JPH0334398B2 - - Google Patents

Info

Publication number
JPH0334398B2
JPH0334398B2 JP58056940A JP5694083A JPH0334398B2 JP H0334398 B2 JPH0334398 B2 JP H0334398B2 JP 58056940 A JP58056940 A JP 58056940A JP 5694083 A JP5694083 A JP 5694083A JP H0334398 B2 JPH0334398 B2 JP H0334398B2
Authority
JP
Japan
Prior art keywords
addition rate
flocculant
sludge
amount
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58056940A
Other languages
Japanese (ja)
Other versions
JPS59183900A (en
Inventor
Chiaki Igarashi
Hidetomo Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Infilco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Infilco Co Ltd filed Critical Ebara Infilco Co Ltd
Priority to JP58056940A priority Critical patent/JPS59183900A/en
Publication of JPS59183900A publication Critical patent/JPS59183900A/en
Publication of JPH0334398B2 publication Critical patent/JPH0334398B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、有機高分子凝集剤を用いる汚泥の脱
水処理における凝集剤添加量の制御方法に関する
ものである。 近年、汚泥の脱水処理に無機凝集剤に代わつ
て、有機高分子凝集剤が広く用いられているが、
該凝集剤には脱水処理に好ましい添加率領域があ
り、過少添加のみならず過剰添加もさけねばなら
ず、常に何らかの方法で薬品添加率を適正範囲内
に保たねばならないという保守管理面でのわずら
わしさがあつた。 本発明は、かかる現状に対し、汚泥の質的、濃
度的変動に十分対処できる有機高分子凝集剤添加
量の制御方法を提供し、上記欠点を克服し、薬品
費用の節約、自動化による人件費の大幅低減等を
可能とし、汚泥処理全体のコストを低下させるこ
とを目的とするものである。 本発明は、添加した有機高分子凝集剤の一部が
液中に残留しはじめる凝集剤添加率Aと、機械脱
水が可能となる最少凝集剤添加率Bとの比(B/
A)をあらかじめ求めておき、以後随時液中に残
留しはじめる凝集剤添加率Aを測定してそれに該
比の値を乗じた値と前記随時測定した添加率A間
の値を、脱水機運転時の添加率とすることを特徴
とする高分子凝集剤添加率の制御方法である。 本発明は、有機高分子凝集剤の添加率と液中へ
の残留量の関係、さらにはそれらと脱水性との相
関係を綿密に検討した結果完成したものである。
有機高分子凝集剤の添加率と液中への残留量の関
係を模式的に示すと、第1図の実線アのようにな
る。すなわち、凝集剤の添加率が低い領域では、
添加した凝集剤は全量汚泥粒子に吸着し、液中に
はまつたく残留しないが、ある添加率(添加率
A)をこえると液中に残留しはじめ、以後添加し
た凝集剤の大部分が液中に残留するようになる。
一方、凝集剤を添加された調質汚泥を脱水した結
果えられる脱水ケーキの含水率や処理可能な量
(処理量)と凝集剤添加率の関係は第1図中の実
線イ,ウのようになる。即ち、凝集剤添加率が極
めて少ない領域では脱水することができず、ある
添加率(添加率B)を越えると脱水可能な状態と
なり、添加率A付近で最も良い状態となり以後
徐々に悪化する。このような関係から、脱水性を
最良に保つには、添加率A付近で脱水機を運転す
ればよく、具体的には液中に残留する凝集剤の量
を適当な手段で測定して所定の値におさまる様に
凝集剤の添加量もしくは汚泥流量を制御すればよ
い。しかしながら、場合によつては、凝集剤添加
率がAより少ない場合即ち液中に凝集剤が残留し
ない状態でも、添加でも、添加率がA付近であれ
ば、さほど脱水性が悪化しないことがあるし、若
干脱水性を犠牲にしてもよければ、凝集剤添加率
をBまで減少させることを可能となる。つまり凝
集剤を節約できるというプラスと、脱水性が悪化
するというマイナスとのバランスを考えて、凝集
剤添加率をAとBの中間に設定して脱水すれば最
も省エネルギーになる。これが本発明の発想であ
り、目的でもある。しかしながら現実の汚泥処理
においては、汚泥濃度の変動や質的変動が激し
く、常に脱水機を希望の凝集剤添加率に調節する
のは厄介である。凝集剤添加率を前記Bもしくは
BとAの間で運転すれば最も省エネルギーとなる
とはいつても、常時その状態を保つためには、監
視と流量調節に人手がかかり容易でない。ところ
が数多くの実験的研究から、汚泥の質的変動や濃
度変動があり上記添加率のA及びBの値が変動し
ても、上記AとBの比は変化しないことがわかつ
た。これは使用する脱水方法及び凝縮剤について
はあらかじめその比(B/A)を求めておけば、
以後は上記凝集剤添加率Aを測定するだけで、脱
水機の運転可能となる最少添加率Bが求まること
を意味する。上記添加率Bが自動的に求まること
になれば、脱水機の運転時に用いる凝集剤添加率
の設定値も、上記B、もしくはBとAの中間の任
意の値にすることができる。さらに、上記添加率
Aは、分離液の粘度測定による方法(粘度法)、
全有機炭素を測定する方法(TOC法)、窒素濃度
を測定する方法、コロイド滴定法などの分析手段
で容易に求めることができ、自動化も可能であ
る。また、従来必要であつた汚泥濃度、流量の測
定も不用となり人手が省ける。 本発明者らの経験によれば、前記添加率比
(B/A)は、遠心分離機で0.7〜0.8、ベルトプ
レスで0.5〜0.6スクリユープレスで0.7〜0.8であ
り、布を有する機種の方が小さな値となつてい
る。また添加率Bにおける脱水性と添加率Aにお
ける脱水性の差は、布の有する機種の方がそれ
を持たぬ機種よりも小さいようであるが、その差
は汚泥によつても異なるので、実際の汚泥及び脱
水機を用いて、最適な添加量の設定値を求めるの
がよい。 以上、本発明によれば、本発明は実際の汚泥処
理において遭遇する汚泥の濃度や質の変動に十分
対拠できる凝集剤添加率の制御方法を提供するも
のであり、薬品費用を低減でき人件費の低減等の
実用上多大な効果をもたらすものである。 以下若干の実施例をのべる。 実施例 1 某下水処理場混合生汚泥を陽イオン系有機高分
子凝集剤を用いてベルトプレス型脱水機で脱水し
た。凝集剤添加率の制御方法として、本発明方及
び運転開始前に汚泥濃度及び最適添加率を調べ、
汚泥流量と凝集剤溶液流量を設定し、以後流量を
固定して運転する従来法を比較した。結果を表1
に示す。本発明法では、随時コロイド荷電量の測
定を自動的に行ない、前記添加率A、及びB、所
定のコロイド荷電量を測定した。
The present invention relates to a method for controlling the amount of flocculant added in sludge dewatering treatment using an organic polymer flocculant. In recent years, organic polymer flocculants have been widely used in place of inorganic flocculants for sludge dewatering treatment.
