JPH0334373A - Mos type transistor - Google Patents

Mos type transistor

Info

Publication number
JPH0334373A
JPH0334373A JP16946289A JP16946289A JPH0334373A JP H0334373 A JPH0334373 A JP H0334373A JP 16946289 A JP16946289 A JP 16946289A JP 16946289 A JP16946289 A JP 16946289A JP H0334373 A JPH0334373 A JP H0334373A
Authority
JP
Japan
Prior art keywords
recess
region
oxide film
transistor
channel width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16946289A
Other languages
Japanese (ja)
Inventor
Yoshihisa Matsubara
義久 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP16946289A priority Critical patent/JPH0334373A/en
Publication of JPH0334373A publication Critical patent/JPH0334373A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a transistor which can be made large in effective channel width per plane area and is large in current gain by a method wherein a recess is provided to the surface of a semiconductor substrate sandwiched between a source region and a drain region. CONSTITUTION:A recess 105 is formed on the surface of a region surrounded by an element isolating region 102 (field oxide film) formed on the primary face of a single crystal silicon substrate 101, where the recess 105 ranges from a source region 103 through a drain region 104. A gate oxide film 106 is formed on the surface of the recess 105, and a polycrystalline silicon gate electrode 107 is built thereon. As a gate electrode is provided traversing the surface of a recess, an effective channel width can be increased and consequently a transistor of this design can be improved in current gain.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMOS型トランジスタに関し、特に高集積度、
高速動作に適したMOS型トランジスタに関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to MOS transistors, particularly those with high integration,
This invention relates to a MOS transistor suitable for high-speed operation.

〔従来の技術〕[Conventional technology]

従来のMOS型トランジスタを第4図に示す。 A conventional MOS transistor is shown in FIG.

従来のMOS型トランジスタは、シリコン基板401の
一主面に形成された素子分離領域402によって囲まれ
た領域に形成されており、ソース領域403とドレイン
領域404にはさまれた平坦な部分にゲート酸化膜40
5及び多結晶シリコンゲート電極406が積層された構
造を有している。
A conventional MOS transistor is formed in a region surrounded by an element isolation region 402 formed on one main surface of a silicon substrate 401, and a gate is formed in a flat part sandwiched between a source region 403 and a drain region 404. Oxide film 40
5 and a polycrystalline silicon gate electrode 406 are stacked.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のMOS型トランジスタは平坦な半導体基
板表面に形成されているため、電流利得の大きいトラン
ジスタを得ようとすれば、チャネル幅Wを大きくしなけ
ればならない。一方、集積回路の集積度を増加させるた
めには、チャネル幅Wの寸法も減少しなければならず、
従来の構造ではトランジスタの性能を向上しにくくなる
という欠点がある。
Since the above-described conventional MOS transistor is formed on a flat semiconductor substrate surface, the channel width W must be increased in order to obtain a transistor with a large current gain. On the other hand, in order to increase the degree of integration of integrated circuits, the dimension of the channel width W must also decrease,
The conventional structure has the disadvantage that it is difficult to improve the performance of the transistor.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のMOS型トランジスタは、ソース領域とドレイ
ン領域とで挟まれた半導体基板表面部に凹部を1つ以上
有している。
The MOS transistor of the present invention has one or more recesses in the surface portion of the semiconductor substrate sandwiched between the source region and the drain region.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)は本発明の一実施例を示すレイアウト図、
第1図(b)は第1図(a)のA−A線相当部で切断し
た半導体チップの縦断面図である。
FIG. 1(a) is a layout diagram showing an embodiment of the present invention;
FIG. 1(b) is a longitudinal sectional view of the semiconductor chip taken along the line A--A in FIG. 1(a).

単結晶シリコン基板101の一生面に形成された素子分
離領域102(フィールド酸化膜)によって囲まれた領
域の表面にソース領域103からドレイン領域104に
及ぶ凹部105が形成されている。この四部105の表
面にゲート酸化膜106が形成されており、その上に多
結晶シリコンゲート電極107が形成されている。
A recess 105 extending from a source region 103 to a drain region 104 is formed on the surface of a region surrounded by an element isolation region 102 (field oxide film) formed on the entire surface of a single crystal silicon substrate 101 . A gate oxide film 106 is formed on the surface of this four part 105, and a polycrystalline silicon gate electrode 107 is formed thereon.

