JPH0334237B2 - - Google Patents

Info

Publication number
JPH0334237B2
JPH0334237B2 JP61054950A JP5495086A JPH0334237B2 JP H0334237 B2 JPH0334237 B2 JP H0334237B2 JP 61054950 A JP61054950 A JP 61054950A JP 5495086 A JP5495086 A JP 5495086A JP H0334237 B2 JPH0334237 B2 JP H0334237B2
Authority
JP
Japan
Prior art keywords
layer
superconductor electrode
mask
superconductor
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61054950A
Other languages
Japanese (ja)
Other versions
JPS62213287A (en
Inventor
Hisanao Tsuge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61054950A priority Critical patent/JPS62213287A/en
Publication of JPS62213287A publication Critical patent/JPS62213287A/en
Publication of JPH0334237B2 publication Critical patent/JPH0334237B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はトンネル型ジヨセフソン素子の製造方
法に関し、さらに詳しくは集積回路に適した微小
なジヨセフソン素子の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a tunnel-type Josephson device, and more particularly to a method for manufacturing a minute Josephson device suitable for integrated circuits.

(従来の技術) 代表的な従来例として、エイツチ・クローガー
(H.Kroger)らによつて1981年8月にアプライ
ド・フイジツクス・レターズ
(AppliedPhysicsLetters)の第39巻第3号280〜
282頁で発表された論文で提案されている方法が
ある。この方法を第2図a〜cの断面図を用いて
工程順に説明する。第2図aに示すように、基板
21上にニオブ(Nb)でなる第1の超伝導体電
極22に、トンネル障壁層23、Nbでなる第2
の超伝導体電極24の3層膜を連続形成する。第
1の超伝導体電極22および第2の超伝導体電極
24は直流マグネトロンスパツタ法で被着する。
トンネル障壁層23はシリコン−水素(Si−H)
合金を被着し、熱酸化して形成する。上記3層膜
22,23,24をパターニングして下部配線を
形成した後、第2図bに示すように第2の超伝導
体電極24上の接合部となる場所にホトレジスト
でエツチングマスク25を形成し、引続き第1お
よび第2の超伝導体電極22,24をアノードと
して第2の超伝導体電極24の露出部分をトンネ
ル障壁層まで陽極酸化し絶縁体層26を形成す
る。エツチングマスク25を除去した後、第2の
超伝導体電極24の露出表面をスパツタクリーニ
ングし、第1および第2の超伝導体電極22,2
4の場合と同様な成膜法で第3の超伝導体電極2
7を被着し、引続き加工すると第2図cに示すよ
うなジヨセフソン素子が得られる。
(Prior Art) As a typical conventional example, H. Kroger et al. published Applied Physics Letters Vol. 39, No. 3, 280-280 in August 1981.
There is a method proposed in a paper published on page 282. This method will be explained step by step using cross-sectional views of FIGS. 2a to 2c. As shown in FIG. 2a, a first superconductor electrode 22 made of niobium (Nb) is formed on a substrate 21, a tunnel barrier layer 23 is formed, and a second superconductor electrode 22 made of Nb is disposed on a substrate 21.
A three-layer film of the superconductor electrode 24 is successively formed. The first superconductor electrode 22 and the second superconductor electrode 24 are deposited by direct current magnetron sputtering.
The tunnel barrier layer 23 is silicon-hydrogen (Si-H)
Formed by depositing an alloy and thermally oxidizing it. After patterning the three-layer films 22, 23, and 24 to form the lower wiring, as shown in FIG. Then, using the first and second superconductor electrodes 22 and 24 as anodes, the exposed portion of the second superconductor electrode 24 is anodized to the tunnel barrier layer to form an insulator layer 26. After removing the etching mask 25, the exposed surface of the second superconductor electrode 24 is sputter cleaned, and the first and second superconductor electrodes 22, 2
The third superconductor electrode 2 was formed using the same film-forming method as in case 4.
7 and further processing yields a Josephson element as shown in FIG. 2c.

