9.5μm) moving at a speed of 35m/min
A ferromagnetic layer of 85% Co and 15% Ni was formed on the top by electron beam evaporation in an oxygen atmosphere of 2.5×10 -5 Torr to a thickness of 0.13 μm at an incident angle of 40° or more. Wind it up after controlling it to ℃±5℃,
A 1/2 inch tape was made.

このテープについて全長3000mに渡つて、再生
出力変動を調べた。なおこのときの記録波長は
0.7μmである。
The reproduction output fluctuations of this tape were investigated over a total length of 3000 m. The recording wavelength at this time is
It is 0.7 μm.

その結果得られた出力変動は±0.6dBであつ
た。一方本発明によらない製造方法によるもので
は蒸着の最初から900mまでは出力変動が±0.6dB
の範囲であつたが、1000mから3000mに至るま
で、周期をもたないくり返し現象の出力変動の大
きい領域の出現が観察された。その最大変動幅は
±3.2dBと桁違いに大きいものであつた。
The resulting output fluctuation was ±0.6 dB. On the other hand, with the manufacturing method not based on the present invention, the output fluctuation is ±0.6 dB from the beginning of evaporation to 900 m.
However, from 1,000 m to 3,000 m, a region with large output fluctuations due to repeating phenomena without periodicity was observed. The maximum fluctuation range was ±3.2 dB, which was an order of magnitude larger.

実施例 2 直径1000mmの回転支持体を5℃に保持し、
40m/minの速度で移動するポリエチレンテレフ
タレートフイルム(Tg=70℃)の両面に微小の
突起を有する塗布層を有す基板上(厚み11.5μm)
に、電子ビーム蒸着により、3×10-5Torrの酸
素雰囲気中でCo80%Ni20%の強磁性層を入射角
43゜以上で0.1μmの厚さに形成し、巻き取り側のロ
ーラを30゜±3℃に制御した上で巻き取り、1/2イ
ンチのテープを作成した。
Example 2 A rotating support with a diameter of 1000 mm was maintained at 5°C,
On a substrate (thickness: 11.5 μm) that has a coating layer with minute protrusions on both sides of a polyethylene terephthalate film (Tg = 70°C) that moves at a speed of 40 m/min.
A ferromagnetic layer of 80% Co and 20% Ni was deposited by electron beam evaporation in an oxygen atmosphere of 3×10 -5 Torr at an angle of incidence of
The tape was formed to a thickness of 0.1 μm at an angle of 43° or more, and wound with the roller on the winding side controlled at 30° ± 3°C to produce a 1/2 inch tape.

このテープの記録波長0.7μmでの再生出力変動
は全長4000mに渡つて±0.5dBであつた。
The reproduction output fluctuation of this tape at a recording wavelength of 0.7 μm was ±0.5 dB over the entire length of 4000 m.

一方従来法により製造したテープは、1800m以
降より急激に出力変動が大となり、最大±5.2dB
となつた。又ノイズの増加も目立つた。
On the other hand, for tapes manufactured using the conventional method, output fluctuations suddenly became large after 1800 m, with a maximum of ±5.2 dB.
It became. There was also a noticeable increase in noise.

なお実施例1,2で用いたフイルムの蒸着面の
反対側にグラフアイトを分散させたエポキシ層を
0.1μmの厚さに塗布したものを用い1/2インチの
テープとしたものでも同様に性能が改良されてい
ることが確認された。
In addition, an epoxy layer in which graphite was dispersed was placed on the opposite side of the vapor deposition surface of the film used in Examples 1 and 2.
It was confirmed that performance was similarly improved when a 1/2-inch tape was coated with a thickness of 0.1 μm.

そして、前述のような効果は、ポリアセテー
ト、ポリイミド、ポリアミド等の基板の種類及び
厚みによらないことと、磁性層の種類及び厚みに
よらないことも確認された。
It was also confirmed that the above-mentioned effect does not depend on the type and thickness of the substrate such as polyacetate, polyimide, polyamide, etc., nor does it depend on the type and thickness of the magnetic layer.

以上の説明から明らかなように、本発明による
と長尺方向における出力変動が小さいなど特性が
均一で高性能の磁気記録媒体を安定に製造し得る
こととなり、その工業的有価値性は大きい。
As is clear from the above description, according to the present invention, it is possible to stably produce a high-performance magnetic recording medium with uniform characteristics such as small output fluctuation in the longitudinal direction, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はそれぞれ本発明による製造方
法を実施する場合に用いられる製造装置の要部を
示す図である。 1……基板、2……回転支持体、5……蒸発
源、7,7′,8,8′……ローラ。
FIG. 1 and FIG. 2 are diagrams showing the main parts of a manufacturing apparatus used when carrying out the manufacturing method according to the present invention, respectively. 1... Substrate, 2... Rotating support, 5... Evaporation source, 7, 7', 8, 8'... Roller.

Claims (1)

【特許請求の範囲】[Claims] 1 支持体に沿つて移動する高分子成形物基板上
に蒸着法により強磁性層を形成した後、前記基板
のガラス転移点をTgとする時、表面温度がTg以
下に制御されたローラにて前記基板を巻き取るこ
とを特徴とする磁気記録媒体の製造方法。
1 After forming a ferromagnetic layer by vapor deposition on a polymer molded substrate that moves along a support, it is heated using a roller whose surface temperature is controlled to be below Tg, where the glass transition point of the substrate is Tg. A method for manufacturing a magnetic recording medium, comprising winding up the substrate.
JP146282A 1982-01-07 1982-01-07 Production of magnetic recording medium Granted JPS58121131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP146282A JPS58121131A (en) 1982-01-07 1982-01-07 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP146282A JPS58121131A (en) 1982-01-07 1982-01-07 Production of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS58121131A JPS58121131A (en) 1983-07-19
JPH0334132B2 true JPH0334132B2 (en) 1991-05-21

Family

ID=11502122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP146282A Granted JPS58121131A (en) 1982-01-07 1982-01-07 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS58121131A (en)

Also Published As

Publication number Publication date
JPS58121131A (en) 1983-07-19

Similar Documents

Publication Publication Date Title
US5914151A (en) Method for forming silica protective films
JPH0334132B2 (en)
JPH0334610B2 (en)
JP2785272B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPS641854B2 (en)
JPS58118034A (en) Production of magnetic recording medium
JP2794662B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPS60133546A (en) Production of magnetic recording medium
JPH01165033A (en) Manufacture of magnetic recording medium
JPS6074609A (en) Continuous film forming equipment
JPH0334127B2 (en)
JPH01222050A (en) Manufacture of vacuum deposition apparatus and magnetic recording medium and magnetic recording medium
JP2650300B2 (en) Method for manufacturing perpendicular magnetic recording medium
JPS60117420A (en) Method for forming continuous thin film
JPS58125230A (en) Magnetic recording medium
JPS60164930A (en) Production of magnetic recording medium
JPH07331438A (en) Device for producing metallic film body
JPH0319619B2 (en)
JPH0319620B2 (en)
JPS6226638A (en) Production of magnetic recording medium
JPS59121628A (en) Manufacture of magnetic recording medium
JPS62219234A (en) Production of magnetic recording medium
JPH02149917A (en) Magnetic recording medium
JPS60111345A (en) Manufacture of magnetic recording medium
JPH0334613B2 (en)