本発明の一実施例の製造方法を第2図を参照して説明す
る。単結晶シリコン基板201の表面に500A程度の
熱酸化膜202を形成した後、広く用いられている選択
酸化法によって素子分離領域203を形成する(第2図
(a))。次に厚さ0.1μm程度の窒化シリコンM2
O4を成長する〈第2図(b))、次に、通常のフォト
リソグラフィー技術を用いてパターニングをした後、反
応性イオンエツチング技術を用いて窒化シリコン120
4を除去し、開口部505を形成する(第2図(C)〉
。次に開口部205に厚さ160μm程度の熱酸化膜2
06を形成する(第2図(d〉〉。希釈したHF液を用
いて熱酸化膜206を完全に除去した後(第2図(e)
)、リン酸を用いて窒化シリコン膜204を除去し、さ
らに酸化膜202を除去する(第2図(f〉)。
A manufacturing method according to an embodiment of the present invention will be explained with reference to FIG. After forming a thermal oxide film 202 of about 500 A on the surface of a single crystal silicon substrate 201, an element isolation region 203 is formed by a widely used selective oxidation method (FIG. 2(a)). Next, silicon nitride M2 with a thickness of about 0.1 μm
After growing O4 (Fig. 2(b)) and patterning using normal photolithography, silicon nitride 120 is grown using reactive ion etching.
4 is removed to form an opening 505 (FIG. 2(C))
. Next, a thermal oxide film 2 with a thickness of about 160 μm is formed in the opening 205.
06 (Fig. 2 (d)). After completely removing the thermal oxide film 206 using diluted HF solution (Fig. 2 (e)
), the silicon nitride film 204 is removed using phosphoric acid, and the oxide film 202 is further removed (FIG. 2(f)).

厚さ20OA程度のゲート酸化膜207を形成しく第2
図(g)) 、引き続き気相成長法を用いて0.5μm
程度の多結晶シリコンゲート208を堆積した後、通常
のトランジスタ製造工程を経てMOS型トランジスタを
形成する(第2図(g))。
A second gate oxide film 207 with a thickness of about 20 OA is formed.
(Fig. (g)), 0.5 μm using the vapor phase growth method.
After depositing a polycrystalline silicon gate 208 of about 100 mL, a MOS type transistor is formed through a normal transistor manufacturing process (FIG. 2(g)).

第3図(a)〜(d)は一実施例の他の製造方法を説明
する為の縦断面図である。
FIGS. 3(a) to 3(d) are longitudinal cross-sectional views for explaining another manufacturing method of one embodiment.

本例では、トランジスタ部の凹部を形成するための熱酸
化と素子分離領域304を形成するための熱酸化を、選
択酸化法を用いて同時に行ない、厚さ1μm程度の熱酸
化膜を形成する〈第3図〈a〉〉。
In this example, thermal oxidation for forming the concave portion of the transistor portion and thermal oxidation for forming the element isolation region 304 are simultaneously performed using a selective oxidation method to form a thermal oxide film with a thickness of about 1 μm. Figure 3 <a>>.

次に、厚さ0,1μm程度の窒化シリコン膜305を成
長した後(第3図(b))、素子分離類1304に用い
る熱酸化膜上の窒化シリコン膜305は残すようにバタ
ーニングをして、トラジスタ領域表面の窒化シリコン膜
のみ除去する(第3図(C〉)。次に、希釈したHF液
を用いて熱酸化膜302及び303を除去した後、リン
酸を用いて窒化シリコン膜305を除去する(第3図(
d))。
Next, after growing a silicon nitride film 305 with a thickness of about 0.1 μm (FIG. 3(b)), buttering is performed to leave the silicon nitride film 305 on the thermal oxide film used for element isolation 1304. Then, only the silicon nitride film on the surface of the transistor region is removed (Fig. 3 (C)).Next, after removing the thermal oxide films 302 and 303 using diluted HF solution, the silicon nitride film is removed using phosphoric acid. 305 (Figure 3 (
d)).

以上の工程以降は前述の例の製造工程と同様である。こ
の製造方法では選択酸化工程が1回であるため、工期を
短縮できるという利点がある。
The steps after the above steps are the same as the manufacturing steps of the previous example. Since this manufacturing method requires only one selective oxidation step, it has the advantage of shortening the construction period.