The flocculant has a preferable addition rate range for dehydration treatment, and it is necessary to avoid not only under-dosing but also over-dosing, and from a maintenance management perspective, the chemical addition rate must always be kept within an appropriate range by some method. I felt a sense of annoyance. In view of the current situation, the present invention provides a method for controlling the amount of organic polymer flocculant added that can sufficiently cope with changes in the quality and concentration of sludge, overcomes the above-mentioned drawbacks, saves on chemical costs, and reduces labor costs through automation. The purpose of this is to make it possible to significantly reduce the amount of sludge and reduce the overall cost of sludge treatment. The present invention is based on the ratio (B/
A) is determined in advance, and the value between the value obtained by measuring the flocculant addition rate A that begins to remain in the liquid from time to time and multiplying it by the value of the ratio and the addition rate A measured at any time is determined during dehydrator operation. This is a method for controlling the addition rate of a polymer flocculant, characterized in that the addition rate is set to a certain amount. The present invention was completed as a result of careful study of the relationship between the addition rate of the organic polymer flocculant and the amount remaining in the liquid, as well as the correlation between these and dehydration properties.
The relationship between the addition rate of the organic polymer flocculant and the amount remaining in the liquid is schematically shown as the solid line A in FIG. In other words, in the region where the addition rate of flocculant is low,
All of the added flocculant is adsorbed to the sludge particles and does not remain in the liquid, but when it exceeds a certain addition rate (addition rate A), it begins to remain in the liquid, and from then on most of the added flocculant disappears into the liquid. It will remain inside.
On the other hand, the relationship between the moisture content of the dehydrated cake obtained as a result of dewatering tempered sludge to which a flocculant has been added, the amount that can be treated (processing amount), and the flocculant addition rate is as shown by the solid lines A and C in Figure 1. become. That is, dewatering cannot be performed in a region where the addition rate of flocculant is extremely low, and when the addition rate exceeds a certain addition rate (addition rate B), dehydration becomes possible, and the best condition is reached around the addition rate A, and gradually deteriorates thereafter. Based on this relationship, in order to maintain the best dewatering performance, it is sufficient to operate the dehydrator at around the addition rate A. Specifically, the amount of flocculant remaining in the liquid is measured by an appropriate means and the amount of flocculant remaining in the liquid is measured and adjusted to a specified value. The amount of flocculant added or the flow rate of sludge may be controlled so that the value falls within the value of . However, in some cases, when the flocculant addition rate is less than A, that is, even when no flocculant remains in the liquid, if the flocculant is added, if the addition rate is around A, the dehydration property may not deteriorate significantly. However, it is possible to reduce the flocculant addition rate to B if it is okay to sacrifice dehydration properties a little. In other words, considering the balance between the advantage of being able to