(発明が解決しようとする問題点) この方法では、第2図bに示した陽極酸化の工
程で、酸化は時間とともに等方的に進行するため
エツチングマスク25下部の第2の超伝導体電極
24まで一部酸化される。しかもエツチングマス
ク25下部への酸化層の侵入幅をサブミクロンオ
ーダーで制御するのは容易ではない。従つて、1
〜2μm程度の微小接合寸法のジヨセフソン素子
を数多く配した集積回路を作製する場合には、目
標とするジヨセフソン素子の臨界電流値が得られ
ないという問題や、この値のウエーハ内での均一
性が不充分であるという問題を生じる。
(Problems to be Solved by the Invention) In this method, in the anodic oxidation step shown in FIG. Partially oxidized up to 24. Furthermore, it is not easy to control the width of penetration of the oxide layer into the lower part of the etching mask 25 on the order of submicrons. Therefore, 1
When fabricating an integrated circuit with a large number of Josephson devices with micro junction dimensions of ~2 μm, there are problems such as not being able to obtain the target critical current value of the Josephson devices, and the uniformity of this value within the wafer. This gives rise to the problem of insufficiency.

本発明の目的は、このような従来の欠点を取り
除いたジヨセフソン素子の製造方法を提供するこ
とにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a Josephson device that eliminates such conventional drawbacks.

(問題点を解決するための手段) 本発明によれば、基板上に第1の超伝導体電
極、トンネル障壁層、第2の超伝導体電極、陽極
酸化のマスクとなる範囲で充分薄いマスク補助層
を連続形成する工程、前記マスク補助層上の接合
部となる箇所にエツチングマスクを形成し、前記
マスク補助層と第2の超伝導体電極と前記トンネ
ル障壁層をドライエツチング除去する工程、前記
エツチングマスクを除去した後第1絶縁体層を被
着する工程、前記第1の絶縁体層をドライエツチ
ングして接合部の側壁を選択的に前記第1の絶縁
体層で被覆する工程、前記第1の超伝導体電極の
露出表面を陽極酸化して第2の絶縁体層を形成す
る工程、前記マスク補助層を除去した後、前記第
2の超伝導体電極と電気的に接触するように第3
の超伝導体電極を形成する工程を含むことを特徴
とするジヨセフソン素子の製造方法が得られる。
(Means for Solving the Problems) According to the present invention, a first superconductor electrode, a tunnel barrier layer, a second superconductor electrode, and a sufficiently thin mask to serve as a mask for anodic oxidation are provided on a substrate. a step of continuously forming an auxiliary layer; a step of forming an etching mask at a location on the mask auxiliary layer that will become a junction, and removing the mask auxiliary layer, the second superconductor electrode, and the tunnel barrier layer by dry etching; depositing a first insulating layer after removing the etching mask; dry etching the first insulating layer to selectively cover sidewalls of the joint with the first insulating layer; anodizing the exposed surface of the first superconductor electrode to form a second insulator layer, making electrical contact with the second superconductor electrode after removing the mask auxiliary layer; Like the third
A method for manufacturing a Josephson device is obtained, which includes the step of forming a superconductor electrode.

(作用) 本発明では、まずマスク補助層、第2の超伝導
体電極、トンネル障壁層を順次ドライエツチング
して接合部の寸法を規定し、次に接合部の側壁を
第1の絶縁体層で被覆保護した後、露出した第1
の超伝導体電極を陽極酸化して第1の超伝導体電
極と第3の超伝導体電極との間の電気絶縁のため
の第2の絶縁体層を形成する。そのため、陽極酸
化の際、従来例のように酸化が接合部まで及ぶと
いう問題がない。その結果、ドライエツチング技
術で規定される高寸法精度の微小接合を備え、こ
の接合寸法の場所的なばらつきの小さいジヨセフ
ソン素子の製造が可能となる。
(Function) In the present invention, the mask auxiliary layer, the second superconductor electrode, and the tunnel barrier layer are first dry-etched in order to define the dimensions of the junction, and then the sidewalls of the junction are etched with the first insulator layer. After covering and protecting the exposed first
anodizing the superconductor electrode to form a second insulator layer for electrical isolation between the first superconductor electrode and the third superconductor electrode. Therefore, during anodic oxidation, there is no problem that the oxidation extends to the joints as in the conventional example. As a result, it becomes possible to manufacture a Josephson element that has micro-junctions with high dimensional accuracy defined by dry etching technology and has small local variations in the dimensions of these junctions.