凹部の表面を横断してゲート電極が設けられているので
実効的チャネル幅が増加するため電流利得を改善できる
0例えば、深さ0.5μmの凹部を2)!F所形成した
場合の実効的チャネル幅は凹部を形成しない場合に比べ
て約20%増加する結果2電流利得も約20%増加する
Since the gate electrode is provided across the surface of the recess, the effective channel width increases and the current gain can be improved.0 For example, when using a recess with a depth of 0.5 μm 2)! When the groove is formed, the effective channel width increases by about 20% compared to the case where the groove is not formed, and as a result, the 2 current gain also increases by about 20%.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ソース領域とドレイン領
域で挟まれた半導体基板表面部に四部を設けることによ
り、平面積当りの実効的チャネル幅を大きくできるので
、電流利得の高いトランジスタを実現できる効果がある
As explained above, the present invention can increase the effective channel width per plane area by providing four parts on the surface of the semiconductor substrate sandwiched between the source region and the drain region, thereby realizing a transistor with high current gain. effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の一実施例を示すレイアウト図、
第1図(b)は第1図(a)のA−A線相当部で切断し
た半導体チップの縦断面図、第2図<a)〜(h)は一
実施例の製造方法を説明するための縦断面図、第3図<
a)〜(d)は一実施例の他の製造方法を説明するため
の縦断面図、第4図(a)は従来のMOS型トランジス
タを示すレイアウト図、第4図(b)は第4図(a>の
A−A線相当部で切断した半導体チップの縦断面図であ
る。 101.201.36’l、401・・・シリコン基板
、103,403・・・ソース領域、104゜404・
−・ドレイン領域、202,206.−303・・・熱
酸化膜、102.20’3,304,402・・・素子
分離領域、106,207,405・・・ゲート酸化膜
、107,208,406・・・多結晶シリコンゲート
、204,305・・・窒化シリコン膜、205・・・
開口部、105・・・凹部。
FIG. 1(a) is a layout diagram showing an embodiment of the present invention;
FIG. 1(b) is a longitudinal cross-sectional view of the semiconductor chip cut along the line A-A in FIG. 1(a), and FIGS. 2(a) to (h) illustrate the manufacturing method of one embodiment. Longitudinal cross-sectional view for Figure 3
a) to (d) are longitudinal sectional views for explaining another manufacturing method of one embodiment, FIG. 4(a) is a layout diagram showing a conventional MOS transistor, and FIG. 4(b) is a fourth It is a vertical cross-sectional view of the semiconductor chip cut along the line A-A in Figure (a).・
- Drain region, 202, 206. -303...Thermal oxide film, 102.20'3,304,402...Element isolation region, 106,207,405...Gate oxide film, 107,208,406...Polycrystalline silicon gate, 204, 305...Silicon nitride film, 205...
Opening, 105... recess.

Claims (1)

【特許請求の範囲】[Claims] ソース領域とドレイン領域とで挟まれた半導体基板表面
部に凹部を一つ以上有する事を特徴とするMOS型トラ
ンジスタ。
A MOS transistor characterized by having one or more recesses in the surface of a semiconductor substrate sandwiched between a source region and a drain region.
JP16946289A 1989-06-29 1989-06-29 Mos type transistor Pending JPH0334373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16946289A JPH0334373A (en) 1989-06-29 1989-06-29 Mos type transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16946289A JPH0334373A (en) 1989-06-29 1989-06-29 Mos type transistor

Publications (1)

Publication Number Publication Date
JPH0334373A true JPH0334373A (en) 1991-02-14

Family

ID=15887023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16946289A Pending JPH0334373A (en) 1989-06-29 1989-06-29 Mos type transistor

Country Status (1)

Country Link
JP (1) JPH0334373A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488378B1 (en) 1999-05-28 2002-12-03 Matsushita Electric Industrial Co., Ltd. Imaging apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488378B1 (en) 1999-05-28 2002-12-03 Matsushita Electric Industrial Co., Ltd. Imaging apparatus

Similar Documents

Publication Publication Date Title
JP2804539B2 (en) Semiconductor device and manufacturing method thereof
JPS6015155B2 (en) Manufacturing method of semiconductor device
JPH0334373A (en) Mos type transistor
JPH06163677A (en) Manufacture of semiconductor device
JPH02130852A (en) Semiconductor device
JPS60164356A (en) Semiconductor device
JPS5933271B2 (en) Manufacturing method of semiconductor device
JPH01241868A (en) Semiconductor device
JPS61154177A (en) Manufacture of semiconductor device
JPH01147864A (en) Semiconductor device
JPH07153944A (en) Manufacture of mos transistor
JPH05190854A (en) Manufacture of semiconductor device
JPS62206873A (en) Manufacture of semiconductor device
JPH0221662A (en) Insulating gate field effect transistor
JPH0529624A (en) Thin film transistor and manufacture thereof
JPH0330307B2 (en)
JPS60207367A (en) Manufacture of complementary type semiconductor device
JPS63318165A (en) Heterojunction semiconductor device
JPS63224363A (en) Manufacture of semiconductor integrated circuit
JPS6021573A (en) Manufacture of junction gate type fet
JPS61219166A (en) Manufacture of semiconductor memory device
JPS60193358A (en) Manufacture of semiconductor device
JPH01239952A (en) Manufacture of semiconductor device
JPS61112375A (en) Manufacture of semiconductor device
JPS61188944A (en) Manufacture of semiconductor device