save on flocculant and the disadvantage of deterioration of dewatering performance, the most energy can be saved by setting the flocculant addition rate between A and B for dewatering. This is the idea and purpose of the present invention. However, in actual sludge treatment, the sludge concentration and quality fluctuate drastically, and it is troublesome to constantly adjust the dehydrator to the desired flocculant addition rate. Although it may be possible to save the most energy by operating the coagulant addition rate at B or between B and A, it is not easy to maintain this state at all times because it requires manpower to monitor and adjust the flow rate. However, from numerous experimental studies, it has been found that even if the values of A and B in the addition rate vary due to qualitative variations and concentration variations in sludge, the ratio of A and B does not change. This can be done by determining the ratio (B/A) of the dehydration method and condensing agent used in advance.
This means that the minimum addition rate B at which the dehydrator can be operated can be determined by simply measuring the flocculant addition rate A. If the above addition rate B can be automatically determined, the set value of the flocculant addition rate used during operation of the dehydrator can also be set to the above B or any value between B and A. Furthermore, the above addition rate A is determined by a method based on viscosity measurement of a separated liquid (viscosity method),
It can be easily determined using analytical methods such as total organic carbon measurement (TOC method), nitrogen concentration measurement method, and colloid titration method, and automation is also possible. In addition, the measurement of sludge concentration and flow rate, which was necessary in the past, is no longer necessary, which saves manpower. According to the experience of the present inventors, the addition rate ratio (B/A) is 0.7 to 0.8 for a centrifugal separator, 0.5 to 0.8 for a belt press, 0.7 to 0.8 for a screw press, and The value is smaller. Also, the difference between the dewatering performance at addition rate B and that at addition rate A seems to be smaller for models with cloth than for models without it, but this difference also differs depending on the sludge, so in reality It is best to use a sludge and dewatering machine to find the optimal setting value for the addition amount. As described above, according to the present invention, the present invention provides a method for controlling the flocculant addition rate that can sufficiently cope with fluctuations in sludge concentration and quality encountered in actual sludge treatment, and can reduce chemical costs and reduce labor costs. This brings about great practical effects such as cost reduction. Some examples will be described below. Example 1 Mixed raw sludge from a certain sewage treatment plant was dehydrated using a belt press type dehydrator using a cationic organic polymer flocculant. As a method of controlling the flocculant addition rate, the present invention and the sludge concentration and optimum addition rate are investigated before the start of operation.
We compared a conventional method in which the sludge flow rate and flocculant solution flow rate are set and then the flow rate is fixed for operation. Table 1 shows the results.
Shown below. In the method of the present invention, the amount of colloid charge was automatically measured at any time, and the addition rates A and B and the predetermined amount of colloid charge were measured.