しかも、本発明によれば、陽極酸化の際に第2
の超伝導体電極表面の酸化を防止するマスク補助
層はエツチング耐性を必要とするエツチングマス
クとは独立に材料や膜厚を選択できる。従つて、
マスク補助層の膜厚を陽極酸化のマスクとなる範
囲で充分薄くすれば、接合部側壁を第1の絶縁体
層で被覆する際に、マスク補助層への被覆はほと
んどなく、マスク補助層を除去した後も接合部周
辺に突起のない平坦な上部配線が形成できる。
Moreover, according to the present invention, the second
The material and film thickness of the mask auxiliary layer that prevents oxidation of the superconductor electrode surface can be selected independently of the etching mask that requires etching resistance. Therefore,
If the thickness of the mask auxiliary layer is made thin enough to serve as a mask for anodic oxidation, when the sidewall of the joint part is covered with the first insulator layer, there will be almost no coating on the mask auxiliary layer, and the mask auxiliary layer will not be covered. Even after removal, a flat upper wiring without protrusions can be formed around the joint.

(実施例) 次に本発明を第1図a〜fの断面図に示す実施
例を参照して詳細に説明する。
(Example) Next, the present invention will be described in detail with reference to an example shown in cross-sectional views of FIGS. 1a to 1f.

まず、第1図aに示すように基板11上に第1
の超伝導体電極12、トンネル障壁層13、第2
の超伝導体電極14、マスク補助層15を順次形
成する。第1および第2の超伝導体電極12,1
4は、共にスパツタ法や電子ビーム蒸着法により
被着したそれぞれ膜厚300nm、150nmのNb膜で
ある。トンネル障壁層13は、スパツタ法や蒸着
法により被着した膜厚約5nmのアルミニウム
(Al)膜を純酸素(O2)雰囲気中で熱酸化して形
成する。マスク補助層15は、スパツタ法やプラ
ズマCVD法により被着した膜厚50nmの窒化シリ
コン(Si3N4)膜である。
First, as shown in FIG.
superconductor electrode 12, tunnel barrier layer 13, second
A superconductor electrode 14 and a mask auxiliary layer 15 are sequentially formed. First and second superconductor electrodes 12,1
4 are Nb films with a thickness of 300 nm and 150 nm, respectively, deposited by sputtering method or electron beam evaporation method. The tunnel barrier layer 13 is formed by thermally oxidizing an aluminum (Al) film with a thickness of about 5 nm deposited by sputtering or vapor deposition in a pure oxygen (O 2 ) atmosphere. The mask auxiliary layer 15 is a silicon nitride (Si 3 N 4 ) film with a thickness of 50 nm deposited by sputtering or plasma CVD.

上記多層膜のパターニングは通常のフオトリソ
グラフイ工程を用いて、まず、マスク補助層15
をフロン23(CHF3)などのエツチングガスで、
反対性スパツタエツチングした後、次に第2の超
伝導体電極14、トンネル障壁層13、第1の超
伝導体電極12をフロン12(CCl2F2)やフロン13
(CF4)で反応性スパツタエツチングする。
The multilayer film is patterned using a normal photolithography process. First, the mask auxiliary layer 15 is
with an etching gas such as Freon 23 (CHF 3 ).
After anti-sputter etching, the second superconductor electrode 14, tunnel barrier layer 13, and first superconductor electrode 12 are coated with fluorocarbon 12 (CCl 2 F 2 ) or fluorocarbon 13.
(CF 4 ) reactive sputter etching.

次に、第1図bに示すようにマスク補助層15
上の接合部となる場所にエツチングマスク16を
形成した後、上記多層膜のエツチングと同様にマ
スク補助層15、第2の超伝導体電極14、トン
ネル障壁層13を順次除去して接合部を規定す
る。次に、第1図cに示すように、エツチングマ
スク16を除去した後、プラズマCVD法やスパ
ツタ法により試料全面に二酸化シリコン(SiO2
を150nm被着し、第1の絶縁体層16を形成す
る。
Next, as shown in FIG. 1b, the mask auxiliary layer 15
After forming an etching mask 16 at a location that will become the upper junction, the mask auxiliary layer 15, second superconductor electrode 14, and tunnel barrier layer 13 are sequentially removed to form the junction, similar to the etching of the multilayer film described above. stipulate. Next, as shown in FIG. 1c, after removing the etching mask 16, silicon dioxide (SiO 2 ) is deposited on the entire surface of the sample by plasma CVD or sputtering.
A thickness of 150 nm is deposited to form the first insulating layer 16.

次にCHF3などを用いた反応性スパツタエツチ
ング法やイオンビームエツチング法での第1の絶
縁体層17を平坦部の第1の超伝導体電極12表
面が現われるまでエツチングする。これらの異方
性エツチング法では、エツチングは主に基板面に
対して垂直方向に進行するため、この方向に第1
の絶縁体層16の初期膜厚の厚い接合部周辺では
エツチング残りを生じ、第1図dに示すように接
合部の側壁を第1の絶縁体層17で被覆した構造
が得られる。その後、5硼酸アンモニウムとエチ
レングリコールの水溶液中で第1の超伝導体電極
12をアノードとして第1超伝導体電極12の露
出表面を陽極酸化すると、第1図eに示すような
酸化ニオブ(Nb2O5)でなる第2の絶縁体層18
が形成される。Nb2O5の膜厚は陽極酸化電圧Vに
より約2nm/Vの関係で制御される。
Next, the first insulating layer 17 is etched by a reactive sputter etching method using CHF 3 or the like or an ion beam etching method until the flat surface of the first superconductor electrode 12 is exposed. In these anisotropic etching methods, etching mainly proceeds in the direction perpendicular to the substrate surface, so there is a first step in this direction.
Etching remains around the junction where the initial thickness of the insulator layer 16 is thick, resulting in a structure in which the side wall of the junction is covered with the first insulator layer 17, as shown in FIG. 1d. Thereafter, when the exposed surface of the first superconductor electrode 12 is anodized in an aqueous solution of ammonium pentaborate and ethylene glycol using the first superconductor electrode 12 as an anode, a niobium oxide (Nb 2 O 5 ) second insulator layer 18
is formed. The film thickness of Nb 2 O 5 is controlled by the anodic oxidation voltage V in a relationship of approximately 2 nm/V.

本実施例では、V=100(v)で200nmの
Nb2O5膜を成長させた。NbからNb2O5への体積
膨張は約2.6倍であるから、陽極酸化で消費され
た第1の超伝導体電極12の膜厚は約80nmであ
る。
In this example, V = 100 (v) and 200 nm
A Nb 2 O 5 film was grown. Since the volume expansion from Nb to Nb 2 O 5 is approximately 2.6 times, the thickness of the first superconductor electrode 12 consumed by anodic oxidation is approximately 80 nm.

ここでは、陽極酸化のアノードとして第1の超
伝導体電極12を用いたが、前もつて第1の超伝
導体電極12の下部に電気的接触を保つて設けた
導体層を用いてもよい。最後に、マスク補助層1
5をリン酸(H3PO4)溶液で選択的に除去した
後、第2の超伝導体電極14表面をスパツタクリ
ーニングし、第1図fに示すように第2の超伝導
体電極14のパターニングと同様な方法で400n
mのNb膜でなる第3の超伝導体電極19を形成
する。
Here, the first superconductor electrode 12 was used as the anode for anodic oxidation, but a conductor layer previously provided under the first superconductor electrode 12 while maintaining electrical contact may also be used. . Finally, mask auxiliary layer 1
5 is selectively removed with a phosphoric acid (H 3 PO 4 ) solution, the surface of the second superconductor electrode 14 is sputter cleaned, and the second superconductor electrode 14 is removed as shown in FIG. 400n in a similar way to patterning
A third superconductor electrode 19 made of a Nb film of m is formed.

本実施例では、第1図dの接合部側壁の被覆保
護の工程で、マスク補助層15が充分薄いために
この側壁に被着した第1の絶縁体層による突起の
問題はない。また、第1図eに示した陽極酸化の
工程で接合部の側壁が第1の絶縁体層17で被覆
保護されているため、陽極酸化層が接合部まで進
入することがない。そのため、第1の超伝導体電
極12と第2の超伝導体電極14との間の電気絶
縁層に第1の超伝導体電極12の陽極酸化膜を用
いても、接合寸法は異方性ドライエツチング法で
規定されるため高寸法精度で場所的なばらつきの
小さいジヨセフソン素子が形成できる。
In this embodiment, in the step of covering and protecting the side wall of the joint part shown in FIG. 1d, since the mask auxiliary layer 15 is sufficiently thin, there is no problem of protrusions caused by the first insulating layer deposited on this side wall. Further, since the side wall of the joint portion is covered and protected with the first insulating layer 17 in the anodization step shown in FIG. 1e, the anodic oxidation layer does not penetrate into the joint portion. Therefore, even if the anodic oxide film of the first superconductor electrode 12 is used as the electrical insulating layer between the first superconductor electrode 12 and the second superconductor electrode 14, the bonding dimension is anisotropic. Since it is defined by a dry etching method, Josephson elements with high dimensional accuracy and small local variations can be formed.