【表】 本汚泥は、前記添加率Aは1.0%toDS、添加率
Bは0.7%toDSであつた。本発明によれば、添加
率0.7〜0.9%の間で極めて安定した運転状態とな
り、含水率を72〜74%の間であつた。一方、従来
法では、汚泥濃度の変動のため添加率の設定値が
0.7〜1.0%では運転が極めて不安定となり一部脱
水不能な状態が出現し、ケーキ含水率も高くなつ
た。そこで、やむを得ず設定添加率を1.4%にま
したところ、処理は安定するものの結果として
1.6%の添加率となり凝集剤過多による含水率上
昇現象が認められた。 実施例 2 某砂利砕石場で発生する砂利洗浄廃水汚泥は、
非イオン系有機高分子凝集剤の用いて遠心分離機
により脱水処理されている。砂利製造プラントの
稼働状態によつて、発生する汚泥量が変動し、濃
度も変動するため従来は脱水状態を観察しながら
凝集剤添加量を調節する必要があつた。凝集剤添
加量の制御方法として、本発明法及び従来法の3
者を比較した。本発明法では、前記凝集剤添加率
Aを残留濃度をろ液粘度により推定する自動測定
装置により液基準の添加量として求め所定の値を
乗じて添加液量を求めて凝集剤添加量を自動制御
した。
[Table] In this sludge, the addition rate A was 1.0%toDS, and the addition rate B was 0.7%toDS. According to the present invention, an extremely stable operating state was achieved when the addition rate was between 0.7% and 0.9%, and the water content was between 72% and 74%. On the other hand, in the conventional method, the set value of the addition rate cannot be adjusted due to fluctuations in sludge concentration.
When the content was between 0.7 and 1.0%, the operation became extremely unstable, and a state in which dewatering was partially impossible appeared, and the moisture content of the cake also increased. Therefore, we had no choice but to set the addition rate to 1.4%, and although the treatment became stable, the result was
The addition rate was 1.6%, and an increase in water content due to excessive flocculant was observed. Example 2 Gravel washing wastewater sludge generated at a certain gravel crushing plant is
It is dehydrated using a centrifuge using a nonionic organic polymer flocculant. The amount of sludge generated varies depending on the operating conditions of the gravel manufacturing plant, and the concentration also fluctuates, so conventionally it was necessary to adjust the amount of coagulant added while monitoring the dewatering state. As methods for controlling the amount of flocculant added, the method of the present invention and the conventional method 3
compared people. In the method of the present invention, the flocculant addition rate A is determined as the addition amount based on the liquid using an automatic measuring device that estimates the residual concentration from the viscosity of the filtrate, and is multiplied by a predetermined value to determine the amount of added liquid, and the amount of flocculant added is automatically determined. controlled.