本実施例では、マスク補助層にSi3N4膜を用い
たが、陽極酸化時にマスク効果のある材料であれ
ば他の絶縁体や半導体膜を用いてもよい。第1、
第2、第3の超伝導体電極として共にNb膜を用
いたが、第1の超伝導体電極には陽極酸化が可能
な窒化ニオブ(NbN)などのNb化合物を、第
2、第3の超伝導体電極には各種の超伝導体材料
を用いることができる。トンネル障壁層にはAl
酸化膜以外に他の金属酸化膜、半導体膜、絶縁体
膜なども適用できる。第1の絶縁体層にはSiO2
膜以外に他の絶縁体膜を用いても何ら問題はな
い。
In this embodiment, a Si 3 N 4 film was used as the mask auxiliary layer, but other insulators or semiconductor films may be used as long as they have a masking effect during anodization. First,
Nb films were used for both the second and third superconductor electrodes, but an Nb compound such as niobium nitride (NbN), which can be anodized, was used for the first superconductor electrode, and an Nb film was used for the second and third superconductor electrodes. Various superconductor materials can be used for the superconductor electrode. Al for tunnel barrier layer
In addition to the oxide film, other metal oxide films, semiconductor films, insulator films, etc. can also be applied. The first insulator layer contains SiO 2
There is no problem even if other insulating films are used in addition to the film.

また、マスク補助層の除去は、この材料および
膜厚の選択により、第2の超伝導体電極のスパツ
タクリーニング時に同じ方法で連続して除去する
ことができる。特に、本実施例で用いたNbのよ
うな酸化性が強く、酸化膜の除去が容易でない材
料を第2の超伝導体電極とする場合に、第2の超
伝導体電極表面に酸化膜を形成しないで被着した
マスク補助層を用いると、第2、第3の超伝導体
電極間の電気接触が容易となる。
Furthermore, by selecting the material and film thickness, the mask auxiliary layer can be removed continuously in the same manner during sputter cleaning of the second superconductor electrode. In particular, when the second superconductor electrode is made of a material such as Nb used in this example, which has strong oxidizing properties and whose oxide film is difficult to remove, an oxide film is formed on the surface of the second superconductor electrode. The unformed deposited mask auxiliary layer facilitates electrical contact between the second and third superconductor electrodes.

(効果) 以上説明したように本発明によれは、第1の超
伝導体電極と第2の超伝導体電極との間の電気絶
縁層に第1の超伝導体電極を陽極酸化膜を用いて
も、接合寸法は異方性ドライエツチング法で規定
されるため高寸法精度で場所的なばらつきの小さ
いジヨセフソン素子が形成できる。しかも、接合
部側壁の被覆の際、第2の超伝導体電極表面は陽
極酸化のマスクとなる範囲で充分薄く、マスク補
助層でマスキングされるため、マスク補助層を除
去した後も接合部周辺に突起がなく平坦な上部配
線が形成できる。
(Effects) As explained above, according to the present invention, the first superconductor electrode is formed using an anodic oxide film as the electrical insulating layer between the first superconductor electrode and the second superconductor electrode. However, since the bonding dimensions are determined by an anisotropic dry etching method, a Josephson element with high dimensional accuracy and small local variations can be formed. Moreover, when covering the side walls of the junction, the surface of the second superconductor electrode is sufficiently thin to serve as a mask for anodic oxidation, and is masked by the mask auxiliary layer, so even after the mask auxiliary layer is removed, the area around the junction remains A flat upper wiring can be formed without any protrusions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜fは本発明のトンネル型ジヨセフソ
ン素子の製造方法を工程順に示す断面図、第2図
a〜cは従来のトンネル型ジヨセフソン素子の製
造方法を工程に示す断面図である。 図において、11,21は基板、12,22は
第1の超伝導体電極、13,23はトンネル障壁
層、14,24は第2の超伝導体電極、15はマ
スク補助層、16,25はエツチングマスク、1
7,26は第1の絶縁体層または絶縁体層、1
8、は第2の絶縁体層、19,27は第3の超伝
導体電極である。
1A to 1F are cross-sectional views showing the manufacturing method of a tunnel-type Josephson device according to the present invention in order of steps, and FIGS. 2A to 2C are cross-sectional views showing the steps of a conventional method of manufacturing a tunnel-type Josephson device. In the figure, 11, 21 are substrates, 12, 22 are first superconductor electrodes, 13, 23 are tunnel barrier layers, 14, 24 are second superconductor electrodes, 15 are mask auxiliary layers, 16, 25 is an etching mask, 1
7 and 26 are first insulator layers or insulator layers, 1
8 is a second insulator layer, and 19 and 27 are third superconductor electrodes.