【表】【table】

【表】 本汚泥の前記添加率Aは0.08%toDSであり添
加率Bは0.06%toDSであつた。従つて添加率比
は0.06/0.08=0.75である。本発明によれば添加
率0.06〜0.08%で極めて安定した脱水状態となり
含水率は53〜51%であつた。従来法では、添加率
のかなり多めの領域でのみ安定した処理状態とな
りケーキ含水率は若干増大したが、本発明によれ
ば、低コストで脱水処理できるメリツトが生じて
いる。
[Table] The addition rate A of this sludge was 0.08%toDS, and the addition rate B was 0.06%toDS. Therefore, the addition rate ratio is 0.06/0.08=0.75. According to the present invention, an extremely stable dehydration state was achieved at an addition rate of 0.06 to 0.08%, and the water content was 53 to 51%. In the conventional method, a stable treatment state was achieved only at a considerably high addition rate, and the moisture content of the cake increased slightly, but the present invention has the advantage of being able to perform dehydration treatment at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は有機高分子凝集剤の添加率と液中への
残留量との相関性を示すものである。
FIG. 1 shows the correlation between the addition rate of the organic polymer flocculant and the amount remaining in the liquid.

Claims (1)

【特許請求の範囲】 1 汚泥に有機高分子凝集剤を添加混合して脱水
する方法において、凝集剤添加後の液中への該凝
集剤残留量が0である凝集剤添加率の最大値(添
加率A)と、脱水可能な最小添加率(添加率B)
との比(B/A)をあらかじめ求めておき、次い
で添加率Aを随時測定して添加率Bを求め、該添
加率Bと前記随時測定した添加率A間の値にて脱
水操作を行うことを特徴とする有機高分子凝集剤
の添加率制御方法。 2 上記凝集剤がイオン性を持つものであり、凝
集剤残留量をコロイド荷電量として測定し、該凝
集剤添加率Aを求めることを特徴とする特許請求
の範囲1記載の有機高分子凝集剤の添加率制御方
法。
[Claims] 1. In a method of dewatering sludge by adding and mixing an organic polymer flocculant to the sludge, the maximum value of the flocculant addition rate ( Addition rate A) and minimum addition rate that allows dehydration (addition rate B)
The ratio (B/A) is determined in advance, and then the addition rate A is measured at any time to determine the addition rate B, and the dehydration operation is performed at a value between the addition rate B and the addition rate A measured at any time. A method for controlling the addition rate of an organic polymer flocculant, characterized by: 2. The organic polymer flocculant according to claim 1, wherein the flocculant has ionic properties, and the flocculant addition rate A is determined by measuring the residual flocculant amount as a colloidal charge amount. Addition rate control method.
JP58056940A 1983-04-01 1983-04-01 Method for controlling addition ratio of organic high- molecular flocculant Granted JPS59183900A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58056940A JPS59183900A (en) 1983-04-01 1983-04-01 Method for controlling addition ratio of organic high- molecular flocculant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58056940A JPS59183900A (en) 1983-04-01 1983-04-01 Method for controlling addition ratio of organic high- molecular flocculant

Publications (2)

Publication Number Publication Date
JPS59183900A JPS59183900A (en) 1984-10-19
JPH0334398B2 true JPH0334398B2 (en) 1991-05-22

Family

ID=13041530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58056940A Granted JPS59183900A (en) 1983-04-01 1983-04-01 Method for controlling addition ratio of organic high- molecular flocculant

Country Status (1)

Country Link
JP (1) JPS59183900A (en)

Also Published As

Publication number Publication date
JPS59183900A (en) 1984-10-19

Similar Documents

Publication Publication Date Title
JPS6363310B2 (en)
JP2009220085A (en) Method for controlling water content to constant in screw press and device for controlling water content to constant
JP5041299B2 (en) Operation control method of screw press connected to rotary concentrator
JP2007275790A (en) Sludge dewatering apparatus and sludge dewatering method
JPH0334398B2 (en)
JP2010247044A5 (en)
JP3006871B2 (en) Sludge dewatering operation control device for screw decanter centrifuge
JPH11254000A (en) Method and apparatus for concentrating dehydration
JPH0334397B2 (en)
JPH0417719B2 (en)
JPH09290273A (en) Method for adjusting amount of flocculant to be added and device therefor
JPS6241791B2 (en)
JP2021107044A (en) Sludge coagulation and dewatering apparatus and control method thereof
JP5835088B2 (en) Sludge dewatering system
JPS6022999A (en) Process for controlling amount of organic high molecular flocculant to be added
JPH0122840B2 (en)
JP3057983B2 (en) Control device for belt press dehydrator
JPH11347599A (en) Flocculant injection amount determining apparatus
RU2726052C1 (en) Automated system for cleaning multicomponent industrial effluent
JPH0334399B2 (en)
JPH08294603A (en) Coagulation treating apparatus
JPS6023000A (en) Process for controlling amount of organic high molecular flocculant to be added
JPS60197300A (en) Method and apparatus for dehydrating sludge
JPS61268399A (en) Method for conditioning organic sludge
JPH0334400B2 (en)