Claims (1)

【特許請求の範囲】[Claims] 1 基板上に第1の超伝導体電極、トンネル障壁
層、第2の超伝導体電極、陽極酸化のマスクとな
る範囲で充分薄いマスク補助層を連続形成する工
程、前記マスク補助層上の接合部となる箇所にエ
ツチングマスクを形成し、前記マスク補助層と、
第2の超伝導体電極と前記トンネル障壁層をドラ
イエツチング除去する工程、前記エツチングマス
クを除去した後第1の絶縁体層を被着する工程、
前記第1の絶縁体層をドライエツチングして接合
部の側壁を選択的に前記第1の絶縁体層で被覆す
る工程、前記第1の超伝導体電極の露出表面を陽
極酸化して第2の絶縁体層を形成する工程、前記
マスク補助層を除去した後、前記第2の超伝導体
電極と電気的に接触するように第3の超伝導体電
極を形成する工程を含むことを特徴とするジヨセ
フソン素子の製造方法。
1 Step of successively forming a first superconductor electrode, a tunnel barrier layer, a second superconductor electrode, and a sufficiently thin mask auxiliary layer to serve as a mask for anodic oxidation on a substrate, and bonding on the mask auxiliary layer. an etching mask is formed at the location where the mask auxiliary layer and
dry etching away the second superconductor electrode and the tunnel barrier layer; depositing a first insulator layer after removing the etching mask;
dry etching the first insulator layer to selectively cover the sidewalls of the joint with the first insulator layer; and anodizing the exposed surface of the first superconductor electrode to form a second insulator layer. and, after removing the mask auxiliary layer, forming a third superconductor electrode so as to be in electrical contact with the second superconductor electrode. A method for manufacturing a Josephson device.
JP61054950A 1986-03-14 1986-03-14 Manufacture of josephson element Granted JPS62213287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61054950A JPS62213287A (en) 1986-03-14 1986-03-14 Manufacture of josephson element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61054950A JPS62213287A (en) 1986-03-14 1986-03-14 Manufacture of josephson element

Publications (2)

Publication Number Publication Date
JPS62213287A JPS62213287A (en) 1987-09-19
JPH0334237B2 true JPH0334237B2 (en) 1991-05-21

Family

ID=12984941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61054950A Granted JPS62213287A (en) 1986-03-14 1986-03-14 Manufacture of josephson element

Country Status (1)

Country Link
JP (1) JPS62213287A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208873A (en) * 1984-04-03 1985-10-21 Nec Corp Manufacture of josephson junction element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60208873A (en) * 1984-04-03 1985-10-21 Nec Corp Manufacture of josephson junction element

Also Published As

Publication number Publication date
JPS62213287A (en) 1987-09-19

Similar Documents

Publication Publication Date Title
US4455568A (en) Insulation process for integrated circuits
US4818334A (en) Method of etching a layer including polysilicon
GB1578964A (en) Method of forming electrodes on a semiconductor surface
EP0013130A1 (en) Method of producing Josephson elements of the tunneling junction type
EP0476844A1 (en) Method for fabricating Josephson tunnel junctions with accurate junction area control
JPH0334237B2 (en)
JPH0328075B2 (en)
JPH0328074B2 (en)
JPH0511432B2 (en)
JPS60208873A (en) Manufacture of josephson junction element
EP4391784A1 (en) Trenched electrode manufacturing process for quantum device
JPS63224273A (en) Josephson junction element and its manufacture
KR100264237B1 (en) Method of forming hole
JPH0114701B2 (en)
JPS61144892A (en) Production of josephson integrated circuit
JPS5934647A (en) Manufacture of semiconductor device
JPH0222818A (en) Manufacture of semiconductor device
JPH06181322A (en) Dielectric base transistor and manufacture thereof
JPS6149437A (en) Semiconductor device
JPS61208879A (en) Manufacture of josephson integrated circuit
JPH058596B2 (en)
JPH0634417B2 (en) Method for manufacturing josephson junction device
JPH0748494B2 (en) Method for manufacturing semiconductor device
JPS60210887A (en) Manufacture of josephson junction element
JPH0481876B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term